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Abstract

We introduce a new method that uses normal
mode analysis (NMA) to condition diffusion mod-
els for protein design to create proteins with spe-
cific dynamical properties – that is, their lowest
non-trivial normal mode moves a selected set of
residues in a targeted way. We demonstrate that
our approach is feasible by conditioning an equiv-
ariant graph-diffusion model for protein backbone
generation to design molecules with a pre-defined
lowest normal mode. Our work represents a first
step towards incorporating dynamical behaviour
in protein design, and may open the door to de-
signing more flexible and functional proteins in
the future.

1. Introduction
Generative artificial intelligence (AI) has demonstrated sig-
nificant advances in molecular design. In protein design,
denoising diffusion models allow the controllable genera-
tion of a range of proteins (Watson et al., 2022; Ingraham
et al., 2022). Current models allow researchers to condition
protein designs on desirable characteristics such as shape,
scaffolding functional motifs, and other sequence and struc-
tural properties.

However, despite the extensive range of properties that can
be conditioned on, no methods to condition generative mod-
els on protein dynamical properties have been introduced.
Here, we present a novel method to condition diffusion mod-
els on protein dynamics data derived from normal mode
analysis (NMA) (Bahar et al., 2010). Our approach expands
the potential for generating proteins with specific dynamical
properties, crucial for functional applications.
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NMA offers unique advantages for generative AI-driven
protein design. First, it presents a fast route to a rough
hypothesis of dynamics for any protein purely based on
structure, without the need for expensive molecular dynam-
ics information (Bahar et al., 2010). Second, despite the
fact that NMA is less sophisticated than molecular dynam-
ics simulations, the lowest (5-15) non-trivial normal modes
have been shown to capture a substantial portion of func-
tional motions in proteins (Bahar et al., 2010). Prominent
examples include dihydrofolate reductase (DHFR) (Bahar
et al., 1997), lysozyme (Gibrat & Gō, 1990), and adenylate
kinase (AdK) (Tama & Sanejouand, 2001), among others.

Our results show how protein backbone generation can be
conditioned on such that their lowest normal mode moves a
select set of residues move in a targeted way. This provides
a route to designing proteins with tailored dynamical prop-
erties which may open new avenues for protein engineering
and drug discovery. Our contributions are:

1. To our knowledge, this is the first proposal to introduce
explicit conditioning on dynamical properties into dif-
fusion models for protein design.

2. We evaluate our method in a proof-of-concept setting
on its ability to generate protein structures that are
(1) realistic, (2) novel and (3) follow the specified dy-
namics condition. Our experiments demonstrate that
conditioning on NMA-dynamics is viable and can be
incorporated in current diffusion models.

2. Background and related work
Diffusion models Denoising diffusion probabilistic mod-
els (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020)
have been applied in a variety of tasks within and outside
biology, such as image synthesis (Dhariwal & Nichol, 2021;
Kong et al., 2021), drug design (Schneuing et al., 2023) and
protein design (Watson et al., 2022; Ingraham et al., 2022).
Given a data sample x0, DDPMs learn are trained to remove
random noise that is added to the sample. By doing so, they
learn to reconstruct data samples from noise. We refer the
reader to Ho et al. (2020) for a good introduction.

Normal mode analysis (NMA) NMA is a technique to in-
vestigate the vibrational dynamics of a system of molecules



(Bahar et al., 2010). It is based on a harmonic approxima-
tion of the potential energy around a given protein structure.
From this approximation, the vibrational frequencies and
corresponding directions of oscillation (normal modes) arise
as eigenvectors and eigenvalues of the potential energy Hes-
sian matrix. Compared to molecular dynamics simulations,
NMA is computationally efficient and can often distill com-
plex dynamics into a few dominant modes (more in App. B).

3. Methods
Setup We consider the simplified setting of monomeric
protein chains which we represent with only the most rel-
evant features as being an ordered point cloud x0 ∈ Rn×3

constituted only of the N-to-C ordered list of alpha-carbon
coordinates of its residues, without any side-chain infor-
mation. As training and validation data we extract 9’220
high-resolution (< 3 Å) samples from CATHv4.3 (Orengo
et al., 1997) of lengths between 20-100 amino acids (Details
in App. C).

Diffusion loop, denoiser and training We follow Hooge-
boom et al. (2022) and use the Markovian DDPM fomula-
tion of Ho et al. (2020) for our forward process. We use
the noise schedule from Hoogeboom et al. (2022) with 500
steps and subtract the center of mass from the noise for an
equivariant diffusion process (Hoogeboom et al., 2022).
As denoising model ϵθ(xt, t), we use the Geometric Vector
Perceptron (GVP-GNN) (Jing et al., 2021), where the nor-
malised time-step t is added as node-feature, and the initial
layer norms in the embeddings are dropped. We perform
message passing on a fully connected Cα graph with posi-
tional encoding to capture the chain structure. The denoiser
is trained using the denoising objective from Ho et al. (2020)
for 500 epochs with learning rate 1e-4.

Unconditional sampling We follow (Hoogeboom et al.,
2022), and start by sampling xT ∼ N (0, 1), subtracting the
center of mass, and applying the denoising steps using

xt−1 =
1

√
αt

(
xt −

√
1− αt

1− ᾱt
ϵθ(xt, t)

)
+ η(1− αt)z,

(1)
with z ∼ N (0, 1) with subtracted center of mass. Motivated
by Song et al. (2020), we introduce an empirical noise scale
η, with η = 1 being the DDPM formulation in Ho et al.
(2020). We find that the quality of the unconditioned sam-
ples is generally improved for small η. We therefore use a
deterministic reverse process (η = 0) during all experiments
below.

NMA-conditioned sampling We consider the following
situation: Given a set C of residues of interest – for example
a functional motif – we would like to specify their dominant
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Figure 1: Snapshots of the reverse process for unconditional
backbone generation. Point-cloud samples from a Gaussian
prior with center-of-mass zero are progressively denoised.
We observe that the reverse process firstly aligns the back-
bone residues in a chain, before expanding the structure to
biological sizes. Structural details such as alpha helices or
beta strands are formed towards the end of the process.

relative motion.
To specify the relative motion, we define a target matrix
y ∈ R|C|×3 of normal mode component vectors yi ∈ R3 for
each residue i in C. The target matrix may be manually
specified, or extracted from the normal modes of a func-
tional motif of interest in a target protein. In this work, we
wanted to evaluate against diverse motions and therefore
choose samples according to a strain-energy calculation:
We randomly sample a target protein in the holdout data,
perform NMA and identify the most flexible part of the
protein by calculating the strain energy of each node (Hin-
sen & Kneller, 1999). We then choose the lowest normal
mode component of the 10 consecutive nodes for which the
summed energy is largest as our target matrix y.

Conditioning with gradient descent. We take inspiration
from classifier-based guidance (Dhariwal & Nichol, 2021),
where the score of the data is conditioned on the target y by
Bayes rule:

∇xt
ln p(xt|y) = ∇xt

ln p(y|xt) +∇xt
ln p(xt) (2)

The key idea is that instead of training a model to predict
p(y|xt), we exploit that coarse-grained NMA is robust to
slight variations in structure (Bahar et al., 2010) and can
be computed differentiably. Therefore, once a rough struc-
tural hypothesis is formed we can use gradient descent on
an NMA based loss to induce a probability flow towards



samples that satisfy the condition y:

∆x = −γ(xt, t)∇xt l(y, v(xt)) (3)

Here v(xt) is the lowest non-trivial normal mode of xt,
γ(xt, t) is a guidance scale and l(y, v(xt)) is the loss. To
ensure meaningful NMA results, we require a somewhat
protein-like structure xt. We therefore start conditioning
only from t < tstart onward. As seen in Figure 1, a mean-
ingful chain structure emerges in the middle of our reverse
process and the physical distances between residues are only
recovered towards the last quarter of the diffusion process.
Based on these observations, we found a tstart = T/5 to
work well for our model.

Upon sampling from the reverse process and starting from
t < tstart, we condition in the following way. We (1) inflate
the current structure to physical size such that mean chain
distance is 3.8 Å, (2) extract the lowest non-trivial mode of
the structure using Hinsen force-field (Hinsen & Kneller,
1999) parametrisation with a 16Å cut-off, (3) subset the cur-
rent mode to the mode components for conditioned residues
v(xt) ∈ R|C|×3.
The structure xt is then optimised towards the target y by
computing the loss (Eq. 4) and performing gradient descent.
In practice we found it beneficial to split each conditioning
time step into r = 5 smaller steps, interleaving a partial de-
noising (with rescaled amplitudes) with a gradient descent
step with recalculated loss. To balance the magnitudes of
the denoising and the conditioning update, we set γ(xt, t)
to the maximal magnitude of the denoising update.

The conditioning loss (Equation 4) is chosen as a simple
combination of amplitude and angle terms between all pair-
wise residues.

lNMA(y, v(xt)) = langle(y, v(xt)) + 2lampl(y, v(xt)) (4)

langle =
∑
i,j∈C

| cos(yi, yj)− cos(v(xt)i, v(xt)j)| (5)

lampl =
∑
i∈C

∣∣∣∣ ||yi||||y||
− ||v(xt)i||

||v(xt)||

∣∣∣∣ (6)

This choice extracts invariants from the target matrix y
which are independent of the reference frame. Further, it
ensures rotational equivariance of the gradient with respect
to rotations of xt. The amplitude terms are normalised such
that only their relative sizes matter, consistent with the fact
that amplitude information from NMA can only make rela-
tive statements about the participation of a given residue in a
mode (Bahar et al., 2010). For the combined loss, the lampl is
scaled by 2, such that its contribution is similar in magnitute
to langle. This simple loss does not consider higher order
correlations (e.g. among the motion of triplets of residues),
but could readily be extended to do so.

4. Results
Our goal is to evaluate the efficacy of NMA Diffusion in
generating realistic backbones with specific dynamic prop-
erties. This prompts us to address three central questions:
(1) Do the generated samples represent realistic proteins?
(2) If they represent realistic proteins, do they display the
desired normal mode dynamics? (3) Are the samples novel
compared to the training set?
To assess these questions, we use 300 hold-out target struc-
tures of various lengths from our CATH dataset and extract
an NMA target condition as explained above. We then gen-
erate 3 unconditioned and 4 NMA-conditioned samples for
each target condition. We then filter the samples for realis-
tic backbones, requiring that the mean Cα distance along
the backbone is within 0.05 Å of the average Cα distance
of 3.8 Å(Voet & Voet, 2010). This reduces the number of
samples by approximately 25% and 50% for unconditional
and conditional samples, respectively. Of these, we select
the sample with the lowest NMA loss (Eq. 4), leaving with
approximately 300 samples per sampling procedure. Two
samples are shown in Figure 2 (more in App. F).

Figure 2: Left: conditioned sample with NMA-loss lNMA =
0.11. Right: not conditioned sample with lNMA = 0.51.
Purple arrows represent the target, green displacements in
the novel protein.

Filtered samples represent realistic proteins For the
filtered samples, we compute the Cα backbone distances
(Fig. 3). The unconditioned samples follow the Cα dis-
tance distrubtion of the training set well, indicating that
the denoiser can generate realistic backbones. The NMA-
conditioned samples show a similar distribution, but have
heavy tails extending to occasionally unrealistic distances.
When filtering samples with unrealistic distances, we lose
another 3x of samples compared to the unconditioned case.
We attribute the distortion of backbone distances to the
NMA-loss, which does not actively promote realistic back-
bone distances. Currently, the backbone distances are only
corrected by the denoiser, which for our simple denoiser ap-
pears to be insufficient. Since we did not spend much time
in tuning and training our denoiser for this work, we believe
that a more sophisticated denoiser (Ingraham et al., 2022)



or an extra term in the conditioning to encourage maintain-
ing realistic backbone distances can fix the drop in sample
quality. Overall, we conclude that the NMA-conditioned
sampling can generate realistic backbones, but at the cost of
requiring more samples to find a realistic backbone.

3.5 3.6 3.7 3.8 3.9 4.0 4.1

Backbone Cα-distance [Å]
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Figure 3: Cα backbone distances of the generated samples
compared to the training set.

We further compute secondary structure features from the
Cα positions with the P-SEA algorithm (Labesse et al.,
1997) and compare it to the distribution of true proteins
in our dataset (Fig. 4). The unconditioned samples have a
similar secondary structure distribution as the training set,
with a slight overrepresentation of alpha helices. This is
in line with previous work (Watson et al., 2022). Interest-
ingly, the NMA-conditioned sampling remedies this bias
and reproduces the secondary structure distribution of the
training distribution better. This shows that the NMA con-
ditioning does destroy the secondary structure and indeed
may allow correcting for the bias of unconditioned sampling.
When looking at generated samples (App. F) we find that
the generated samples still often show slightly unrealistic
packing, but that there are also samples which are plausible
combination of structural motifs (e.g. Fig. 2).

Unconditioned Conditioned CATH

42.9%
32.4% 33.6%

14.2%
13.6% 15.7%

42.9%
53.9% 50.7%

Helix Sheet Coil

Figure 4: Secondary structure distribution of the generated
samples compared to the training set.

Conditioned samples exhibit the targeted normal mode
To examine whether conditioning the selected residues to

have the targeted lowest normal mode component, we com-
pute the NMA loss (Eq. 4) for the realistic, generated sam-
ples and compare it to the unconditioned samples (Fig. 5).
We see that the NMA-conditioned samples are significantly
enriched towards low loss values compared to the uncon-
ditional samples. In the examples in Fig. 2 and App. F we
also see that lowest normal mode of the generated samples
(green) is in good agreement with the target (purple). This
indicates that NMA-conditioning is effective in generating
samples with the targeted lowest normal mode component.
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Figure 5: Histograms of the NMA-loss (Eq. 4) for condi-
tioned and not conditioned samples.

Samples are novel. Finally, to ensure that the model did
not overfit we compute the TM-score (Zhang & Skolnick,
2005) between the generated samples and the best matching
target fragment of the same size in the training set (App. E).
Both, conditioned and unconditioned samples, have TM-
scores of about 0.3-0.4, indicating that they are novel com-
pared to the training set and do not simply memorise the
training data. Importantly, NMA-conditioning does not have
a negative effect on the novelty of the samples.

5. Conclusion and further work
We introduced a novel framework to condition diffusion
models for protein design on protein dynamics informa-
tion with normal mode analysis. Our analysis demonstrates
that with our NMA-Diffusion sampling procedure, it is pos-
sible to condition a generative model of protein structure
such that its lowest normal mode moves a selected set of
residues in a targeted way, while still generating realistic
and novel proteins. While the current study represents a
proof-of-concept with a simple denoiser, relatively short
proteins and omitting side-chains, future work is underway
to extend this appraoch to full protein design (Watson et al.,
2022; Ingraham et al., 2022) and to investigate whether the
so-conditioned samples behave as expected in molecular
dynamics simulations. To the best of our knowledge, this is
the first time a diffusion model for protein structure has been
conditioned on protein dynamics information. We believe



this approach holds potential for protein design, where it
is desirable to design proteins that are stable and have a
desired conformational flexibility.
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A. Why Normal Mode Analysis (NMA)?
NMA offers unique advantages for generative AI-driven protein design. First, it presents a fast route to a rough hypothesis of
dynamics for any protein purely based on structure, without the need for expensive molecular dynamics information (Bahar
et al., 2010). Second, despite the fact that NMA is less sophisticated than molecular dynamics simulations, the lowest (5-15)
non-trivial normal modes have been shown to capture a substantial portion of functional motions in proteins (Bahar et al.,
2010). Prominent examples include dihydrofolate reductase (DHFR) (Bahar et al., 1997), lysozyme (Gibrat & Gō, 1990),
and adenylate kinase (AdK) (Tama & Sanejouand, 2001), among others.

B. What are NMAs assumptions, limitations and merits?
The simplicity of NMA comes from its strong assumptions (Bahar et al., 2010). It assumes that the given protein structure
represents a potential energy minimum, is in thermal equilibrium, and ignores solvent effects. Despite its simplicity, NMA
has been a key tool in protein dynamics research since the 1970s (Bahar et al., 2010). Its successful application spans a
variety of proteins, providing key insights into their functional mechanisms. For instance, it elucidated the hinge-bending
motion in trypsin (Levitt et al., 1985), and the large-scale conformational changes in myosin (Adamovic et al., 2008).
Moreover, NMA has been instrumental in decoding the opening and closing mechanism of AdK (Tama & Sanejouand,
2001), and the functional dynamics of DHFR (Bahar et al., 1997). Empirical studies such as these consistently found that the
lowest few (typically 5-15) normal modes often capture the predominant part of the functional motions in proteins, beyond
the theoretical confines of the harmonic approximation. This makes NMA a practical approach to distill complex protein
dynamics into a manageable set of normal modes.

There is an array of NMA models, from coarse-grained, where residues or domains are nodes (Tirion, 1996), to highly
detailed models, with atoms as nodes and structures refined in molecular force fields (Bahar et al., 2010). Despite the diverse
methods, a common finding is that the specific choice of the NMA model does not radically influence the general trend about
protein dynamics (Bahar et al., 2010). This suggests that the essential dynamics of proteins can be captured with reasonable
accuracy regardless of the model choice such that our method can be adapted in problems requiring complex force-fields.

We refer the reader to (Bahar et al., 2010) for a comprehensive review of NMA and its applications.

C. Training data
Since this work is meant of a proof of concept, we restricted ourselves to short protein sequences to work with limited
computational resources. To obtain an interesting sample of short protein snippets, we filtered CATHv4.3 domains (Orengo
et al., 1997) for structures with high resolution (< 3Å), between 20-100 amino acids long. To remove redundancy, we
clustered the sequences at 95% sequence similarity. The resulting dataset contains 9’220 protein structures. For these, we
set aside 300 for extracting normal mode condition targets that could not have been observed in the training data and use the
remaining 8’920 for training.

D. Pre-filtering of samples
We then generate 3 unconditioned and 4 NMA-conditioned samples for each target condition. We then filter the samples for
realistic backbones, requiring that the mean Cα distance along the backbone is within 0.05 Å of the average Cα distance
of 3.8 Å (Voet & Voet, 2010). This reduces the number of samples by approximately 25% and 50% for unconditional
and conditional samples respectively. Of these, we select the sample with the lowest NMA loss (Eq. 4), leaving with
approximately 300 samples per sampling procedure.

E. Novelty of samples
To ensure that the model did not overfit we compute the TM-score (Zhang & Skolnick, 2005) between the generated samples
and the best matching target fragment of the same size in the training set (Fig. 6, App.). Both, conditioned and unconditioned
samples, have TM-scores of about 0.3-0.4, indicating that they are novel compared to the training set and do not simply
memorise the training data. Importantly, NMA-conditioning does not have a negative effect on the novelty of the samples.
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Figure 6: Histogram of the TM-score between the generated samples and the best matching target in the training set. With
TM scores around 0.3-0.4, unconditioned and conditioned samples both generate novel samples and NMA-conditioning
does not have a negative effect on novelty.

F. Extra samples
Below we provide a few more samples from the unconditional and conditional sampling process, to give a better idea of the
diversity and quality of the samples.

Figure 7: Left: conditioned sample with L1 loss 0.05. Right: not conditioned sample L1 loss 0.89.



Figure 8: Left: conditioned sample with L1 loss 0.04. Right: not conditioned sample L1 loss 1.02

Figure 9: Left: conditioned sample, loss 010. Right: not conditioned sample, loss 0.82


