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Abstract
Single-cell spatial transcriptomics technologies
are often limited to a small number of measured
genes. Several computational methods for the
prediction of additional spatial gene expression
profiles have been developed to address this limi-
tation. However, relational information encoded
by the co-expression patterns of genes and the
spatial organization of cells are rarely utilized
in these prediction methods. Here we introduce
SPRITE (Spatial Propagation and Reinforcement
of Imputed Transcript Expression) as a flexible
post-processing algorithm to improve spatial gene
expression predictions from any existing method
by propagating errors along gene co-expression
networks and smoothing predicted gene expres-
sion across spatial graphs of cells. SPRITE gen-
erally improves the quality of predicted gene ex-
pression profiles and downstream clustering and
visualization of the data across several benchmark
spatial transcriptomics datasets.

1. Introduction
Spatial transcriptomics technologies measure gene expres-
sion in relation to spatial organization, enabling the charac-
terization of cell types and transcripts across various tissues
and organisms (Moses & Pachter, 2022). However, most
spatial transcriptomics methods with single-cell resolution
can only measure a limited number of genes (Li et al., 2022).
Due to the resource-intensive nature of acquiring single-cell
spatial transcriptomics data, there is a need for computa-
tional methods to expand the number of genes profiled or
predict the expression of additional genes of interest.

Several computational methods address the imputation or
prediction of spatial gene expression using paired spatial
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transcriptomics and single-cell RNA-seq datasets. These
approaches typically involve joint embedding of the spatial
and RNA-seq data, followed by the prediction of expres-
sion for new spatial genes by aggregating neighboring cells
in the RNA-seq data (Abdelaal et al., 2020; Allen et al.,
2023; Shengquan et al., 2021; Welch et al., 2019), or by
optimal transport (Biancalani et al., 2021). In most cases,
relational information between genes (e.g. co-expression)
and between cells (e.g. spatial proximity) are not utilized
in the prediction method. Given that accurate prediction of
spatial gene expression is necessary for downstream anal-
ysis, leveraging this relational information to improve the
quality of predictions is desirable.

Here we introduce SPRITE, a simple wrapper method
around existing spatial gene expression prediction methods
that uses gene correlation networks and spatial neighbor-
hood graphs to refine the baseline predictions. SPRITE is
flexible and can be used with any method for predicting
spatial gene expression. We show that post-processing of
spatial gene expression predictions with SPRITE generally
leads to more accurate predictions and that these improve-
ments translate to common downstream analysis pipelines
for spatial transcriptomics.

2. Methods
2.1. SPRITE workflow

Spatial gene expression prediction generally involves paired
data from spatial transcriptomics and RNA-seq (paired in
that they are approximately from the same tissue and organ-
ism, i.e. from the same distribution). We denote the spatial
transcriptomic data as Xspatial ∈ Rn×p and the RNA-seq
data as Xrna ∈ Rm×q, where rows are cells and columns
are genes. Generally, spatial gene prediction considers the
case where q >> p and the genes represented in Xrna are a
superset of the genes in Xspatial. Spatial gene prediction pro-
ceeds for a gene j that is measured in Xrna but not in Xspatial.
Using various procedures, a prediction method predicts the
expression of gene j for each cell in Xspatial from the infor-
mation in Xspatial and Xrna. We refer to the predicted gene
expression matrix as G ∈ Rn×r, which contains r predicted
genes.
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The general workflow for SPRITE is depicted in Figure
1A, and can be summarized as follows. Given a black-box
gene expression prediction method and paired data Xspatial
and Xrna, we predict gene expression for a panel of target
genes that are present in Xrna but not in Xspatial and also a
set of “calibration” genes that are present in both data. The
latter prediction is done in a leave-one-gene-out approach
as to avoid overly optimistic predictions from models ex-
posed to the real expression of that gene. After obtaining
the set of predicted spatial gene expression values, G, we
then reinforce those predictions using the prediction residu-
als observed in the calibration genes that were measured in
the spatial transcriptomics data. The Reinforce step results
in the propagation of residuals across a graph and correc-
tion of the raw predicted expression values. Afterwards,
the reinforced gene expression is spatially smoothed in the
Smooth step so that neighbors (cells in close spatial prox-
imity) with similar gene expression profiles will have more
similar expression of predicted transcripts. In all use cases,
we perform a single pass of the Reinforce step followed by
a single pass of the Smooth step.

In both the Reinforce and Smooth steps, we adapt an itera-
tive smoothing procedure (Zhou et al., 2003; Huang et al.,
2020), which is succinctly represented as:

X(t+1) = (1− α)X + αAX(t) (1)

where X is the matrix to smooth over, A is a normalized ad-
jacency matrix between rows of X , and α is the smoothing
parameter. Updates continue until empirical convergence of
X(t) → X(t+1). In Reinforce, we set X = E to be the pre-
diction residuals and A = Sgene to be the adjacency matrix
corresponding to a gene correlation network. In Smooth,
we set X = G to be the predicted gene expression and
A = Sspatial to be the adjacency matrix corresponding to a
spatial cell graph.

2.2. Reinforce using gene correlation network

The Reinforce update rule is:

E(t+1) = (1− αr)E + αrSgeneE
(t). (2)

We build a gene correlation network by (1) computing pair-
wise Spearman correlations between all genes in the com-
bined target and calibration gene panels (r genes in total);
(2) computing a cutoff value to keep an edge between genes
such that all genes have at least one neighbor; (3) using the
cutoff to construct a binary adjacency matrix Sgene ∈ Rr×r.
The cutoff values are context-specific and selected to en-
sure that information can be propagated across all genes
in the spatial transcriptomics data. Using fixed cutoff val-
ues across all experiments did not significantly change the
results. We propagate residuals on the gene correlation

network represented by Sgene using Eq. (2). We define the
residuals as E = (Y −G)T , where G is the predicted gene
expressions and Y are the measured gene expressions in
Xspatial. For genes that were not measured in the spatial
data, we set E = 0. We select the optimal value of αr us-
ing nested cross-validation where for each cross-validation
fold, we mask out a subset of the calibration genes (i.e. set
their residual to zero) and then evaluate the improvement in
mean absolute error (MAE) with respect to the known true
residual values after reinforcement. We repeat this across
all cross-validation folds and then select the αr that returns
the lowest MAE.

2.3. Smooth using spatial neighbors graph

The Smooth update rule is:

G(t+1) = (1− αs)G+ αsSspatialG
(t). (3)

The input to the Smooth step is constructed from the output
of the Reinforce step as G(0) = G + E(t), where E(t)

is converged residual matrix. Our approach for building
spatial connectivity graphs for the cells in Xspatial is to first
draw edges between each cell and its k-nearest neighbors
by Euclidean distance. We used k = 50 in all experiments,
but the results are generally robust to the exact choice of k.
After constructing the spatial graph, we prune outlier edges
by removing all edges between cells with Euclidean distance
greater than 1.5 times the interquartile range of neighbor
Euclidean distances. The final normalized adjacency matrix
is denoted Sspatial. Then, SPRITE propagates the predicted
gene expression values across the spatial graph according
to Eq. (3) until convergence. To select the optimal αs, we
employ a simple line search across discrete choices of αs

and select the value that minimizes the MAE of predictions
with respect to the true expression values of calibration
genes.

2.4. Evaluation of SPRITE

We evaluate the performance of the SPRITE across eight
benchmark spatial transcriptomics and RNAseq dataset
pairs (Li et al., 2022; Long et al., 2023; Sun et al., 2023b;
Codeluppi et al., 2018) and three spatial gene expression
prediction methods (SpaGE, Harmony, Tangram) (Abdelaal
et al., 2020; Biancalani et al., 2021; Allen et al., 2023). We
use the Spearman correlation coefficient (SCC) and mean
absolute error (MAE) as metrics of spatial gene prediction
quality. To evaluate the concordance of low-dimensional
visualizations to the original high-dimensional data, we
computed the Spearman correlation coefficient between the
pairwise Euclidean distance vectors between all cells across
both modalities using the concordance score method in Dy-
namicViz (Sun et al., 2023a).
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Figure 1. SPRITE improves prediction of spatial gene expression. (A) General workflow for the SPRITE algorithm including baseline
spatial gene expression prediction followed by SPRITE post-processing with Reinforce and Smooth. (B-C) Improvement provided by
SPRITE over baseline spatial gene expression prediction across eight spatial transcriptomics and RNAseq dataset pairs and three spatial
baseline prediction methods as measured by: (B) the Spearman correlation coefficient between the predicted and measured spatial gene
expression values computed for each gene across all cells; (C) the log mean absolute error between the predicted and measured spatial gene
expression values computed for each gene across all cells. (C-E) Representative spatial plots of the measured gene expression, baseline
predicted gene expression, and SPRITE-predicted gene expression profiles for (C) Kcnip2 in osmFISH dataset of mouse somatosensory
cortex with Harmony baseline prediction, (D) Slc17a7 in ISS dataset of mouse visual cortex with SpaGE baseline prediction, (E) Ptprm in
MERFISH dataset of mouse visual cortex with Tangram baseline prediction.

3. Results
3.1. SPRITE improves spatial gene expression

prediction

To assess the performance of SPRITE, we applied SPRITE
post-processing to spatial gene expression predictions from
three methods (SpaGE, Tangram, Harmony) across eight
spatial transcriptomics and RNAseq data pairs. Compared to
the baseline predictions, SPRITE-predicted gene expression
values were generally better correlated with the measured
ground truth expression and had lower prediction errors (Fig-
ure 1B). Qualitatively, these improvements can result from

either the recovery of spatial expression patterns that were
missing in the original predictions (Figure 1C) or selective
attenuation of overly optimistic gene expression predictions
to better resemble the true spatial patterns of gene expres-
sion (Figure 1DE).

3.2. SPRITE improves downstream analyses of spatial
transcriptomics

To determine whether the more accurate predicted gene
expression values obtained through SPRITE would yield
improvements in common downstream analyses, we con-
sidered clustering of cells, which is often used to identify
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Figure 2. SPRITE improves clustering and visualization of predicted spatial gene expression. (A) Schematic diagram of clustering
and visualization of cells using their baseline predicted spatial transcriptomes and SPRITE-predicted transcriptomes. (B-C) Leiden
clustering quality of spatial single-cell transcriptomes across three spatial transcriptomics datasets and five metadata labels including
cell type and anatomic region as measured by (B) adjusted rand index with respect to the Leiden clustering obtained on the measured
spatial transcriptomes, and (C) silhouette score averaged across all cells. (D) UMAP visualization of all cells in the osmFISH mouse
somatosensory cortex dataset with predicted expression of all genes. Colors correspond to anatomic region labels. (E) Spearman
visualization scores for two-dimensional visualizations compared to the original high-dimensional data for all spatial transcriptomics
datasets, spatial gene expression prediction methods, and three dimensionality reduction methods (UMAP, t-SNE, PCA) using either the
measured gene expression, baseline predicted gene expression, or SPRITE-predicted gene expression profiles.

cell types or states, and data visualization, which is often
used to intuitively understand high-dimensional spatial tran-
scriptomics data, as two representative use cases. We com-
pared Leiden clustering and low-dimensional visualization
(PCA, UMAP, or t-SNE) of the baseline predicted spatial
gene expression to those for the SPRITE-predicted spatial
gene expression (Figure 2A). The clustering obtained on
the SPRITE-predicted gene expression values had greater
concordance with metadata labels such as cell type and
anatomic region than clustering on the baseline predicted
gene expression values (Figure 2B), and also resulted in
higher-quality clustering of cells (Figure 2C).

The low-dimensional visualizations obtained from SPRITE-
predicted gene expression were consistently better than visu-
alizations obtained from baseline predicted gene expression
at separating metadata labels and preserving the pairwise
distance relations between cells with respect to the original
high-dimensional data, and in some cases, were comparable
in performance to visualizations obtained from the measured
ground truth gene expression (Figure 2DE).

4. Discussion
SPRITE is a flexible wrapper method around any existing
spatial gene expression prediction method that is highly
scalable, with computational complexity on the same or-
der of magnitude as the original prediction algorithm. We
show that SPRITE generally leads to improved spatial gene
expression predictions, rescues spatial gene expression pat-
terns, and is extendable to improved clustering and visual-
ization of the predicted gene expression data.

Further evaluation of SPRITE in the context of other down-
stream analyses, particularly in training machine learning
models or analyzing differential gene expression patterns,
would highlight the extent of expected improvements from
SPRITE predictions. Experiments with additional passes or
permutations of the Reinforce and Smooth steps may further
optimize the reported improvements in SPRITE predictions.
Combining SPRITE with tools for estimating prediction un-
certainty (Sun et al., 2023b) may provide a richer context in
which to interpret the reliability of downstream conclusions.
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Software and Data
All associated code notebooks and scripts can be
found at https://github.com/sunericd/
sprite-figures-and-analyses. All data can be
found from publicly available sources that are elaborated in
(Li et al., 2022) and (Sun et al., 2023b).
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