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Abstract

Over the past several years, highly accurate deep
learning models have been developed to predict
epigenetic features such as chromatin accessibil-
ity directly from DNA sequence. These models
have the potential to assign function to disease-
relevant non-coding variation, but their current
utility for variant effect prediction remains lim-
ited. Here, we identify two features of these mod-
els that may limit their performance when applied
to disease variant functionalization. First, we find
that these models have reduced performance in
cell-type specific cis regulatory elements, which
contain a large fraction of the heritability of com-
plex diseases. Second, we show that typical ac-
curacy metrics used to evaluate the performance
of these models on reference sequences are not
indicative of performance on variant effect predic-
tion, as measured by allele-specific accessibility.
In particular, we show that modeling decisions
that improve ”reference accuracy” do not always
improve variant effect accuracy. Based on these
findings, we propose the use of allele-specific
accessibility data in disease-relevant regulatory
regions to evaluate future sequence-based epige-
netic models.
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1. Introduction
The vast majority of disease-associated genetic variants
identified by genome-wide association studies (GWAS) are
located in non-coding regions of the genome and likely
regulate gene expression (Visscher et al., 2017). Pinpointing
the causal variants within an associated locus and annotating
the mechanisms by which these variants act to modulate
disease risk is an open challenge in human genetics.

One promising approach is to use deep learning models
that predict epigenetic features such as chromatin acces-
sibility, histone marks, and gene expression directly from
DNA sequence (Zhou & Troyanskaya, 2015; Kelley et al.,
2016; 2018; Zhou et al., 2018; Agarwal & Shendure, 2020;
Avsec et al., 2021). These models are trained on the ref-
erence genome sequence, but can make predictions about
sequences that differ from reference, e.g. by a single nu-
cleotide. In theory, these variant effect predictions can iden-
tify causal variants and annotate the transcription factors
and cis regulatory elements (CREs) that control expression
of nearby genes. However, it was recently noted that variant
effect predictions from current deep learning models contain
limited unique information about complex disease heritabil-
ity, when conditioned on a broad set of coding, conserved
and regulatory annotations (Dey et al., 2020).

Here, we seek to understand limitations of these deep learn-
ing models with respect to disease-relevant variant effect
prediction, and why these limitations might not be reflected
by typical measures of model accuracy. We base our anal-
ysis on two key ideas. First, disease-relevant non-coding
variation is not uniformly distributed throughout the genome.
Cell-type specific CREs, in particular, are known to harbor
a large fraction of the heritability of complex diseases (Fin-
ucane et al., 2015). Second, the accuracy metric—which
we refer to here as ”reference accuracy”—used to train and
evaluate these models does not directly measure their ability
to predict variant effects, and may not always correlate with
the latter.

Using two ATAC-seq datasets from kidney and immune
cells, we train deep learning models, similar to the Basset
architecture (Kelley et al., 2016), to predict chromatin ac-
cessibility in multiple cell types from DNA sequence. We



Figure 1. (a) Model evaluation using reference and variant effect accuracy. Reference accuracy reflects the training task, predicting
experimentally measured chromatin accessibility from an input reference sequence. Variant effects are predicted by comparing model
predictions for sequences containing reference (red) and alternate (blue) alleles as separate inputs. (b) Reference accuracy for two kidney
cell types, proximal tubule (PT) and distal tubule (DT): Pearson correlation between experimental and predicted chromatin accessibility
for held-out sequences (c) Variant effect accuracy for the same cell types: AUROC for predicting allelic imbalance and imbalance direction
at heterozygous variants.

find that our models achieve high genome-wide predictive
accuracy, but perform poorly in disease-relevant cell-type
specific regulatory elements. We further evaluate the effect
of a number of common training decisions on both reference
and variant effect accuracy, and find that these decisions can
have differing effects on the two metrics. Together, these
results reveal factors limiting the utility of current deep
learning models for variant effect prediction and highlight
targets for future modeling improvements.

2. Data and methods
2.1. Data

We use two ATAC-seq datasets for model training and eval-
uation throughout our manuscript:

• Loeb et al. (manuscript in preparation): Single-
cell ATAC-sequencing of primary human kidney tissue
from three donors. Data were clustered into 10 cell
types, and pseudobulk ATAC data for each cell type
was generated. For additional details, see Appendix
B.1.

• Calderon et al. (2019): Bulk ATAC-sequencing of
25 primary human immune cell types, sorted by flow
cytometry, from four human blood donors.

2.2. Model architecture and training

We train convolutional neural networks (CNNs) to map in-
put DNA sequences (1344 bp) to continuous measures of
chromatin accessibility (normalized ATAC-seq read counts).
Our architecture is based on an updated version of the Bas-

set model, which consists of 8 convolutional layers followed
by 2 fully connected layers (Kelley et al., 2016). We modify
the architecture to predict continuous—rather than binary—
values, which has recently been shown to improve model
generalizability and interpretability (Toneyan et al., 2022),
and train models to minimize the Poisson regression loss
function. We evaluate 4 types of training procedures, includ-
ing single task and multitask learning (described in Table
1). In each case, we use chromosomes 7, 14, and 15 for vali-
dation, chromosomes 4 and 5 for evaluation, and all other
chromosomes for training. We use the Basenji repository
(Kelley et al., 2018) for data preprocessing, model training,
and evaluation.

Table 1. Description of evaluated models.
MODEL OUTPUT TASKS TRAINING REGIONS

1 One cell type
(Single task)

All genomic sequences

2 Many cell types
(Multitask)

All genomic sequences

3 Many cell types
(Multitask)

Sequences overlapping any
ATAC peak

4 Many cell types
(Multitask)

Sequences overlapping non-
ubiquitous ATAC peaks

2.3. Model evaluation

We consider two measures of model performance through-
out our manuscript (Fig. 1A):

• Reference accuracy: Pearson correlation between ex-
perimental ATAC measurements and model predictions



for input sequences from the reference genome.
• Variant effect accuracy: Classification accuracy (AU-

ROC) of in silico mutagenesis predictions of variant
effects vs. experimentally assayed effects of variants
on chromatin accessibility (allelic imbalance) at het-
erozygous sites using variant-specific read mapping.
For additional details, see Appendix B.2.

As an example, we show the reference accuracy of the mul-
titask model (Model 2) for two kidney cell types from the
Loeb et al. data (Fig. 1B). The model achieves a genome-
wide reference accuracy comparable to previous work (Kel-
ley et al., 2018). We also show the model’s variant effect
accuracy in the same cell types (Fig. 1C). The model’s
variant predictions are informative for classifying allelically
imbalanced sites and their direction of imbalance.

3. Results
3.1. Cell-type specific CREs contain a large proportion

of SNP heritability

It has previously been shown that cell-type specific CREs
harbor much of the common genetic variation explaining
heritability of human complex traits and diseases. To verify
this for both of our datasets, we grouped open chromatin
peaks into disjoint clusters based on their accessibility pro-
files across cell types, giving us one cluster in each dataset
corresponding to ubiquitous peaks and additional clusters
displaying cell-type specificity. We estimated the fraction
of heritability explained by these ubiquitous or cell-type
specific open chromatin clusters using partitioned LD score
regression (Finucane et al., 2015) for immune-related traits
(for the Calderon et al. data) or the kidney function marker
creatinine (for the Loeb et al. data) in the UK Biobank
(GWAS summary statistics were obtained from the Price
lab server for immune-related traits and the Neale lab server
for creatinine). We find that cell-type specific peak clusters
explain 59% of creatinine heritability, a 7.2-fold increase
over the heritability explained by ubiquitous peaks, and an
average of 35% of immune-related disease heritability, a

Figure 2. Proportion of (a) creatinine (a kidney function biomarker)
heritability and (b) immune-related disease heritability explained
by cell-type specific and ubiquitous CREs.

Figure 3. (a,b) Reference accuracy and (c,d) overcorrelation (pre-
diction correlation across cell types - experimental correlation
across cell types) for the multitask model’s predictions in cell-
type specific vs. ubiquitous CREs for the Calderon et al. (a,c) and
Loeb et al. (b,d) datasets.

3.4-fold increase over the average heritability explained by
ubiquitous peaks (Fig. 2). These results confirm the im-
portance of cell-type specific CREs for understanding the
genetic underpinnings of complex diseases.

3.2. Sequence-to-accessibility models perform poorly in
cell-type specific CREs

Next, we quantified the predictive accuracy of the trained
models when considering cell-type specific and ubiquitous
clusters separately. We used performance of the multitask
model (Model 2) as a baseline, since prior work has largely
focused on training these models using multitask learning
across cell types. The multitask model’s reference accu-
racy in cell-type specific CREs (0.30 avg. Pearson R for
Calderon et al.; 0.39 for Loeb et al.) is markedly lower than
in ubiquitous CREs (0.68 for Calderon et al.; 0.69 for Loeb
et al.) (Fig 3A,B). While the genome-wide performance of
our models is consistent with prior literature, to our knowl-
edge, our results are the first demonstration that predictive
accuracy is dramatically lower in cell-type specific CREs.

We tested whether this discrepancy could be caused by
higher accessibility on average in ubiquitous peaks. We
quantified the distribution of peak heights and found that
cell-type specific peaks tended to have lower peak heights
than ubiquitous peaks in the single-cell Loeb et al. data
(Fig. S1B). However, we did not observe a similar associ-
ation between peak height and cell-type specificity in the
bulk Calderon et al. data (Fig. S1A). After controlling for
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this bias in the Loeb et al. data, we still observe a drop in
predictive accuracy in cell-type specific CREs when com-
pared to height-matched ubiquitous CREs (0.39 vs. 0.50
avg. Pearson R) (Fig. S1C).

3.3. Effect of multitask architecture and training set
composition on cell-type specific CRE prediction

We next sought to assess how two common training deci-
sions affect performance in cell-type specific CREs. First,
we hypothesized that the multitask architecture might cause
the model to learn shared, rather than cell-type specific fea-
tures. We looked at correlation in the predicted peak heights
across cell types, compared to correlation in the experimen-
tal peak heights. In ubiquitous regions, which were defined
based on the experimental data, distinct cell types have sim-
ilar levels of accessibility, while accessibility in cell-type
specific regions is poorly correlated across cell types. How-
ever, we found that the multitask model’s predictions in
cell-type specific regions are highly correlated across cell
types (Fig. 3C,D). We observe a slight over-correlation
relative to the experimental data in ubiquitous regions as
well. To test whether this over-correlation is caused by the
multitask architecture, we evaluated the effect of training on
a single cell-type, the single task model (Model 1). Single
task training yielded a drop in overall test set accuracy, but
led to a small performance improvement in cell-type specific
regions (Fig. S2, Fig. 4A). While predictions across cell
types from the single task models are less correlated than
the multitask model, we still observe an over-correlation
which is more pronounced in cell-type specific regions (Fig.
S3). This suggests that even single task models are primarily
learning sequence features that are shared across cell types.

The second decision we explored was what regions of the
genome to include in training. For the single task and mul-
titask models, we include all regions of the genome, apart
from assembly gaps and unmappable regions. Cell-type
specific CRE sequences make up less than 10% of this train-
ing set. We hypothesized that the relative infrequency of
these sequences in the training set might contribute to poor
performance. We evaluated two simple modifications to
our training scheme: (i) training only on sequences over-
lapping an ATAC-seq peak in at least one cell type, and (ii)
training only on sequences overlapping a non-ubiquitous
ATAC-seq peak. The multitask, peaks only model (Model
3) improved performance in both cell-type specific and ubiq-
uitous regions (Fig. 4A). This is especially striking given
that removing non-peaks reduced our training set size by
more than 90%. The multitask, non-ubiquitous peaks
only model (Model 4) further improved performance for
cell-type specific peaks (Fig. 4A). However, this model per-
formed poorly on ubiquitous peaks, which is unsurprising
as it was given no training examples of this peak type. For
reference, we also include the inter-individual correlation

Figure 4. Evaluation of common training decisions on (a) reference
and (b) variant effect accuracy in cell-type specific and ubiquitous
CREs in the Loeb et al. dataset.

across the three donors in cell-type specific and ubiquitous
regions as a measure of reproducibility and a reasonable
upper bound on performance (Fig. 4A).

3.4. Training decisions have differing effects on
reference accuracy and variant effect accuracy

We also evaluated the effect of the above training decisions
on variant effect accuracy, to determine whether reference
accuracy is a sufficient proxy for variant effect accuracy in
model selection. Using allelic imbalance measurements at
heterozygous sites in the experimental ATAC-seq data, we
computed an AUROC for the model’s ability to predict the
direction of imbalance, or the more accessible allele, using
in silico mutagenesis. In doing this evaluation, we observed
that cell-type specific CREs tend to have more imbalanced
sites than ubiquitous CREs (Fig. S4). To account for this
bias, we matched imbalance distributions between cell-type
specific and ubiquitous regions for each cell type. In contrast
to reference accuracy, training with the multitask, peaks
only or multitask, non-ubiquitous peaks only models did
not improve variant effect prediction (Fig. 4B). Thus, we
find that modifications that improve reference accuracy do
not necessarily translate into improvements in variant effect
accuracy.

4. Discussion
In this work, we identify two factors that may limit the
application of deep learning models to disease-relevant non-
coding variation. We find that models trained to predict



chromatin accessibility from DNA sequence perform poorly
in cell-type specific CREs, which contain a large propor-
tion of complex disease heritability. We also find that the
commonly reported reference accuracy does not always cor-
relate with variant effect accuracy, and that a number of
common training decisions can have different effects on
these two accuracy metrics, highlighting the importance of
directly evaluating models on their ability to predict vari-
ant effects. To facilitate this evaluation, we propose using
allele-specific accessibility data, which can be readily ob-
tained from the same experimental data used for model
training, with some considerations to facilitate unbiased
allele-specific read mapping (van de Geijn et al., 2015).
Future work will explore strategies to incorporate allele-
specific information into model training, and to extend this
work to models of gene expression.
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A. Supplementary Figures

Figure S1. Peak heights in cell-type specific and ubiquitous CREs in the (a) Calderon et al. (2019) and (b) Loeb et al. data. (c) Predictive
reference accuracy of the multitask model’s predictions in cell-type specific and ubiquitous CREs in the Loeb et al. data after matching
on peak height.

Figure S2. Reference accuracy of the multitask and single-task models.



Figure S3. Overcorrelation of the multitask and single-task models’ predictions in cell-type specific and ubiquitous CREs.

Figure S4. Allelic imbalance distributions at heterozygous sites in cell-type specific and ubiquitous CREs in two cell types of the Loeb
et al. data. Allelic imbalance is defined as the absolute value of the proportion of total reads mapping to the reference allele - 0.5
[abs(REF/(REF+ALT) - 0.5)].

B. Additional Methods
B.1. Kidney data collection and processing

Kidney cortex and medullary tissue from deceased donor kidneys rejected for transplant were processed for ATAC-
sequencing. Nuclei were extracted, counted, and single cell ATAC-sequencing libaries were generated using the 10x
platform (v1.1). Data preprocessing was performed with Cell Ranger ATAC prior to cell quality control, cell clustering, and
peak calling using ArchR (Granja et al., 2021). 10 cell types were identified by clustering. Peaks were grouped into disjoint
clusters based on their accessibility profiles across cell types, giving the ubiquitous and cell-type specific peak clusters used



in our analyses. Transposition sites from each cell cluster were extracted from Cell Ranger generated fragment files to
generate bigwigs for model training. Further dataset details in Loeb et al. (in preparation).

B.2. Evaluating variant effect accuracy

To evaluate variant effect accuracy, we constructed a set of variants with allelic imbalance in two cell types of the Loeb et al.
data: proximal tubule (PT) and distal tubule (DT). To generate these sets we remapped reads using WASP (van de Geijn
et al., 2015), identified heterozygous variants with a read count greater than 20, computed the allelic imbalance ratio REF /
(REF + ALT), used a binomial test to obtain p-values for the significance of allelic imbalance, and corrected for multiple
hypothesis testing using the Benjamini-Hochberg procedure. We defined a set of allelic imbalanced variants in each cell
type using a false discovery rate threshold of 0.01. We defined non-allelic imbalanced variant sets as those variants with
p-value greater than 0.1 in each cell type. The non-allelic imbalanced sets were adjusted to be as large as possible while
matching the read count distribution of the positive set variants on a log scale, resulting in a non-allelic imbalanced set that
was 7x the size of the allelic imbalanced set in each of PT and DT.

To evaluate variant effect accuracy genome-wide (Fig. 1), we used two related classification tasks. For both tasks, we defined
the model’s predictions for the reference and alternate alleles in the 192 bp bin centered at the variant as REF and ALT
respectively, and we computed the predicted allelic imbalance as REF / (REF + ALT). In the first task, we tested whether
predicted allelic imbalance could classify whether or not a variant showed allelic imbalance in the experimental data (i.e.
discriminate between the allelic imbalanced and non-allelic imbalanced sets of variants defined above), as measured by
the area under the receiver operating characteristic curve (AUROC). In the second task, we considered only variants in the
allelic imbalanced set, and tested whether predicted allelic imbalance could classify the direction of imbalance (i.e. the more
accessible allele, REF or ALT), as measured by AUROC.

In order to have a sufficient number of variants to evaluate variant effect accuracy separately within cell-type specific and
ubiquitous CREs (Fig. 4), we used all heterozygous variants within these regions with a read count greater than 20. We
tested whether predicted allelic imbalance could classify the direction of imbalance (i.e. the more accessible allele, REF or
ALT) across all heterozygous variants, as measured by AUROC.


