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Abstract

Although popular, current diffusion models have
several drawbacks which limit their usefulness for
biological discovery. Class-labeled datasets, such
as those common in scientific domains, are rife
with internal structure. Current class-conditional
diffusion models, however, implicitly model dif-
fusion on all classes in a flat fashion, ignoring any
known relationships between classes. To leverage
this structure, we propose hierarchically branched
diffusion models as a novel framework for class-
conditional generation. We highlight several ad-
vantages of branched diffusion models for scien-
tific discovery: branched models are easily ex-
tended to novel classes in a continual-learning
setting, they enable more sophisticated forms of
conditional generation, and they offer a novel in-
terpretability into the conditional-generation pro-
cess. We extensively evaluate branched diffusion
models on several benchmark and large real-world
biological datasets, including a real-world single-
cell RNA-seq dataset, where our branched model
leverages the intrinsic hierarchical structure be-
tween human cell types.

1. Introduction
Diffusion models have gained major popularity as a method
for generating data from complex data distributions, includ-
ing when conditioning on labels (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021;
Rombach et al., 2022). Despite these successes, however,
current diffusion models are still limited in many scientific
applications. Conventional diffusion models learn the diffu-
sion process flatly for each label, disregarding any known
relationships or structure between them. In reality, scientific
data is typically characterized by a set of highly structured
classes which can be thought of as hierarchical. For exam-
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ple, human cell types are organized hierarchically by nature:
keratinocytes are very distinct from neurons, but the latter
subdivide into excitatory and inhibitory neurons.

In order to leverage this intrinsic structure, we propose re-
structuring diffusion models to be hierarchically branched,
where the branching structure reflects the inherent relation-
ships between distinct classes (the underlying diffusion pro-
cess remains unchanged). This constitutes a novel way
to perform class-conditional generation via diffusion. We
apply branched diffusion to several benchmark and large
real-world scientific datasets, including single-cell RNA-seq
data and drug-like molecules, and highlight the following
advantages of branched diffusion models for scientific dis-
covery:

• They are easily extended to generate new, never-before-
seen data classes in an efficient and principled manner
(i.e. without requiring retraining the whole model).
This is a critical requirement in scientific settings, as
scientific datasets—such as single-cell atlases (Lotfol-
lahi et al., 2021)—often grow steadily as data of new,
never-before-seen classes (e.g. cell types, tissues, per-
turbations, etc.) is experimentally produced (Han et al.,
2020; Almanzar et al., 2020).

• They allow transmuting objects from one class into
the analogous object of a different class. For example,
given a model trained on multiple cell types, with each
cell type measured in various conditions or perturba-
tions, we can use transmutation to answer questions
like the following: “what would be the expression of
this specific B-cell lymphocyte treated with drug X, if
the cell type were a T-cell lymphocyte instead?”

• They offer interpretability into the underlying dataset,
such as revealing common features between classes.
Interpretability is a cornerstone of AI for science, but
until now there has been limited work (if any) that
attempts to improve and leverage diffusion-model in-
terpretability.

• They are flexibly applied to many data types, any
forward-diffusion scheme, and can be orthogonally
combined with other methods that improve diffusion-
model generative performance or efficiency.
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2. Hierarchically branched diffusion models

Figure 1. a) Illustration of branch points (purple dots) between
classes. b) Each branch of a branched diffusion model is learned
by a different task of a multi-task neural network.

Suppose our dataset consists of a set of classes C. Some
classes in C are more similar than others (e.g. 4s and 9s in
MNIST are visually more similar to each other than they
are to 0s). As noise is progressively added to data, there is a
point in diffusion time at which any two samples from two
different classes are so noisy that their original class cannot
be determined; we call this point in time a branch point. A
branch point is a property of two classes (and the forward
diffusion process) and—importantly—the more similar the
two classes are, the earlier the branch point will be.

The branch points between all classes in C naturally en-
code a hierarchy of class similarities (Figure 1a). This
hierarchy separates the diffusion from a single linear track
into a branched structure, where each branch represents
the diffusion of a subset of classes, and a subset of diffu-
sion times. For |C| classes, there are 2|C| − 1 branches.
Each branch bi = (si, ti, Ci) of the diffusion model is de-
fined by a particular diffusion time interval [si, ti) (where
0 ≤ si < ti < T ) and a subset of classes Ci ⊆ C (where
Ci ̸= ∅). The branches are constrained such that every
class and time (c, t) ∈ C × [0, T ) can be assigned to ex-
actly one branch bi such that c ∈ Ci and t ∈ [si, ti). The
branches form a rooted tree starting from t = T to t = 0.
Late branches (large t) are shared across many different
classes, as these classes diffuse nearly identically at later
times. Early branches (small t) are unique to smaller sub-
sets of classes. The earliest branches are responsible for

generating only a single class.

Additionally, as opposed to a conventional (“linear”) dif-
fusion model which learns to reverse diffuse all classes
and times using a single-task neural network, a branched
diffusion model is implemented as a multi-task neural net-
work, where each output task predicts reverse diffusion for
a single branch (e.g. in an SDE-based diffusion framework
(Song et al., 2021), each prediction head learns the Stein
score for a specific branch) (Figure 1b). The multi-task
architecture allows the model to learn the reverse-diffusion
process distinctly for each branch, while the shared parame-
ters allow the network to learn shared representations across
tasks without an explosion in model complexity. Training a
branched diffusion model follows nearly the same procedure
as with a standard linear model, except for each input, we
only perform gradient descent on the associated branch (i.e.
model output task) (Algorithm S1). To sample an object of
class c, we perform reverse diffusion starting from time T
and follow the appropriate branch down (Algorithm S2).

Importantly, the underlying diffusion process in a branched
diffusion model is identical to that of a conventional linear
model; a branched model is characterized by the explicit
definition of branch points which separate the responsibility
of reverse diffusing different subsets of classes and times
into separate branches, where each branch is predicted by a
different head of a multi-task neural network.

Branched diffusion models are a completely novel method
of class-conditional diffusion. Instead of relying on external
classifiers or labels as auxiliary neural-network inputs, a
branched diffusion model generates data of a specific class
simply by reverse diffusing down the appropriate branches.

We demonstrate branched diffusion models on several
datasets of different data modalities: 1) MNIST handwritten-
digit images (LeCun et al.); 2) a tabular dataset of several
features for the 26 English letters in various fonts (Frey
& Slate, 1991); 3) a real-world, large scientific dataset of
single-cell RNA-seq, measuring the gene expression lev-
els of many blood cell types in COVID-19 patients, in-
fluenza patients, and healthy donors (Lee et al., 2020);
and 4) ZINC250K, a large dataset of 250K real drug-like
molecules (Irwin et al., 2012). For each dataset, we com-
puted branch points using the algorithm in Appendix B.
We trained continuous-time branched diffusion models for
all datasets and verified they were generating high-quality
samples (Supplementary Figure S1–S2). We compared the
generative performance of our branched diffusion models
to label-guided (linear) diffusion models, which are the
current state-of-the-art method for conditional generation
via diffusion (Ho et al., 2021). Our label-guided models
were trained on the same data using a similar architecture
and capacity. We computed the Fréchet inception distance
(FID) for each class, comparing the branched diffusion mod-
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els and their linear label-guided counterparts. In general,
the branched diffusion models achieved similar generative
performance—or better—compared to the current state-of-
the-art label-guided strategy (Supplementary Figure S3).
This establishes that branched diffusion models offer com-
petitive performance in terms of sample quality. We also
found that branched models remain robust to variation in
the underlying branch points (Supplementary Figure S4).

3. Extending to novel classes
By separating the diffusion of different classes into distinct
branches and output tasks of a neural network, a branched
diffusion model easily accommodates the addition of new
training data (e.g. from a recent experiment). This require-
ment is typical of large-scale, integrated scientific datasets,
which are continuously updated with new research (e.g.
single-cell reference atlases such as the Human Cell Atlas
(Regev et al., 2017)). Leveraging the intrinsic structure of
cell types (Han et al., 2020), a branched diffusion model
can be fine-tuned on a new study—potentially containing
new cell types—without retraining the entire model.

To illustrate this extendability, we trained a branched diffu-
sion model on three MNIST classes: 0s, 4s, and 9s. We then
introduced a new digit class: 7. In order to accommodate
this new class, we added a single new branch to the diffusion
model (Figure 2a). We then fine-tuned only the newly added
branch, freezing all shared parameters and parameters for
other output tasks. That is, we only trained on 7s, and only
on times t ∈ [si, ti) for the newly added branch bi. After
fine-tuning, our branched diffusion model was capable of
generating high-quality 7s without affecting the ability to
generate the other digits (Figure 2b).

In contrast, if we start with a label-guided (linear) diffusion
model (also trained on 0s, 4s, and 9s), it is much more
difficult to extend the model to accommodate a new digit
class. After fine-tuning the label-guided model on 7s, the
model suffered from catastrophic forgetting (van de Ven
& Tolias, 2019): it largely lost the ability to generate the
other digits (even though the label of other digits was being
fed to the model during sample generation), and generated
almost all 7s for any label (Figure 2b). In order for the
linear model to retain its ability to generate pre-existing
digits, it must be retrained on the entire dataset, which is far
more inefficient, particularly when the number of classes is
large. In our MNIST example, retraining the linear model
on all data took 7 times longer than training the singular new
branch on a branched model. Notably, even after retraining
on all classes, the linear model’s generation of old tasks still
experienced inappropriate influence from the new task.

To quantify the ability of branched models to be extended
to new data, we computed the FID of branched and label-

Figure 2. a) A trained branched diffusion model can accommodate
a new class by adding and training a single new branch (purple
dotted line). b) Examples of MNIST digits before and after intro-
duction of new data class to branched versus linear model.

guided models before and after fine-tuning (Supplementary
Figure S5). On both MNIST and the real-world single-
cell RNA-seq dataset, we found that the branched model
achieved roughly the same FIDs on pre-existing classes
after fine-tuning on the new class. In contrast, fine-tuning
the label-guided model on the new class caused the FID
of other classes to become much worse. The label-guided
model needed to be trained on the entire dataset to recover
the FIDs of pre-existing classes, although the FID was still
generally worse than the branched model.

4. Analogy-based conditional generation
In a diffusion model, we can traverse the diffusion process
both forward and in reverse. Because branched models en-
code shared or interpolated characteristics between classes
at branch points, this allows for a unique ability to per-
form transmutation (or analogous conditional generation)
between classes. In transmutation, we start with an object
from one class, forward diffuse to a branch point, and then
reverse diffuse to a different class. This generates the analo-
gous, corresponding object of a different class.

On our MNIST branched diffusion model, we transmuted
between 4s and 9s (Figure 3a). Intriguingly, the model
learned to transmute based on the slantedness of a digit.
That is, slanted 4s tended to transmute to slanted 9s, and
vice versa. To quantify the analogous conditional genera-
tion between classes, we transmuted between letters on our
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Figure 3. a) Examples of 4s transmuted to 9s (left), and 9s trans-
muted to 4s (right). b) Scatterplots of feature values before and
after transmutation from Vs to Ys (left), or Ys to Vs (right). c)
Distribution of critical marker genes before and after transmutation
between CD16+ NK cells and classical monocytes. d) Examples
of molecules we transmuted from acyclic to cyclic, and from non-
halogenated and halogenated.

tabular branched diffusion model (Figure 3b). Transmuting
between V and Y (and vice versa), we found that for every
feature, there was a positive correlation of the feature values
before versus after transmutation, even if the feature range
is different between the two classes. This underscores the
ability of branched diffusion models to transmute objects of
one class to the analogous object of a different class.

On our real-world single-cell RNA-seq dataset, we trans-
muted a random sample of CD16+ NK cells to classical
monocytes (and vice versa). In both directions, we found
that the transmutation successfully increased critical marker
genes of the target cell type, and zeroed out the marker genes
of the source cell type (Figure 3c). Additionally, we found a
high correlation in the expression of many genes throughout
transmutation, including CXCL10 (r = 0.20), HLA-DRA
(r = 0.16), and HLA-DRB1 (r = 0.15). These genes were
explicitly identified and showcased in Lee et al. (2020) as
being key inflammation genes that distinguish cells infected
with COVID-19 from healthy cells. This illustrates how our
branched model successfully transmuted COVID-infected

cells of one type into COVID-infected cells of another type
(and reflexively, healthy cells from one type into healthy
cells of another type). Finally, we trained a branched dif-
fusion model on ZINC250K. We were able to transmute
molecules into analogous molecules of desired properties,
while largely retaining core functional groups (e.g. amines,
esters, sulfonamides, etc.) (Figure 3d).

5. Interpretable hybrids at branch points
In the reverse-diffusion process, branch points are where
distinct classes split off and begin reverse diffusing along dif-
ferent trajectories. Thus, for two similar classes (or two sets
of classes), the reverse-diffusion intermediate at a branch
point naturally encodes features which are shared (or other-
wise intermediate or interpolated) between the two.

Figure 4. a) Examples of MNIST hybrids between the digits
classes 4 and 9. Each hybrid in the middle row is the reverse-
diffusion starting point for both images above and below it. b)
Aggregate hybrids at branch points (averaged over many samples)
between pairs of MNIST classes. c) Distribution of feature values
between two pairs of letter classes—O and X—and in the gener-
ated hybrids from the corresponding branch point.

For example, on our MNIST branched diffusion model,
these “hybrids” at branch points tend to show shared charac-
teristics that underpin both digit distributions (Figure 4a–b).
On our branched model trained on tabular letters, we see
that hybrids tend to interpolate between distinct feature dis-
tributions underpinning the two classes, acting as a smooth
transition state between the two endpoints (Figure 4c).

6. Conclusion
We proposed branched diffusion models as an alternative
method of class-conditional generation. This novel frame-
work holds several advantages for datasets with highly struc-
tured classes—such as those in scientific settings—which
we demonstrated on several benchmark and large-scale real-
world datasets.
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A. Supplementary Figures and Tables

Algorithm S1 Training a branched diffusion model

Input: training set {(x(k), c(k))}, branches {bi}
repeat

Sample (x0, c) from training data {(x(k), c(k))}
Sample t ∼ Unif(0, T )
Forward diffuse xt ∼ qt(x|x0)
Find branch bi = (si, ti, Ci) s.t. si ≤ t < ti, c ∈ Ci

Gradient descent on p(θs,θi)(xt, t)[i] (on output task i)
until convergence

Algorithm S2 Sampling a branched diffusion model
Input: class c, trained pθ, branches {bi}
Sample x̂← xT from π(x)
for t = T to 0 do

Find branch bi = (si, ti, Ci) s.t. si ≤ t < ti, c ∈ Ci

x̂← pθ(x̂, t)[i] (take output task i)
end for
Return x̂
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Figure S1. Examples of generated MNIST images. We show (uncurated) images of MNIST digits generated by branched diffusion models.
Since branched diffusion models naturally output each class separately, generation of individual classes does not require supplying labels
or pretrained classifiers. We show a sample of digits generated from a continuous-time (score-matching) diffusion model (Song et al.,
2021), and a discrete-time diffusion model (denoising diffusion probabilitistic model) (Ho et al., 2020). Branched diffusion models for
multi-class generation fit neatly into practically any diffusion-model framework.
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Figure S2. Examples of generated letters. We show some examples of distributions generated from a branched diffusion model trained on
tabular data: English letters of various fonts, featurized by a hand-engineered set of 16 features. a) For each letter class and each of the 16
numerical features, we computed the Wasserstein distance (i.e. earthmover’s distance) between the true data distribution and the generated
data distribution. We compare this distribution of Wasserstein distances to the distances between different true distributions of features as
a baseline. On average, the branched diffusion model learned to generate features which are similar in distribution to the true data. b) We
show an example of the true and generated feature distributions for a particular feature, comparing two letter classes: P and Q. Although
the two classes show a very distinct distribution for this feature, the branched diffusion model captured this distinction well and correctly
generated the feature distribution for each class. c) Over all 16 numerical features, we computed the Pearson correlation between the
features, and compare the correlation heatmaps between the true data and the generated examples. In each of these three classes, the
branched diffusion model learned to capture not only the overarching correlational structure shared by all three classes, but also the subtle
secondary correlations unique to each class.
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Figure S3. Sample quality of branched diffusion vs label-guided (linear) diffusion. We compare the quality of generated data from
branched diffusion models to label-guided (linear) diffusion models of similar capacity and architecture. For each class, we computed the
Fréchet inception distance (FID) between the generated examples and a sample of the true data. A lower FID is better. We show the
FID for generated a) MNIST digits; b) tabular letters; and c) single-cell RNA-seq. We find that our branched diffusion model achieved
comparable sample quality compared to the current state-of-the-art method of label-guided diffusion. In some cases, the branched model
even consistently generated better examples.
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Figure S4. Robustness of branch points. a) We computed branch points and hierarchies for the MNIST dataset 10 times, each time
resulting in a slightly different branching structure. The variation results from randomness in sampling from the dataset, and randomness
from the forward-diffusion process. The 10 branching structures vary not only in their branching times, but in their topologies (above).
To emphasize the variation in the hierarchies, we also overlay all 10 hierarchies on the same axes (below). b) Compared to randomly
generated hierarchies, the branching structures generated by our algorithm (Supplementary Methods Section ??) have a much lower
branch-score distance between themselves (p < 10−25 by Wilcoxon test). c) We trained a branched diffusion model on each of the
hierarchies, and quantified generative performance using Fréchet inception distance (FID). Over all 10 hierarchies, the FID from the
branched models were relatively consistent with each other, and also generally better than the label-guided (linear) model.
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Figure S5. FID after class extension. In order to quantify the ability of branched models to be extended to new data classes, we computed
the FID of branched and label-guided models before and after fine-tuning on a new, never-before-seen data class. On both MNIST (above)
and the real-world single-cell RNA-seq dataset (below), we found that the branched model achieved roughly the same FIDs on pre-existing
classes after fine-tuning on the new data class. In contrast, fine-tuning the label-guided model on the new data class caused the FID of
other classes to significantly worsen. The label-guided model needed to be trained on the entire dataset to recover the FIDs of pre-existing
classes, although the FIDs were still generally worse than those of the branched model.
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B. Branch-point discovery algorithm
In a branched diffusion model, each branch bi = (si, ti, Ci) learns to reverse diffuse between times [si, ti) for classes in Ci.
The branches form a tree structure (i.e. hierarchy) with the root at time T and a branch for each individual class at time 0.
These branch definitions may come from prior domain knowledge, or they can be computed from the training data alone. In
our work, we computed the branch definitions using the following algorithm:

1. Start with a dataset of objects to generate, consisting of classes C.

2. For each class, sample n objects randomly and without replacement.

3. Forward diffuse each object over 1000 time points in the forward-diffusion process (we used 1000 steps, as this matched
the number of reverse-diffusion steps we used for sample generation). The branched diffusion model which will be
trained using these branch definitions employs an identical forward-diffusion process.

4. At each time point t, compute the average similarity of each pair of classes, resulting in a |C| × |C| similarity matrix at
each of the 1000 time points. For distinct classes ci, cj (i ̸= j), the similarity s(t, ci, cj) is computed over the average
of n pairs, where the pairs are randomly assigned between the two classes; for self-similarity of class ci, the similarity
s(t, ci, ci) is computed over the average of n pairs within the class, randomly assigned such that the same object is not
compared with itself. For simplicity, the similarity metric we used was Euclidean distance over the flattened vectors,
but other metrics may be used which better match the domain.

5. For each pair of classes ci, cj (i may be equal to j), smooth the trajectory of s(t, ci, cj) over time by applying a
Gaussian smoothing kernel of standard deviation equal to 3 and truncated to 4 standard deviations on each side.

6. For each pair of distinct classes ci, cj (i ̸= j), compute the earliest time in the forward-diffusion process such that
the average similarity between ci and cj is at least the self-similarity of ci and cj (averaged between the two). A
tolerance of ϵ is allowed. That is, for each pair of distinct classes ci, cj (i ̸= j), compute the minimum t such
that s(t, ci, cj) ≥ 1

2 (s(t, ci, ci) + s(t, cj , cj)) − ϵ. This gives each pair of distinct classes a “minimal time of
indistinguishability”, τci,cj .

7. Order the
(|C|

2

)
minimal times of indistinguishability τ by ascending order, and greedily build a hierarchical tree by

merging classes together if they have not already been merged. This can be implemented by a set of |C| disjoint sets,
where each set contains one class; iterating through the times τ in order, two branches merge into a new branch by
merging together the sets containing the two classes, unless they are already in the same set.


