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Abstract

How do synthetic biological systems and artificial
neural networks compete in their performance in
a game environment? Reinforcement learning has
undergone significant advances, however, remains
behind biological neural intelligence in terms of
sample efficiency. Yet most biological systems
are significantly more complicated than most al-
gorithms. Here we compare the inherent intelli-
gence of in vitro biological neuronal networks to
state-of-the-art deep reinforcement learning algo-
rithms in the arcade game ’pong’. We employed
DishBrain, a system that embodies in vitro neu-
ral networks with in silico computation using a
high-density multielectrode array. We compared
the learning curve and the performance of these
biological systems against time-matched learning
from DQN, A2C, and PPO algorithms. Agents
were implemented in a reward-based environment
of the ‘Pong’ game. Key learning characteristics
of the deep reinforcement learning agents were
tested with those of the biological neuronal cul-
tures in the same game environment. We find
that even these very simple biological cultures
typically outperform deep reinforcement learning
systems in terms of various game performance
characteristics, such as the average rally length
implying a higher sample efficiency. Furthermore,
the human cell cultures proved to have the overall
highest relative improvement in the average num-
ber of hits in a rally when comparing the initial 5
minutes and the last 15 minutes of each designed
gameplay session.
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1. Introduction
The concept of reinforcement learning dates back to the
early days of cybernetics and has been studied in statistics,
psychology, neuroscience, and computer science. In the past
decade, its use has become increasingly popular in the fields
of machine learning and artificial intelligence. Its promise
is highly convincing - a way of programming agents by re-
warding and punishing them without having to specify how
the task is to be accomplished. However, to deliver on this
promise, formidable computational obstacles must be over-
come. Reinforcement learning (RL) implies learning the
best policy to maximize an expected cumulative long-term
reward throughout many steps in order to achieve complex
objectives (goals) (Sutton & Barto, 2018). A deep rein-
forcement learning (deep RL) approach integrates artificial
neural networks with a reinforcement learning framework
that helps the system to achieve its goals (Hessel et al.,
2018). That is, it maps states and actions to the rewards
they bring, combining function approximation and target
optimization. Reinforcement algorithms that incorporate
deep neural networks have been developed to beat human
experts playing numerous Atari video games (Mnih et al.,
2015), poker (Moravčı́k et al., 2017), multiplayer contests
(Jaderberg et al., 2018), and complex board games, includ-
ing go and chess (Silver et al., 2017a;b; 2018). Nevertheless,
reinforcement learning still faces real challenges including
but not limited to complexities in the selection of reward
structure, sample inefficiency (Tsividis et al., 2017; Marcus,
2018), reproducibility issues (Gibney et al., 2020), as well
as requiring high levels of computing power (Mousavi et al.,
2016). All of these suggest that deep RL algorithms may
differ fundamentally from the underlying mechanisms of hu-
man learning while also being too inefficient to be accepted
as plausible models of human learning (Marcus, 2018).
It was recently demonstrated that by using electrophysio-
logical stimulation and recording in a real-time closed-loop
system with a monolayer of living biological neurons, these
cells could be trained to significantly improve performance
in the simulated ’pong’ gameworld (Kagan et al., 2022).
The question arises as to whether this observed performance
is notable in comparison to that of reinforcement learning at
the same task. To compare the performance and efficiency
of such a biological neuronal network (BNN) to that of deep
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RL, we use data gathered from the DishBrain system (Ka-
gan et al., 2022) against time-matched learning from DQN,
A2C & PPO algorithms. DishBrain is a novel system shown
to display biological intelligence by harnessing the inherent
adaptive computation of neurons. In this system, in vitro
neuronal networks are integrated with in silico computing
via high-density multi-electrode arrays (HD-MEAs). We in-
vestigate whether these elementary learning systems achieve
performance levels that can compete with state-of-the-art
deep RL algorithms while varying the input information
density required for training the RL algorithms to also deter-
mine the impact of information sparsity and ensure suitable
comparisons to the biological system. This is the first com-
parison between a synthetic biological intelligence system
and state-of-the-art RL algorithms.

2. Methods
2.1. DishBrain System

To investigate the learning efficiency of the BNNs in the
task-present state, recordings from cultures integrated onto
an MEA were used. The DishBrain environment is a
low latency, real-time system which interacts with the
MEA (Maxwell Biosystems, Switzerland) software to allow
closed-loop stimulation and recording. DishBrain was uti-
lized to embody neuronal cultures in a virtual gameworld,
to simulate the arcade game ‘Pong’. Sensory stimulation
was applied into a predefined bounded two-dimensional sen-
sory area consisting of 8 sensory electrodes to communicate
ball’s position on the x and y-axis using a combination of
rate coding (4Hz - 40Hz) electrical pulses and place coding,
respectively. The movement of the paddle was controlled
by the level of electrophysiological activity measured in a
predefined “motor area”, which was recorded in real-time.
The cells also received information about the closed-loop
response to their control of the paddle.
Cultures received unpredictable stimulation when they
missed connecting the paddle with the ‘ball’, i.e. when
a ‘miss’ occurred. Using a feedback stimulus at a voltage of
150 mV and a frequency of 5 Hz, the unpredictable external
stimulus was added to the system. Random stimulation took
place at random sites over the 8 predefined sensory elec-
trodes at random timescales for a period of four seconds,
followed by a configurable rest period of four seconds where
stimulation paused, then the next rally began. Each record-
ing session of the cultures was 20 minutes. This equaled an
average number of 70 training episodes.

Figure 1 illustrates the input information, feedback loop
setup, and electrode configurations in the DishBrain system.

2.2. Deep Reinforcement Learning Algorithms

We use three state-of-the-art deep reinforcement learning
algorithms: Deep Q Network (DQN) (Mnih et al., 2015),
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Figure 1. a) DishBrain feedback loop setup. b) Electrode configu-
ration and predefined sensory and motor regions. Figures adapted
and modified from (Kagan et al., 2022)

Advantage Actor-Critic (A2C) (Arulkumaran et al., 2017)
and Proximal Policy Optimization (PPO) (Schulman et al.,
2017), established to have good performance in Atari games.
Benefiting from deep learning advantages in automated
feature extraction, specifically exploiting Convolutional
Neural Networks (CNN) in their structures, these methods
are robust tools in reinforcement tasks, particularly in
games where the system’s input is an image. We only report
the results of the deep RL algorithms in a design where the
current state is a tensor of the difference of pixel values
from the two most recent frames (i.e. another 40 × 40
grayscale pixel image). This current state is then input into
the CNN to obtain the selected action.
However, to account for potential adversaries re-
sulting from the high dimensionality (Bellman &
Kalaba, 1957) of the IMAGE input, we also designed
two additional types of low-dimensional input in-
formation called PADDLE & BALL POSITION:
[ballx, bally, paddletopy

, paddlebottomy
]; and BALL

POSITION: [ballx, bally], where bally ∈ {1, 2, · · · , 8}
as we divide the y-axis to 8 equal segments mimicking
the 8 sensory electrodes which place code the bally in the
biological cultures. We compared all three different designs
with the performance of biological cultures and observed no
significant difference in the outcome of these comparisons.
In the training phase of all RL algorithms, we ran them
for 40 random seeds and a total of 70 episodes for each
seed (similar to BNNs). These seeds imply 40 different
neural networks trained separately, resembling 40 different
recorded cultures. We report the average value of each
metric among all seeds.

Figure 2 illustrates the comparison between the input infor-
mation in the DishBrain system and the deep RL algorithms.

3. Results
We studied both human cortical cells (HCCs; 174 sessions)
and mice cortical cells (MCCs; 110 sessions) and compared
them to the introduced RL baseline methods. The reported
results in this section are obtained using the IMGAE input
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Figure 2. Schematic comparing the information feeding routes in the DishBrain system (bottom) and the three implementations of the
deep RL algorithms (top). In each design, the input information to the computing module (deep RL algorithms or DishBrain) is denoted
by a vector I .

design for the RL methods. To determine how the learning
arises in the cultures and in the baseline methods, key game-
play characteristics were examined. The hit counts in the
gameplay in each episode before the ball was missed for the
first time, the number of times the paddle failed to intercept
the ball on the initial serve (aces), and the number of long
rallies (> 3 consecutive hits) were calculated for this data.
For comparison purposes, we first mapped every 70-episode
run of each RL algorithm to a real-time equivalent of 20
minutes by first normalizing to the actual total length of
each run in minutes and then multiplying by 20 minutes.
The DQN algorithm is outperformed by all groups in the

highest level of average hits per rally achieved, while the
biological cultures (i.e. HCC and MCC) outperform all the
RL baselines (see Subfigure 3.a). This indicates that the
cultures represent faster-growing learning rates. Subfigure
3.b compares the % of missed balls on the initial serve, i.e.
aces. HCC and MCC achieve the lowest % of aces in Sub-
figure 3.b. The % of long rallies has an increasing trend
in all groups with the highest levels achieved by MCC and
HCC as illustrated in Subfigure 3.c.
Next, for all the groups, we compared the key activity met-
rics in the first 5 minutes versus the last 15 minutes in each
session. Our aim was to identify any significant improve-
ment in the learning process within each group. Subfigure
3.d compares the average rally length between the two de-
fined time intervals. The results imply that the intra-group
improvement in the length of rallies is significant only in
the biological groups (One-way ANOVA test). Subfigure
3.e represents the change in the average % of aces over time.

A significant decrease in the number of aces implies an im-
proved game performance. Only MCC and HCC groups had
a significant decrease in the average % of aces (One-way
ANOVA test). Subfigure 3.f shows that % of long rallies
in the first 5 minutes versus the last 15 minutes only sig-
nificantly increased for the biological cultures (One-way
ANOVA test).
Pairwise inter-group comparison was carried out for both
time intervals and all metrics using Tukey’s post hoc test
represented in Subfigures 3.g, h, and i.
It should be noted that while certain metrics of the perfor-
mance of the deep RL methods come closest to the bio-
logical cultures, the density of input information is starkly
different between RL methods and the biological cultures.
While RL agents receive pixel data with a density of 40 ×
40 pixels, biological cultures only receive input from 8 stim-
ulation points with a given integer rate code of 4Hz–40Hz,
highlighting important efficiency differences in informa-
tional input between these learning systems. The possibility
of the higher input information dimensionality having ad-
verse effects on the overall sample efficiency of these RL
algorithms was further nullified by evaluating the two alter-
native input structures as discussed above.
To account for potential effects of paddle movement speed
on the success rate of paddle control, we derived the aver-
age paddle movement (in pixels) for all groups. Subfigure
4.a represents these results with DQN having a significantly
higher average paddle movement compared to biological cul-
tures (Pairwise Tukey’s post hoc). Interestingly, the higher
paddle movement speed of the RL algorithms is not reflected
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Figure 3. a) Average number of hits per rally, b) % aces, and c) % long rallies over 20 minutes real-time equivalent of training RL
algorithms and biological cultures. A regressor line on the mean values with a 95% confidence interval highlights the learning trends.
d) Average rally length in the first 5 minutes and last 15 minutes of the sessions. e) Average % of aces within groups and over time.
f) Average % of long-rallies (>3) performed in each interval. g, h, and i) Pairwise Tukey’s post hoc test among groups in each time
interval and for g) average rally length, h) % aces, and i) % long rallies. Box plots show interquartile range, with bars demonstrating 1.5X
interquartile range, the line marks the median and ▲ marks the mean. Error bands = 1 SE

as better game performance according to our results.
Subfigure 4.b compares the relative improvement in the
performance of different groups over time. This measure
identifies the relative increase in the average accurate hit
counts in the second 15 minutes of the game compared to
the first 5 minutes. The HCC group shows the highest im-
provement in time and performing Tukey’s post hoc tests
showed that the difference in this measure is significant be-
tween HCC and PPO, as well as HCC and DQN. The MCC
group also outperforms DQN.

4. Discussion
In this work, we compared the performance of BNNs with
that of state-of-the-art deep RL algorithms in the game
environment of pong. The results show that the game
performance of the deep RL algorithms in terms of relative
learning improvement in time and the ultimate number
of average hits per rally is outperformed by biological
cultures. Furthermore, their performance in the average
rally length and percentage of aces only matches those of
neuronal cultures at best. The RL algorithms showed the
lowest sample efficiency having the lowest improvement in
learning given the 70 episode training duration provided for
all the groups.
This is the first comparison between a synthetic biological

Im
age .           Location Vector      2dInout

a) b)

Figure 4. a) The average paddle movement in pixels and pairwise
Tukey’s post hoc test representing the significance of the differ-
ences. b) Relative improvement (%) in the average hit counts
between the first 5 minutes and the last 15 minutes of all sessions
in each separate group and pairwise Tukey’s post hoc test.

intelligence system and state-of-the-art RL algorithms.
This early work establishes that even the most rudimentary
SBI systems with limited informational input are viable
learning systems that can compete and even defeat the
established RL algorithms which receive significantly
more information input. Coupled with the promise of
significant gains in power efficiencies, flexibility of tasks,
and as data representation to the SBI system is improved,
these biological intelligence systems present a compelling
pathway for realizing real-time learning unachievable by
current silicon-based approaches.
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