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Abstract
While deep learning algorithms, particularly trans-
formers, have recently shown significant promise
in making predictions from biological sequences,
their interpretability in the context of biology has
not been deeply explored. This paper focuses
on the recently proposed DNABERT model and
explores interpreting it’s decisions using mod-
ified Layer-wise Relevance Propagation (LRP)
methods to determine what the model is learn-
ing. This score is then compared to several other
interpretability methods commonly applied to
transformers, including the attention-score based
method proposed by the DNABERT authors. Re-
sults of mutagenesis experiments targeting re-
gions identified by different methods show the
modified LRP interpretability scores can outper-
form others at 20 mutations, and also show atten-
tion cannot reliably outperform random scores.

1. Introduction
The multi-modal and complex nature of functional genomic
datasets, as well as their expanding scale, are well suited
for the application of deep learning tools (Zou et al., 2019).
Deep neural networks, specifically convolutional neural net-
works (CNNs) (Zhou & Troyanskaya, 2015; Alipanahi et al.,
2015; Kelley et al., 2015; 2018; Quang & Xie, 2015; Wang
et al., 2018; Zhou et al., 2018; Jia et al., 2021) and transform-
ers (Ji et al., 2021; Benegas et al., 2022; Avsec et al., 2021),
have been effective in predicting regulatory genomic anno-
tations from biological sequences. Recently, transformer
models like DNABERT have demonstrated superior predic-
tion accuracy compared to their CNN counterparts (Ji et al.,
2021; Avsec et al., 2021).

Despite their predictive power, the interpretability of these
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models is equally crucial, especially in clinical settings
where understanding model failure points is essential
(Eraslan et al., 2019; Novakovsky et al., 2022; Molnar et al.,
2020). Although attention scores of transformers have been
proposed as an interpretability solution (Clauwaert et al.,
2021), limitations exist due to the reduction of model infor-
mation captured and the varied relevance of different atten-
tion heads in each layer (Serrano & Smith, 2019; Chefer
et al., 2020).

This paper addresses this interpretability challenge by ap-
plying Layer-wise Relevance Propagation (LRP) (Chefer
et al., 2020), a technique based on the Deep Taylor Decom-
position principle (Montavon et al., 2017), to DNABERT (Ji
et al., 2021). To our knowledge, this is the first application
of an interpretability mechanism beyond simple attention
maps to transformers for biological sequences. We fine-
tune DNABERT for two classification tasks (identifying
TATA and non-TATA promoters and identifying human en-
hancers), apply several LRP-based methods for transformer
interpretability, and compare these methods to the attention-
score-based method proposed by the DNABERT authors
along with other interpretability approaches such as Grad-
CAM and rollout.

2. Related Works
In recent years, deep learning methods proposed for predict-
ing regulatory annotations in genomics from sequence have
shifted from primarily CNN-based to transformer-based
models (Benegas et al., 2022; Ji et al., 2021; Avsec et al.,
2021). While previous papers have explored the role of
transformers’ interpretability in genomics (Clauwaert et al.,
2021), they have not compared methods beyond attention
scores or acknowledged the limitations of this method (Ser-
rano & Smith, 2019).

2.1. Layer-Wise Relevance

Layer-wise Relevance Propagation (LRP) is a method which
has been utilized to understand and interpret the decisions
made by deep learning models. LRP works by attributing
the contribution of each input feature to the final decision
of the network. This is achieved by propagating the output
prediction back to the input layer, thereby providing an
indication of feature importance.
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LRP is calculated as (Letzgus et al., 2021):

Rj =

∑
k

ajwjk∑
0,j

ajwjk

Rk (1)

Where j and k are the neurons of consecutive layers, a is
the activation of the respective neuron, and w is the weight
between two neurons. Rk is then the ‘relevance’ received
by neuron k, which is interpreted as the contribution of that
neuron in it’s layer to the output prediction f(x).

LRP has been widely used in interpreting CNN-based mod-
els, providing valuable insights into their decision-making
process (Bach et al., 2015). LRP has also been applied to
transformers, particularly to demonstrate multi-headed at-
tention results in “redundant” heads (Voita et al., 2019). A
recent paper has further adapted the LRP method for ex-
plaining transformer classification decisions (Chefer et al.,
2020).

2.2. Layer-Wise Relevance for Transformers

LRP has two important features. Firstly, LRP satisfies the
conservation rule (Montavon et al., 2017), meaning rele-
vancies are preserved as they move through each layer of
the model such that the total relevance at the output layer
is equal to the total relevance of the input layer. Secondly,
LRP assumes ReLU activations, i.e. that there are only
non-negative feature maps (Bach et al., 2015). However,
in transformers the conservation rule is challenged by skip
connections and matrix multiplications (Chefer et al., 2020),
and transformers use the GELU non-linearity(Hendrycks
& Gimpel, 2016), which outputs both positive and negative
values.

Throughout this paper we apply versions of the modified
LRP method proposed by (Chefer et al., 2020) which ac-
counts for the conservation rule in skip connections and
matrix multiplications as well as GELU non-linearities.

3. Datasets
The datasets for both tasks, identifying TATA and non-
TATA promoters as well as identifying human enhancers
were taken from a recent paper (Martinek et al., 2022),
with code available here: https://github.com/
ML-Bioinfo-CEITEC/genomic_benchmarks.
The test datasets for each task consist of roughly 30%
of all data points and are relatively balanced. We col-
lected the data from HuggingFace (Wolf et al., 2019)
https://huggingface.co/katarinagresova
and formatted the sequences including kmer-izing for
DNABERT.

3.1. Human Non-TATA Promoters

Promoters are a region of sequence of DNA that binds
a protein initiating the gene transcription. They are usu-
ally located close (from -200 to 50bp) to the transcription
splice site (TSS). The dataset taken from HuggingFace was
adapted from this paper (Umarov & Solovyev, 2017).

3.2. Human Enhancers

This dataset originates from the Ensembl database (Howe
et al., 2021), release 100, itself taken from the VISTA En-
hancer Browser project (Visel et al., 2007). As this dataset
had variable length sequences, and ’N’ encoded nucleotides,
part of the processing for using this dataset was remov-
ing all sequences less than 200bp in length, and removing
sequences with ’N’ nucleotide codes, before kmer-izing.

4. Methods
4.1. Fine-tuning DNABERT

We employed the pretrained DNABERT model for k-mer
(k = 6) linked on the DNABERT Github 1. We fine-tuned
the pretrained model for both tasks, identifying non-TATA
promoters and identifying human enhancers, by using a
maximum sequence length of 200. The hidden dropout
probability was set to 0.1 to prevent overfitting, and the
learning rate was set to 2e−4. Weight decay was set to 0.01.
The models were fine-tuned for a total of 5 epochs. We
employed a batch size of 48 for fine-tuning, leveraging the
per-GPU setting to optimize memory usage and computa-
tional efficiency.

The warmup phase of the training, the period during which
the learning rate gradually increases to its maximum value,
constituted 10% of the total training duration. We employed
four NVIDIA Tesla T4 GPUs for this task, and used an
Intel(R) Xeon(R) Silver 4110 CPU operating at a base fre-
quency of 2.10GHz for efficient handling of the non-GPU
computations involved in the fine-tuning process.

4.2. Scoring Position Contributions

We computed interpretability scores of each k-mer (k=6)
for 500 samples of each class from the test dataset for both
tasks. These scores were calculated using several meth-
ods, including LRP, Gradient-based methods, and attention
scores from the Transformer model. Each score represents
the importance of each k-mer (and is then converted to po-
sitions in the original sequence for downstream analysis)
according to the specific interpretability method.

The attention score is computed as softmax(QKT /
√
dk)

1DNABERT Github available here: https://github.
com/jerryji1993/DNABERT.
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where Q, K are the query and key matrices, respectively,
and dk is the dimension of the query and key vectors. The
attention score reported for each sequence is calculated as
the sum of attention scores from the start to end tokens.

The LRP score computes the LRP equation for each layer
in the model following Equation 1. The LRP score function
computes LRP for each layer, and returns a ’rollout’ of these
relevance scores. The LRP last score computes LRP only
for the last layer, while the full LRP score computes the
full LRP for the model, where relevance scores are then
summed, providing a single relevance score for each token
in the input.

The rollout score computes the average of attention matrices
from the start of the model to the end.

The GradCAM score computes the gradient of the output
with respect to feature maps and then performs a weighted
combination of these maps. If y c denotes the output
for class c, Ak denotes the k-th feature map (or attention
map in this case), and dy c/dAk denotes the gradient of
y c with respect to Ak, the operation can be denoted as:
GradCAM = ReLU(sum((dyc/dA

k) ∗Ak)).

4.3. Mutagenesis Experiments

We ran mutagenesis experiments to determine how well
the interpretability scores explained the predictions of the
fine-tuned DNABERT models. The mutagenesis experiment
targeted the most relevant base pairs identified by each score
and mutagenized them. In this case, a steep decrease in the
model’s accuracy indicates the mutagenized positions are
important to the classification task.

To run the mutagenesis experiments, we took the positions
identified by each interpretability score and mutated them
in the original sequence, taking a single nucleotide at a
time (either ’A’, ’T’, ’G’, or ’C’) and returning a different
nucleotide chosen randomly from the remaining three. We
then kmer-ized the mutated sequence again, and sent it to
the model for classification to evaluate its performance after
mutagenesis. Note that a single base pair mutation in the
original sequence can affect up to 6 k-mers in the k-merized
sequence sent to the model.

4.4. Motif Analysis

We used the DNABERT’s authors code for motif analysis
in the non-TATA promoter task, finding contiguous high-
scoring regions (specifically for attention, LRP last and LRP
scores), and filtered them by hypergeometric test. The motif
instances for each of the three scores in the were aligned and
merged to produce position-weight matrices (PWMs). The
TOMTOM program (Gupta et al.) was applied to discover
motifs compared with the JASPAR 2018 database (Sandelin
et al., 2004) as in the DNABERT paper.

5. Results
5.1. Model Performance

On the full test dataset, the models performance for each
of the tasks after fine-tuning was 86% accuracy for the
human enhancer task, and 93% accuracy for the non-TATA
promoter task. For each task we take 500 samples from
each class and compare the drop in model accuracy when
mutating the 10% most important nucleotides (n = 20) to
mutating all of them (n = 200).

Results in Table 1 show that the fine-tuned DNABERT
model for the non-TATA promoter task learned how to iden-
tify TATA sequences better than non-TATA (the model accu-
racy drops significantly on totally random sequences when
n = 200 compared to n = 0 for TATA identification). The
fine-tuned DNABERT model for the human enhancer task
learned how to identify enhancer sequences better than non-
enhancer sequences (the model accuracy drops significantly
on totally random sequences when n = 200 compared to
n = 0 for enhancer identification). Interestingly, this aligns
with our intuition for what the model should learn: given
positive examples of a specific class, and then negative ex-
amples that do not belong to the class (but may not follow
a specific pattern beyond not being part of the class), the
model learns only the positive class.

We subset the results for identifying what the model has
learned using interpretability scores to the cases of identify-
ing TATA sequences in the non-TATA promoter task, and
identifying enhancer sequences in the human enhancer task.
The other results are attached in the appendix, see Figure 2.

n = 20
Task n = 0 LRP* attention n = 200
Non-TATA 0.878 0.784 0.788 0.678
TATA 0.968 0.814 0.854 0.306
Enhancer 0.876 0.49 0.512 0.386
Non-enhancer 0.87 0.838 0.852 0.62

Table 1. Accuracy on DNABERT fine-tuned models in classifying
specific classes with 500 samples. Accuracy is reported on unmu-
tated samples from the test dataset (n = 0), 500 sequences with
the top 20 identified LRP-based score or attention score positions
mutated (n = 20), or 500 samples of entirely randomly generated
sequences (n = 200). Here LRP* indicates the results reported
are the best of either LRP or LRP last. If the interpretability score
drops accuracy closer to the accuracy reported at n = 200, this
indicates the score better explains model decision making.

5.2. Mutagenesis Experiments

The LRP and LRP last scores outperformed attention and
other interpretability scores in the mutagenesis experiment
for each task at n = 20, as seen in Table 1. In all cases these
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scores were able to bring the model closer to its performance
on random sequence data than attention scores alone.

In Figure 1 we can see the results of running mutagenesis
experiments for each task with each score mutating n = 1,
n = 5, n = 10, n = 15 and n = 20 positions. In the
TATA region identification task, on 500 samples of TATA
regions, we see the score that drops the accuracy most is the
LRP score. This score consistently remains outside the 95%
confidence interval for random mutations, which cannot be
said for the others. In the human enhancer task we see the
score that drops accuracy the most is the LRP last score,
with LRP and attention just behind.

These preliminary results suggest LRP-based scores can
provide better explainability for transformer models even in
the context of genomics, tested by mutagenesis rather than
ablation. While these results are restricted to two specific
tasks DNABERT was fine-tuned on, they demonstrate that
attention scores alone are not necessarily capturing all the
information the model is using to make decisions in tasks it
has correctly learned.

5.3. Motifs

A brief exploration of the motifs in the non-TATA promoter
identification task, specifically in identifying TATA promot-
ers, revealed the top motif found by attention was other C4
zinc finger-type factors. The top motif found by LRP last
C2H2 zinc finger factors. LRP scores top-matching motif
was homeo domain factors in the JASPAR 2018 database.

6. Conclusion
To the best of our understanding, this is the first paper com-
paring interpretability methods for transformers beyond
simple attention mechanisms in the context of genomics.
Preliminary results suggest there is reason to explore using
LRP-based scores as a better way to visualize and under-
stand how these models learn genomic data. Further work
must be done on more diverse tasks with larger datasets, that
contain longer sequences, and across a larger mutational
burden window (beyond n = 20) to better understand which
LRP-based scores are best suited for model interpretability,
and to discover if attention scores truly cannot outperform
random mutagenesis.

We note that mutating the top n = 20 positions of se-
quences in each task did not converge on random perfor-
mance (n = 200), provide preliminary suggestions that
information within genomic sequences is quite distributed
after all.

We leave as future work the analysis of the quality of motifs
identified by each score in terms of genomic relevance, i.e.
whether more motifs of biological relevance are identified

Figure 1. Top graph shows the drop in accuracy of the non-TATA-
DNABERT model pictured after mutating the k most important
positions identified by each interpretability score. Accuracy drop
is the largest for LRP score indicating this score capture best what
positions the enhancer-DNABERT model uses to make predic-
tions. Gradcam scores and LRP last scores do next best. Notably,
attention scores alone do no better than random. Bottom graph de-
picts the drop in accuracy of enhancer-DNABERT model pictured
after mutating the k most important positions identified by each
interpretability score. Accuracy drop is the largest for LRP last
score, and LRP score and attention are right behind, indicating
these scores capture best what positions the enhancer-DNABERT
model uses to make predictions.

by LRP based scores or other methods.

We acknowledge one of the limitations of applying this LRP
mechanism to popular transformer models for genomics
like Enformer (Avsec et al., 2021), is that the LRP method
employed in this paper propagates relevancies based on a
classification. However, recent work has gone into propos-
ing LRP as an interpretability score for regression tasks as
well, along with best practices for implementation (Letz-
gus et al., 2021). This leaves expanding the modified LRP
score for transformers specifically for transformers on re-
gression tasks, and applying them to models like Enformer
to evaluate their genomic interpretability, for future work.
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A. Appendix
Results for incorrectly learned regions:

Figure 2. Top graph shows the drop in accuracy of the non-TATA-DNABERT pictured after mutating the k most important positions
identified by each interpretability score. Bottom graph shows the drop in accuracy of the enhancer-DNABERT pictured after mutating the
k most important positions identified by each interpretability score.
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