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José L. McFaline-Figueroa 1 Elham Azizi 1 3

Abstract
Bacteria inside of tumors can be innately thera-
peutic through competition for nutrients and by
stimulating a local immune response, spurring ef-
forts to engineer bacteria as anti-cancer therapies.
Multiple computational approaches have been de-
veloped for inferring interactions between tumor
and immune cells from single-cell and spatial ge-
nomic data, yet we lack analytical frameworks by
which to infer the consequence of tumor-bacterial
interactions. This study extends a deep generative
framework to dissect tumor-bacterial interactions
and resolve microbial communities from spatial
transcriptomic data. Our inferred latent represen-
tation disentangles the bacterial interactions with
tumor-immune microenvironment (TIME) popu-
lations in a way that pure spatial representation
would not be able to. Our results revealed distinct
intratumoral immune subpopulations character-
ized by their interaction with bacteria, including
a subset of dysfunctional and activated T cells,
and a trajectory of bacteria-associated monocytes
characterized by upregulation of innate signaling
pathways. These findings highlight the potential
of integrative analysis of spatial and single-cell
transcriptomic data with taxonomically aligned
inference of tumor-associated bacteria to analyze
microbial communities in cancer.

1. Introduction
Recently, studies have suggested that microbes can signifi-
cantly impact the development, progression, and response to
cancer therapy [1, 2, 3]. For example, studies that probe mi-
crobiome interactions with colorectal cancer cells identified
shifts in immunologic and metastatic molecular states [2, 4].
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However, the underlying mechanisms linking microbes and
changes in tumor state remain poorly understood.

Studying the interaction between bacteria and the TIME
has largely relied on metagenomic sequencing to profile
microbial communities and fluorescence in situ hybridiza-
tion (FISH) or immunohistochemistry to characterize the
spatial distribution of bacteria. Spatial and single-cell tran-
scriptomics techniques offer greater depth and higher reso-
lution tools to study the host tissue. Still, we are limited in
studying the microbial transcriptome due to the eukaryotic-
specific chemistry leveraged for mRNA capture [5]. This
makes it challenging to infer bacterial-host interactions from
transcriptomic data alone. However, it is possible that mis-
priming events during transcriptomic library preparation
may capture some bacterial rRNA, which then could be
aligned to multiple bacteria genomes [6]. While this tech-
nique has been implemented to highlight the localization
of bacteria to certain tissue areas, there is a dearth of com-
putational methods that integrate this additional “mode”
of bacterial transcripts. Thus, there is a strong demand
for computational methods to utilize this data in modeling
bacterial-TIME interactions, while accounting for the spar-
sity of transcripts and spurious alignments to any one of the
thousands of possible microbe references.

Spatial deconvolution algorithms face additional challenges
with the integration of bacterial data, as they often rely on
single-cell atlases or prior knowledge of single organism
cell-states and interactions. For the purpose of integrating
bacterial reads, we do not have prior knowledge of which
host cells interact with bacteria spatially or how any popula-
tions of cells change phenotypically in the presence of differ-
ent bacteria, which demands a novel analytical framework.
In particular, constructing informative priors on bacterial-
associated regions is challenging. Deconvolving bacteria
and TIME cells in the same spots (i.e., spatial location) is
thus not a straightforward task. Finally, cell-cell interaction
inference techniques, such as CellphoneDB [7] or Cellchat
[8], do not take non-host cells into account for learning
interactions, because the databases employed are curated
using only host receptor-ligand pairs.

We propose to address the numerous challenges pre-
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sented by adapting a recently developed deep generative
model, Starfysh [9] to learn and deconvolve information on
bacterial-TIME interactions. The novelty of our approach
is in adapting the prior to disentangle bacteria-associated
spots, using archetypal analysis [9]. We demonstrate this
approach allows use of existing cell-type marker informa-
tion, bacterial genome references and histology images to
learn the spatial organization of bacteria as additional cell-
types and cell-states in the TIME interacting with bacteria.
We then validate and extend the findings from this model
in a parallel single-cell RNA-seq (scRNA) dataset, as an
independent measurement from the same system.

2. Model
2.1. Datasets
Raw fastq sequencing files were obtained after perform-
ing either 10x Visium spatial transcriptomic (ST) or 10x
Chromium scRNA-seq on tumors harvested from BALB/c
mice with subcutaneous CT26 colorectal cancer tumors.
For the Visium dataset, tumors were harvested 10 days af-
ter systemic delivery of E. coli Nislux (E. coli Nissle with
an engineered Lux cassette that allows for easier visualiza-
tion of bacteria [10]), through tail vein injection. For the
scRNA-seq dataset, tumors were harvested 10 days after
intratumoral injection of either control PBS or E. coli Nislux.
By leveraging a dataset with a controlled in vivo delivery of
a known bacterial strain, we can experimentally validate the
ability of our pipeline in distinguishing E. coli reads from
other taxonomies.

2.2. Construction of the bacteria prior
To construct a prior for bacteria-associated spots in ST
data, we first leveraged the GATK Pathseq pipeline [11]
to identify sequencing reads unaligned to the host organism
that align to a reference compendium containing micro-
bial genomes. While we do not expect 10x Visium or 10x
Chromium scRNA-seq 3’ end capture to target microbial
RNA (lacking a poly-A tail), polyT primers used for eukary-
otic messenger RNA capture display a rate of mispriming
that captures a subset of microbial reads. In brief, taxa were
assigned to reads with a minimum clip length of 60 bp, filter-
duplicates were set to false to avoid loss of duplicate reads,
and the identity-score was set to 0.7 as performed previously
[12]. The output from the GATK Pathseq pipeline was a
tagged list of microbial reads which was then processed
with the Python package Pysam. For the spatial analysis,
we integrated the bacterial reads with the mouse gene ex-
pression matrix by appending the bacteria as features in the
expression matrix. For the consequent single cell analysis,
the bacterial reads are included as metadata.

2.3. Starfysh and adaptation
The Starfysh algorithm [9] takes as inputs a spatial tran-
scriptomic (ST) dataset, optional signature gene lists for
cell types or cell states, and an optional paired histology
image. To infer cell proportions and densities, the algo-
rithm compresses transcriptomic data (xi for spot i) and
guides the low dimensional representation (zi) with anchors
defined as spots enriched for known markers of cell types
and states, which form priors in the deep generative model.
Starfysh transforms the latent variable zi via the neural net-
work f followed by scaling with li, which is sampled from
a log-normal distribution according to observed library size
while also accounting for spatial dependencies in cell den-
sity between adjacent spots [9]. The model assumes that the
histology variable (yi) is jointly generated from the latent
embedding (zi).

Extending this model, we assume the observed gene tran-
scripts (xig for gene g and spot i, and xim for bacteria
genus m and spot i) are sampled from a negative binomial
distribution where

pθ(xig|li, zi) = NegativeBinomial(li · f(zi), θg)

where θg represents gene-specific dispersions. The prior
for cell type proportions cik for cell type k is computed
according to A(xi, sk) with sk denoting the gene expres-
sion signature for cell type k if i is an anchor spot and 0
otherwise, thus relying on anchors to deconvolve data.

p(ci, α) = Dirichlet(α ·A(xi, s))

A(xi, sk) = (
∑

g∈[1,...G] xig·skg∑
g skg

− uk) · 1
σk

while α can tune the strength of the prior. Finally, the
generative model integrates all the above, and assumes that
zi is normally distributed.

p(li, zi, xi, ci) = p(xi|zi, li)p(ci, α)p(zi)p(li, l̃l)

The novelty of our work in extending the archetypal analy-
sis feature of Starfysh to identify additional anchors corre-
sponding to bacteria-associated spots. Intuitively, archetypal
analysis fits a convex polytope to the observed data, finding
the prototypes (archetypes) that are most adjacent to the
extrema of the data manifold. We hypothesize that introduc-
ing bacteria into tissues in a controlled setting would lead
to new observed cell states based on bacteria-TIME inter-
actions. Therefore, in order to characterize these new cell
states and interactions that have not been previously studied,
we reasoned that applying archetypal analysis is appropriate
as the TIME changes upon perturbation through bacterial
delivery should be represented by at least one extrema in the
manifold with dimensions spanning both host and bacteria
genes.

We thus define expanded variables for counts per spot
as xi = [xT

i,1,··· ,G, x
T
i,1,··· ,M ]T with G total genes and
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M bacteria genera. We also define a new signature sb
for microbial-related effects and expand proportions as
ci = [cTi,1,··· ,G, ci,b]

T , where cb summarizes signatures sm
corresponding to the E. coli-Shigella genera m ∈ [1, ...M ] :

A(xim, sb) = (
∑

m∈[1,...,M] xim·sbm∑
m sbm

− ub) · 1
σb

Finally, p(cib, α) = Dirichlet(α ·A(xim, sb))

We expect that the addition of bacterial transcriptome in-
formation with the gene level information will empower
Starfysh to characterize a novel context-specific cell state
that relates to association of TIME cells with bacteria. After
learning a bacteria-associated archetype, this cell state will
be incorporated as a prior to the model and further refine
the deconvolution of cell types with the model.

3. Results and discussion
3.1. Spatial archetypal analysis
We applied the adapted model to dissect bacteria-TIME
interaction in the mouse Visium ST dataset. Our inferred
cell type proportions reveal a tumor region with increased
CT26 tumor proportion in the top portion of the histology
image (Fig. 1a), which overlaps with both the regulatory
T cell (Treg) and monocyte-rich areas of the tumor and
also colocalizes with regions where precursor exhausted
T cells are enriched (Fig. 1b, g, f). In this same region,
terminally exhausted T cells are found at relatively lower
proportions compared to their inferred proportions across
the rest of the tissue (Fig. 1c). Strikingly, the deconvolved
bacterial population is also geographically found in regions
of increased CT26 proportions. This observation is consis-
tent with previous studies that use engineered bacteria to
treat cancer [13, 14, 15]. Therefore, as we hypothesized,
systemically delivered microbes travel and preferentially
grow in immunocompromised and hypoxic neighborhoods
of increased tumor cell activity. However, we notice that
archetypal analysis identifies only a subset of the bacteria-
enriched as a novel phenotypic state (Fig. 1d, h).

Figure 1. Inferred cell type proportions in the spatial map corre-
sponding to the paired histology image

We next clustered spots in the c-space by their inferred cell

type proportions identifying regions with unique cell type
composition (Fig. 2a, b). Generally, the spots with the high-
est proportion of each cell type group together along vertices
of the UMAP embedding. In particular, clusters 1 and 2
capture the bacteria-associated archetype and its heterogene-
ity among spots (Fig. 2b, c). This shows that the inferred
proportions are interpretable among all cell types consid-
ered, including the bacteria-associated archetype. We found
that cluster 1 is mainly composed of Tregs, the bacteria-
associated archetype, bacteria, CT26, and monocytes, while
cluster 2 includes the bacteria-associated archetype, CT26,
monocytes, M1 macrophages, precursor exhaustion T cells,
and dysfunctional T cells (Fig. 2d). Interestingly, clus-
ter 2 suggests colocalization and possible communication
between a subset of bacteria and dysfunctional T cell states.

Figure 2. UMAP of the c space colored by a) Louvain clusters, b)
the inferred bacteria-associated archetype proportion, c) clusters 1
and 2; d) Inferred cluster specific cell types for clusters 1 and 2

We performed diffusion component (DC) analysis on the
inferred latent z-space of our model, to identify trajectories
of cell state transitions. We observed that the spots with high
bacteria proportion are focused primarily on the rightmost
branch along DC3 (Fig. 3h). The spots enriched in CT26,
Treg, and monocytes overlap with the bottom region of the
bacteria-rich spots (Fig. 3a, b, g, h). Interestingly, that same
bacteria region colocalizes with the highest proportion of
bacteria-associated archetype, dysfunctional CD8 cells, pre-
cursor and terminally exhausted T cells, while the top of this
bacteria-rich region colocalizes with spots of high activated
CD8 proportion (Fig. 3c-h). We further quantified these
observations by calculating the Pearson product-moment
correlation between the inferred cell type proportions per
spot, DC2 and DC3 (Fig. 3j), showing a positive correlation
between bacteria, activated CD8 and DC2, and a negative
correlation between bacteria-associated archetype and the
dysfunctional T cell state. These results highlight the in-
terpretability of our model’s latent space, as it allows us
to identify trajectories that lead to the emergence of two
distinct bacteria populations: a branch correlated with bac-
teria and T cell activation, and a second with bacteria and T
cell dysfunction. Further analysis can pinpoint mechanisms
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driving this bifurcation.

Therefore, by adapting the priors in Starfysh and interpret-
ing the inferred latent representation, we were able to dis-
entangle two distinct bacteria populations associated with
different immune responses in the TIME, which cannot
be discerned solely from the spatial representation of our
dataset.

Figure 3. a-i Diffusion map projections along DC2 and DC3 of the
Visium spots colored by inferred proportion of 9 individual cell
types; j) Correlation coefficients between DC2, DC3 and inferred
proportions of all cell types considered in the gene signature list

3.2. Single-cell analysis
Following the archetypal analysis predicting association of
dysfunctional T cells, monocytes, and the novel bacteria-
associated archetype, we sought to determine if a similar pat-
tern was present in single-cell resolution data using matched
scRNA data. Indeed we observe a high association of E.
coli reads specific to the monocyte clusters (Appendix Fig.
4). Interestingly, only monocyte clusters showed high as-
sociation with bacterial reads, whereas macrophage clus-
ters did not show high percentage of bacteria positive cells.
This is consistent with our spatial colocalization analysis
which identified an association of monocytes and the bac-
terial archetype, and lower colocalization of macrophages.
Moreover, our results agree with additional studies using
RNA-FISH to detect bacterial rRNA in the tumor microenvi-
ronment, observing a low number of bacterial reads detected
in macrophages compared to other immune cell types, pos-
sibly due to degradation within activated macrophages [16].

Clustering analysis identified a subpopulation of monocytes
enriched for bacterial association, and subsequent DEG
analysis across clusters identified the monocyte subpopu-
lation overexpresses Wfdc21–a gene downstream of LPS
(a component of bacterial cell walls) recognition. Diffu-
sion component analysis of innate immune populations
(macrophages and monocytes) identified a trajectory (DC1)
describing a cell state with a high association with bacteria
(Fig. 4a, b) [17]. Examining the genes highly correlated

Figure 4. a-b Diffusion map projections along DC1 and DC2 of
scRNA for merged + and -bacteria conditions c) heatmap of z-
scored expression values across genes highly correlated with DC1

with DC1, we identified an association with innate immune
function genes such as the Clec4d–mycobacterial recep-
tor, Srgn–hematopoietic cell granule proteoglycan and the
Lilrb4–Leukocyte immunoglobulin-like receptor involved
in regulation of mast cell activation (Fig. 3c) [17]. Upregu-
lation of these genes in the bacterial associated populations
may contribute to alterations in T-cell signaling and priming.
Finally, we wanted to define which genes drive formation
of this trajectory while taking into account whether or not
the cells are associated with bacteria. We fit a quasi-poisson
regression model using coordinates across DC1 and bacte-
ria positive status as parameters. This analysis identified
Lcn2-an iron-sequestering innate immune response protein,
Tnfrsf13b-a TNF receptor involved in regulating T-cell and
B-cell stimulation, and Irak3-a regulator of Toll-like re-
ceptor signaling as putative regulators of innate immune
progression along the trajectory of association with bacteria
[17].

4. Conclusion
Our adaptation of the Starfysh method with the additional
layer of bacterial rRNA reads marks an important step for
the disentangling of bacterial-TIME interactions. The un-
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covered archetype by our model arrives at an easily in-
terpretable, biologically meaningful phenotype that may
impact bacterial or immune therapy. The scalability of in-
troducing microbial rRNA into archetypal and subsequent
scRNA data is also a novel feature that can inform precise
engineering of bacterial immunotherapy while gaining in-
sights into the cell states driven by microbes.



BacTIME: Computational inference of bacterial interactions with the tumor microenvironment

References
[1] Chi Ma et al. “Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells”. In: SCIENCE

360.6391 (May 2018).
[2] Michael A Casasanta et al. “Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1

secretion that drives colorectal cancer cell migration”. In: Science signaling 13.641 (2020), eaba9157.
[3] Yujie Bao et al. “Long noncoding RNA BFAL1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis

in colorectal cancer via the RHEB/mTOR pathway”. In: Cell Death & Disease 10.9 (2019), p. 675.
[4] Ce Yuan et al. “Tumor models to assess immune response and tumor-microbiome interactions in colorectal cancer”.

In: Pharmacology & therapeutics 231 (2022), p. 107981.
[5] Antoine-Emmanuel Saliba et al. “Single-cell RNA-seq: advances and future challenges”. In: Nucleic Acids Research

42.14 (July 2014), pp. 8845–8860.
[6] Grace E Johnson et al. “BaM-seq and TBaM-seq, highly multiplexed and targeted RNA-seq protocols for rapid,

low-cost library generation from bacterial samples”. In: NAR Genomics and Bioinformatics 5.1 (2023).
[7] Mirjana Efremova et al. “CellPhoneDB v2. 0: Inferring cell-cell communication from combined expression of

multi-subunit receptor-ligand complexes”. In: doi 10 (2019), p. 680926.
[8] Suoqin Jin et al. “Inference and analysis of cell-cell communication using CellChat”. In: Nature communications 12.1

(2021), p. 1088.
[9] Siyu He et al. “Starfysh reveals heterogeneous spatial dynamics in the breast tumor microenvironment”. In: bioRxiv

(2022).
[10] Sreyan Chowdhury et al. “Programmable bacteria induce durable tumor regression and systemic antitumor immunity”.

In: Nature Medicine (2019).
[11] Mark A Walker et al. “GATK PathSeq: a customizable computational tool for the discovery and identification of

microbial sequences in libraries from eukaryotic hosts”. In: Bioinformatics 34.24 (July 2018), pp. 4287–4289.
[12] Jorge Luis Galeano Niño et al. “Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer”.

In: Nature 611.7937 (2022), pp. 810–817.
[13] Sreyan Chowdhury et al. “Programmable bacteria induce durable tumor regression and systemic antitumor immunity”.

In: Nature medicine 25.7 (2019), pp. 1057–1063.
[14] Candice R Gurbatri et al. “Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies”. In:

Science Translational Medicine 12.530 (2020), eaax0876.
[15] Candice R Gurbatri, Nicholas Arpaia, and Tal Danino. “Engineering bacteria as interactive cancer therapies”. In:

Science 378.6622 (2022), pp. 858–864.
[16] Deborah Nejman et al. “The human tumor microbiome is composed of tumor type–specific intracellular bacteria”. In:

Science 368.6494 (2020), pp. 973–980.
[17] Nuala A O’Leary et al. “Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and

functional annotation”. In: Nucleic acids research 44.D1 (2016), pp. D733–D745.



BacTIME: Computational inference of bacterial interactions with the tumor microenvironment

5. Appendix

Figure 5. Graphical representation of the adapted Starfysh algorithm that incorporates spatial transcriptomics datasets, bacteria taxonomy
and histology images. Figure adapted from He et al.

The bacteria-associated archetype was found by calculating the proportion of overlapped spots between the inferred
archetypes found through Starfysh and the known cell types using only the cell type signatures. Archetype 12 (Fig. 5) was
identified as overlapping the most with the spots containing bacteria and was later used as the bacteria-associated archetype
in our analysis.

Figure 6. Proportion of overlapped spots between the identified archetypes and the cell types given signatures
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Figure 7. Heatmap of inferred cell type proportions in spots ordered by increasing proportion of the bacteria-associated archetype

Figure 8. UMAP representation of the single-cell datasets highlighting cells with associated bacterial transcripts, left panel is +bacteria
condition (intratumoral injection of E. coli Nislux) and right panel is PBS control

Figure 9. Volcano plot of DEGs analyzed as a function of DC1 and +bacteria or -bacteria cells. Upregulated genes are upregulated in
bacteria- compared to bacteria+. Q-value (adjusted p-val) is shown on the y-axis.


