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Abstract
The analysis and integration of multi-omics data-
sets requires flexible modelling choices to faith-
fully capture the underlying biological processes
that are active in one or multiple omics layers.
Factor analysis is among the most successful ap-
proaches for this task, yet adapting this model
class to specific biological questions and datasets
is a time consuming step that has resulted in ”re-
inventing the wheel”. Here, we present Cellij,
a versatile factor analysis framework for rapidly
building and training a wide range of factor ana-
lysis models for multi-omics data. By demonstrat-
ing how the framework unifies dozens of previ-
ously distinct factor analysis models, Cellij en-
ables to perform objective benchmarks, which we
use to present a study of alternative sparsity as-
sumptions for the first time. Finally, we illustrate
how Cellij integrates covariates through Gaussian
Processes on a real-world transcriptomic dataset
– enhancing the interpretability of the resulting
latent factors.

1. Introduction
Multi-omics experimental design, whereby the same
samples or biological specimen are assayed using multiple
omics modalities, is increasingly deployed across differ-
ent fields, ranging from basic biology to translation. How-
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Figure 1. Cellij, a modular framework to rapidly build and train
factor analysis models on multi-omics data. Cellij jointly mod-
els multiple omics modalities, and can be flexibly configured to
employ modality-specific sparsity assumptions, modality-specific
likelihoods and latent space prior for metadata. Once trained, Cel-
lij enables diverse downstream analyses and model inspection.

ever, analysing and interpreting the results remains a ma-
jor challenge due to their high-dimensional nature, extens-
ive missing values, batch effects and the need to model
shared and modality-specific variation. Factor Analysis
(FA) models have proven to be particularly effective in mod-
elling such data, allowing for the identification of under-
lying factors that explain the shared and modality-specific
variation across multiple omics layers. This modelling ap-
proach avoids the need to impose strong assumptions such
as a discrete clustering structure, yet is amenable to a direct
mechanistic interpretation owing to its (local) linear struc-
ture. However, in order to maximise the utility and accuracy
of FA models, appropriate choices on sparsity, model reg-
ularisation and noise distributions are indispensable. Even
subtle changes in the statistical assumptions of FA mod-
els can dramatically affect the analysis outcomes. Con-
sequently, a vast number of specialised methods that build
on FA have been proposed across diverse biomedical use-
cases and data modalities. Existing models are implemented
using dedicated software and inference schemes. Hence, it
remains a complex and challenging task to adapt such mod-
els to a specific problem at hand, or compare models that
differ in a subset of their assumptions. Moreover, known
covariates information such as experimental design, or the
temporal (1D) or spatial (2D) arrangement of the samples
remains underexplored in existing implementations.
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A promising direction to ameliorate this fragmentation are
meta models implemented using probabilistic programming
frameworks, i.e. a template to define various specific mod-
els on-the-fly, which would allow for rapid model building
and comparison of alternative statistical assumptions, while
providing both explainability and expressiveness.
To address this, we here present Cellij, a flexible FA-based
framework that enables researchers to rapidly prototype,
explore and adapt models to their specific use-case (c.f. Fig-
ure 1). Cellij builds upon a Bayesian FA skeleton that
is designed to provide wide-ranging customisability at all
levels, ranging from likelihoods and optimisation proced-
ures to sparsity-inducing priors. The framework is designed
based on the following principles:
Rapid Prototyping: Cellij is designed for rapid prototyping
of custom FA models, allowing users to efficiently define
new models in an iterative fashion.
Interpretability: Due to its inherent linear structure, Cellij
allows (i) a straightforward interpretation of the unravelled
biological processes and (ii) a more accountable assessment
of the results by providing uncertainty estimates for the in-
ferred parameters. By imposing structured sparsity priors on
the latent decomposition, Cellij models uncover inherently
interpretable latent factors.
Integration of Covariates: Cellij can incorporate metadata,
such as spatial or temporal dependencies between the
samples, using Gaussian Processes to structure and align
the latent space.

2. Related Work
FA is a widely-used approach for integrating and analy-
sing omics datasets (Thurstone, 1931). Conventional FA is
limited to modelling observations from a single data view.
In order to cope with multi-view datasets, extensions such
as canonical correlation analysis (CCA) (Hotelling, 1936),
(Klami et al., 2013) and group factor analysis (GFA) (Klami
et al., 2015) have been introduced. These methods simul-
taneously model paired observations across multiple views,
capturing their linear dependencies. Factor loadings play a
crucial role in model interpretation, encoding the structure
of each factor. They allow for the introduction of statisti-
cal assumptions, such as sparsity. GFA extends the auto-
matic relevance determination technique (MacKay, 1994)
to quantify the association between view and factor.
Non-Bayesian approaches commonly handle sparsity by
introducing additional terms to the optimisation object-
ive, such as the L1 penalty in LASSO (Tibshirani, 1996).
Bayesian approaches, on the other hand, achieve sparse solu-
tions through sparsity-inducing priors. Examples include the
double exponential or Laplace prior, which is the Bayesian
counterpart of the LASSO (Park & Casella, 2008b), and the
discrete spike-and-slab (SnS) prior (Mitchell & Beauchamp,
1988), a mixture of a Dirac delta distribution and a normal

distribution. Recently, the spike-and-slab LASSO (SSL)
(Ročková & George, 2018) has emerged as a combination
of two Laplace distributions, emulating both the spike and
the slab components. Other shrinkage priors, such as the
horseshoe prior (Carvalho et al., 2009) (HS), offer a con-
tinuous relaxation of the spike-and-slab approach. Several
Bayesian approaches (Engelhardt & Stephens, 2010; Lan
et al., 2014; Buettner et al., 2017) successfully combine
latent variable models with sparsity-inducing priors. In the
multi-view setting, Zhao et al. (2016) propose a hierarchical
Bayesian GFA with structured sparsity, facilitated by a cas-
cading three-parameter Beta prior (Armagan et al., 2011).
This addition supports column-wise sparsity for inferring
associations between views and element-wise sparsity for
feature selection within factors. Multi-omics factor analysis
(MOFA) (Argelaguet et al., 2018) assumes similar structured
sparsity levels by combining automatic relevance determin-
ation (ARD) (MacKay, 1994) with a spike-and-slab prior.
Tab. B compares Cellij to previously published methods.

3. Methods
As shown in (Argelaguet et al., 2020), we can extend tra-
ditional FA to a multi-view and multi-group setting. First
we can divide the input X ∈ RD×N into M views with
N samples and Dm view-specific features each, Xm ∈
RDm×N . Each view consists of non-overlapping features
that represent different assays. Applying the same reasoning,
we can break the assumption of independent samples by sep-
arating the N samples into G groups of size Ng, obtaining
Xmg ∈ RNg×Dm .

3.1. Factor Analysis

Under a distribution Φθ, FA models the expectation of the
data as a linear decomposition of K unobserved factors

Xmg ∼ Φθ(X
mg | WmZg) (1)

where Zg ∈ RK×Ng

denotes the latent factors, and Wm ∈
RDm×K corresponds to the factor loadings. For instance, un-
der the assumption of a normal distribution Φθ = N (Λ,Σ),
Λ = WmZg and θ = Σ. The number of factors is K with
K ≪ Dm ∀m. The choice of the likelihood is data-specific
and can vary across views.

3.2. Sparsity and Shrinkage Priors for Feature Selection

Sparsity-inducing priors enforce zero values for many model
parameters, resulting in models with fewer active variables.
Shrinkage priors, on the other hand, reduce the magnitude of
the estimated parameters towards zero, but may not enforce
exact sparsity. Cellij can impose sparsity both on Wm and
Zg leading to more interpretable results. This reduces the
number of potential solutions to the optimisation problem
and helps select an appropriate number of factors (see 4.1).
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Despite their benefits, both prior approaches also pose chal-
lenges, such as the choice of the prior hyperparameters and
the need for efficient inference algorithms. For a more fluent
reading, we use the term sparsity priors for both sparsity-
inducing and shrinkage priors from now.
We provide an overview of Cellij’s priors in App. F.

3.3. Inducing Structure in the Latent Space using GPs

Most FA models assume independence among samples,
which is not true when there is a temporal or spatial ar-
rangement to them. MEFISTO (Velten et al., 2022) allows
modelling high-dimensional data in the presence of known
spatial or temporal dependencies, enabling spatio-temporal
informed dimensionality reduction, interpolation, and dif-
ferentiation between smooth and non-smooth patterns of
variation. In a similar fashion, we use Gaussian Processes
(GP) for structuring the latent space based on these known
covariates. We adopt the MEFISTO approach, i.e. one can
associate any number of covariates with each factor k, where
Cg ∈ RC×Ng is the matrix of covariates, resulting in

zgkn = fk(c
g
n) + ϵgkn with fk ∼ GP(0, κk) (2)

The user can choose a suitable kernel function from a pre-
defined set or provide his own, e.g., to mix kernels.
Cellij extend the generic group factor analysis models in a
modular and flexible manner, enabling to mix and match
custom-defined data likelihood, sparsity-inducing priors as
well as imposing structured priors on the latent factors.

3.4. Optimisation

To approximate the posterior distributions over variables, we
use stochastic variational inference (Hoffman et al., 2013)
to optimise for the evidence lower bound. In addition, since
Cellij is a Bayesian framework, we estimate uncertainties in
our model parameters – indicating how reliable the results
are. The framework is developed in Python, relying on Pyro
(Bingham et al., 2019) and GPyTorch (Gardner et al., 2018),
and is open-sourced on GitHub1.

4. Results
Leveraging the flexibility of Cellij, we applied the frame-
work to different synthetic and real-data benchmarks.

4.1. Benchmarking Sparsity and Shrinkage Priors

The choice of the prior distribution for variable selection
can greatly impact the accuracy and interpretability of the
resulting estimates. Here, we assess common sparsity priors
to regularise the FA models. Full details on the specific
sparsity prior distributions can be found in App. F.

1https://github.com/bioFAM/cellij

Figure 2. Assessment of FA with alternative sparsity priors in terms
of the accuracy of latent factor recovery. Shown are average cor-
relation of top 10 factors with ground truth data across multiple
experiments. For details on the sparsity prior employed and the
parameterisation used in the figure, see App.F.

Reconstruction of simulated latent factors: We assess
the ability of FA models to reconstruct the underlying latent
factors on synthetic data (c.f. App. D), by quantifying
the correlation coefficient between the simulated and the
inferred factor scores. We train several FA models using
K = 20 factors, where only 10 are active according to the
data generation process. Next, we select the top 10 inferred
factors with the highest correlation to the 10 ground truth
factors (Fig. 2). Overall, the HS prior and its derivatives
offered the most robust recovery performance across all
feature sizes. The best overall performance was achieved
by a HS prior with a constant value of τm = 0.1. The SnS
priors performed worse compared to the HS priors and show
a decreasing performance with growing feature sizes.
Surprisingly, Laplace priors show a strong performance
across large feature dimensions. Dense models without any
sparsity assumption achieved the lowest performance.

Estimation of the true number of latent factors: As a
second evaluation metric, we consider the selection of the
most appropriate number of active factors. Using the same
setup as in the previous experiment, we rank the relevance
of individual learnt factors using the ℓ2-norm as a proxy for
its relevance. The results are summarised in Fig. 4. The
SnS flavours and the Regularised Horseshoe provide a clear
cut-off in factor activity. Again, the Laplace prior exhibits
good results as well. As expected, the baseline Normal
prior results in a large number of active features across all
factors. On the other hand, the Horseshoe priors deactivate
factors reliably for small feature sizes, but suffer on higher
dimensions. Including a factor-specific variable (+ARD)
deteriorates the results, potentially due to a much harder
inference.

https://github.com/bioFAM/cellij
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Modelling the underlying sparsity of factor loadings
We evaluate how well each prior models the true under-
lying sparsity, while maintaining a low reconstruction error.
We first compute binary scores between the inferred and the
true factor loadings, based on an optimal threshold for each
prior assumption. Next, we assess the quality of the decom-
position by computing the RMSE between the observed and
the reconstructed data. We report the main results in Tab. 4.1.
For a more comprehensive summary, see App. C. Similar
to previous results, the HS derivatives and the Laplace prior
exhibit a significantly higher F1 score compared to the SnS
priors. As expected, the Normal prior is unable to capture
the underlying sparse structure. However, all methods per-
form equally well in terms of faithfully modelling the data,
as supported by nearly identical RMSE.

Table 1. Performance comparison on synthetic data.
PRIOR F1 RMSE

HS CT(0.1,1) 0.993 ± 0.001 0.304 ± 0.0021
HS REG(0.1,1) 0.994 ± 0.002 0.305 ± 0.0023
HS(0.1,1) 0.993 ± 0.002 0.305 ± 0.0021
LAPLACE(0,0.1) 0.989 ± 0.003 0.304 ± 0.0019
NORMAL 0.485 ± 0.036 0.302 ± 0.0023
SNS CB 0.668 ± 0.069 0.306 ± 0.0009
SNS RB(0.1) 0.706 ± 0.120 0.307 ± 0.0020
SSL RB(20,0.01,0.1) 0.690 ± 0.054 0.322 ± 0.0020

Assessment of data imputation on a CLL dataset: Fi-
nally, we study the influence of alternative priors on the
model performance for reconstructing missing data. We
applied Cellij to a chronic lymphocytic leukaemia (CLL)
dataset, which combined ex vivo drug response measure-
ments with somatic mutation status, transcriptome profiling
and DNA methylation assays (Dietrich et al., 2018). We
then introduced missing values at random across four views
and predicted the missing drug response data. The results
indicate that models trained with a HS prior provide the best
predictive performance, followed by the Laplace and the
Normal prior, and with a larger gap the SnS priors.

Table 2. RMSE on drug response prediction.
MISSING FRACTION

PRIOR 30% 50% 70%

HS CT(0.1,1) 0.108 0.112 0.117
LAPLACE(0,0.1) 0.110 0.113 0.119
NORMAL 0.109 0.117 0.121
SNS CB 0.117 0.119 0.124

4.2. Structuring the Latent Space with GPs

To illustrate the benefits of this, we have trained a Cellij
model with 2 factors on mouse blastocyst developmental
data from (Guo et al., 2010), encoding the cell divisions
from the 1-cell stage to the 64-cell stage as a covariate.
Fig. 3 shows the loadings of two factors. We can clearly
see that utilising the covariate structures the latent space.

This allows to investigate which features associate with the
factors that reflect the covariate which aids interpretability.
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Figure 3. Loadings of the 2 latent factors plotted against each other
coloured by divisions and tissue type in UMAP space. Training
without (top row) and with time covariate (bottom row).

5. Discussion and Future Work
This paper presents our flexible FA-based framework, Cellij.
Cellij facilitates usability and rapid prototyping of scalable
and interpretable FA models. Experiments on synthetic data
using different shrinkage and sparsity priors reveal that HS
priors consistently recover the underlying sparse structure,
while maintaining a low reconstruction error. In addition,
the HS priors provide the best results in the imputation
task. On the other hand, the SnS priors robustly pinpoint
relevant factors in the presence of redundancy. Finally, the
Laplace prior performs surprisingly well across a large set
of experiments and glances with its simplicity. Furthermore,
we showed that Cellij can exploit additional covariate in-
formation via GPs – allowing to structure the latent space
and associating covariates with gene sets. Moving forward,
there are several areas that can be explored building upon
the current state of the framework.

Domain Knowledge Integration One direction is to in-
corporate additional biological prior knowledge from graph
structures, including gene sets and pathways. These func-
tional relationships can be used in a similar vein as in MuVI
(Qoku & Buettner, 2023), thereby extending the MuVI ap-
proach to a broader range of models.

Automation To reduce the amount of manual labour re-
quired to find the optimal setting for a problem-specific FA
model, we plan to generalise Cellij towards an Automated
Bioinformatician, similar to ideas presented in the Auto-
mated Statistician (Steinruecken et al., 2019). Specifically,
we aim to automate model configuration, e.g., the number
of latent factors, prior choices and parameter settings.
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A. Abbreviations

ABBREVIATION DESCRIPTION EQUATION

HS(a, b) HORSESHOE(στ = a, σλ = b) 4
HS CT(a, b) HORSESHOE(σλ = b) WITH CONST. τ , I.E. τm = a 5
HS REG(a, b) REGULARISED HORSESHOE(στ = a, σλ = b) 7
HS+(a, b) HORSESHOE-PLUS(τ = a, ση = b) 8
SNS CB SPIKE-AND-SLAB

+ CONTINUOUS BERNOULLI
11

SNS RB(t) SPIKE-AND-SLAB
+ RELAXED BERNOULLI WITH TEMPERATURE t

SSL(a, b, t) SPIKE-AND-SLAB LASSO WITH INVERSE SCALES λ0 = a, λ1 = b
+ RELAXED BERNOULLI WITH TEMPERATURE t

12

If the prior names contains an additional ”+ARD”, we add a factor-specific variable δmk ∼ Beta( 12 ,
1
2 ) to the model, as

described in Eq. 6. In case of the SnS RB and SSL prior, we often drop the parameter t in the abbreviation, which is a
constant t = 0.1 across all experiments.
To guide the inference towards sparser solutions, we chose στ = 0.1 for the HS priors, hence, giving their probability
density function more mass close to 0. Selection of t was done empirically and selection of a was based on literature
recommendations, see App. F.

B. Existing Factor Analysis Models

MODEL LIKELIHOODS SPARSE PRIORS MULTI-VIEWS MULTI-GROUPS LINEAR MISSINGS

Cellij ARBITRARY HS, SNS, NN, LAP
√ √ √ √

FISHFACTOR POISSON POINT PROCESS NN ×
√ √

×
MOFA GAUSS, POI, BERN SNS

√
×

√ √

MOFA+ GAUSS, POI, BERN SNS
√ √ √ √

MEFISTO GAUSS, POI, BERN SNS
√ √ √ √

F-SCLVM GAUSS, POI, BERN SNS × ×
√ √

MUVI GAUSS, POI, BERN HS
√

×
√ √

ZIFA GAUSS CUSTOM × ×
√

×
ZINB-WAVE NEGBINOM, POI CUSTOM × ×

√
×

GLM-PCA NEGBINOM, POI × × ×
√ √

OJSNMF GAUSS, POI, EXP CUSTOM
√

×
√

×
NSF NEGBINOM, POI NN × ×

√ √

Columns: (i) Likelihoods (ii) Sparsity Priors: all pre-implemented sparsity/shrinkage priors (HS: Horseshoe, SnS: Spike-
and-Slab, NN: Non-Negativity, Lap: Laplace), (iII) Multi-Views: Support for multiple views, (iv) Multi-Groups: Support for
multiple groups, (v) Linear: Linear model (vi) Missings: Can the model handle missing data

C. Performance on Synthetic Data

PRIOR RMSE F1 PRECISION RECALL

HS CT(0.1,1) 0.304 ± 0.0021 0.993 ± 0.001 0.996 ± 0.002 0.992 ± 0.001
HS REG(0.1,1) 0.305 ± 0.0023 0.994 ± 0.002 1.000 ± 0.000 0.990 ± 0.002
HS REG(0.1,1)+ARD 0.306 ± 0.0022 0.994 ± 0.001 0.999 ± 0.001 0.992 ± 0.000
HS(0.1,1) 0.305 ± 0.0021 0.993 ± 0.002 0.998 ± 0.001 0.990 ± 0.001
HS(0.1,1)+ARD 0.306 ± 0.0021 0.992 ± 0.003 0.994 ± 0.005 0.993 ± 0.001
LAPLACE(0,0.1) 0.304 ± 0.0019 0.989 ± 0.003 0.992 ± 0.003 0.986 ± 0.003
NORMAL 0.302 ± 0.0023 0.485 ± 0.036 0.386 ± 0.038 0.731 ± 0.040
SNS CB 0.306 ± 0.0009 0.668 ± 0.069 0.561 ± 0.078 0.826 ± 0.040
SNS RB(0.1) 0.307 ± 0.0020 0.706 ± 0.120 0.635 ± 0.148 0.826 ± 0.055
SSL(20,0.01,0.1) 0.322 ± 0.0020 0.690 ± 0.054 0.662 ± 0.081 0.731 ± 0.018

The first value describes the average metric score, the second value its standard deviation.
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D. Synthetic Data Generation Process
We compile several synthetic datasets of N = 200 samples across three views, each comprising between Dm = 50 and
Dm = 10, 000 features (m ∈ {1, 2, 3}), with the latter to further emphasise the N ≪ D settings (Bernardo et al., 2003), e.g.
in gene expression data. The latent space Z consists of K = 10 factors, that are linearly transformed by a set of sparse factor
loadings Wm. Each weight wm

dk ∼ N (0, 1) is sampled independently from a standard normal distribution. To introduce
sparsity we randomly set 85%-95% of the weights, as well as weight loadings with an absolute value of less than 0.1 to
practically zero, i.e. to a very small random term ϵ ∼ N (0, 0.01).

E. Training Procedure
All models in the studies have been trained with at least three different seeds. We set a global maximum of 25’000 epochs
and stopped the training earlier if the ELBO was not reduced by at least 0.01% within 500 epochs.
In experiment 4.1 we generated data with 10 active factors for each of the three views with 200 samples each. The number
of features varied between 50 and 10000. We trained each model using three different seeds and three different learning
rates (0.1, 0.01, 0.001).

F. Sparsity and Shrinkage Priors
F.1. Horseshoe Priors

The Horseshoe prior was introduced in (Carvalho et al., 2010) and employs a bivariate-normal distribution. Adapted to our
setting, where we impose the prior on Wm, we have

p(wm
dk | τm, λmdk) = N (0, (τm)2 · (λmdk)2), (3)

where τm is a view-specific global shrinkage parameter defining the general level of sparsity in view m, and λmdk is a
local shrinkage parameter allowing each element in Wm to escape the global sparsity. In general λmdk is sampled from
a Half-Cauchy distribution λmdk ∼ C+(0, σλ) whereas different approaches for τm exists. In the simplest form, we have
τm = cm with a view-specific constant cm. In a different setting, one samples τm from a Half-Cauchy distribution
τm ∼ C+(0, στ ). In summary we have the following HS variations

τm ∼ C+(0, 1), λmdk ∼ C+(0, 1) (4)

or
τm = const.(m), λmdk ∼ C+(0, 1), (5)

where we set σλ = στ = 1. In addition to λ and θ, one can add a factor-specific variable to estimate the factor’s general
level of activeness. This renders Eq. 3 into

p(wm
dk | τm, λmdk, δmk ) = N (0, (τm)2 · (δmk )2 · (λmdk)2). (6)

We use a fixed hyperprior on δmk ∼ Beta(0.5, 0.5). Low values of δmk indicate that the factor k is not active in view m.

The regularised horseshoe prior introduced in (Piironen & Vehtari, 2017) guarantees that the prior always shrinks the
coefficients at least by a small amount towards zero. We have

λmdk =

√
(αm)2(λ̃mdk)

2

(αm)2 + (τm · λ̃mdk)2

λ̃mdk ∼ C+(0, 1)

τm ∼ C+(0, 1)

am ∼ Inv.-Gamma(0.5, 0.5).

(7)

Last, we want to introduce the Horseshoe-Plus prior (Bhadra et al., 2015), used to model ultra-sparse signals. It follows a
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hierarchical approach defined as
p(wm

dk | τm, ηmdk, λmdk) = N (0, (λmdk)
2)

λmdk ∼ C+(0, τm · ηmdk)
ηmdk ∼ C+(0, 1)

τm = const.(m),

(8)

where we face an additional Half-Cauchy mixing variable ηmdk ∼ C+(0, ση). One has the option of using either a standard
Half-Cauchy prior or a Uniform(0, 1) prior for τm to obtain a comprehensive Bayesian framework, but we leave this for
future work.

F.2. Spike-and-Slab Priors

In contrast to shrinkage priors, the Spike-and-Slab prior is a true sparsity prior allowing for variable selection by assigning
either a zero or non-zero coefficient to each predictor. It has a two-component structure with a spike at zero, promoting
sparsity, and a slab component with non-zero values, allowing for variable inclusion.

p(wm
dk | γmdk, τmk ) = γmk δ0(w

m
dk) + (1− γmk )N(wm

dk | 0, 1/(τmk )2) (9)

where δ0(·) is a point mass at zero, N(wm
dk | 0, 1/(τmk )2) is a normal distribution with zero mean and precision τmk , γmk is

either an indicator variable or a weighting between spike and slab, i.e. between 0 and 1.

However, the Delta distribution at 0 makes inference less straightforward. To address this issue, we use a re-parameterisation
technique as presented in (Argelaguet et al., 2018), where the weights are expressed as the product of two random variables
following a Gaussian distribution and a Bernoulli distribution

p(ŵm
dk, ŝ

m
dk) = N(ŵm

dk | 0, 1/(τmk )2)Ber(ŝmdk | θmk ) (10)

Typically one places a Beta-prior on θmk ∼ Beta(αm
θ , β

m
θ ) and a Gamma-prior on the precision τmk ∼ Gamma(αm

τ , β
m
τ ).

To allow for a continuous optimisation, we relax the discrete Bernoulli distribution with two possible continuous approx-
imations. On the one hand, we make use of the Continuous-Bernoulli as presented in (Loaiza-Ganem & Cunningham,
2019)

p(ŝmdk | λm) = C(λm)(λm)ŝ
m
dk(1− λm)1−ŝmdk with C(λm) =

{
2 if λm = 1

2
2 tanh−1(1−2λm)

1−2λm otherwise
(11)

for λm ∈ (0, 1). We place a hyperprior on λm with λm ∼ Beta( 12 ,
1
2 ). On the other hand, we make use of the Relaxed-

Bernoulli with a straight-through gradient estimator (RBSTG) (Maddison et al., 2017). The RBSTG can be seen as a
bivariate Gumbel-Softmax distribution (Jang et al., 2016) with a temperature parameter that relaxes categorical random
variables. In our setting we use a temperature parameter of t = 0.1, ensuring a reasonable gradient estimate while keeping
gradients numerically well-behaved.

The Spike-and-Slab Lasso (Ročková & George, 2018) prior is an approach to create a continuum between the penalised
LASSO and the Bayesian point-mass spike-and-slab formulations. Compared to Eq. 9 the Delta and Normal distribution are
replaced with two Laplace distributions, with µ = 0 and different scales λ0, λ1. As used in the original paper, for the slab
we use a scale value of λ0 = 20 and for the spike λ1 = 0.01 across all views.

p(wm
dk | γmdk, λ0, λ1) = γmk ψ(w

m
dk | λm0 ) + (1− γmk )ψ(wm

dk | λm1 ) (12)

with ψ(wm
dk | λm) = λm

2 e
−λm|wm

dk|. Again, we combine Eq. 12 with a relaxed Bernoulli distribution.

F.3. Bayesian LASSO

The Bayesian Lasso (Least Absolute Shrinkage and Selection Operator) prior, first introduced in (Park & Casella, 2008a),
has emerged as a powerful tool for variable selection and regularisation in Bayesian statistics. It introduces a Laplace
(double exponential) distribution as a prior distribution for the coefficients

p(wm
dk | σ, λ) = λ

2σ
e−λ|βm

dk|/σ
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Instead of imposing another hyperprior on σ, we choose a fixed σ = 1. However, instead of the true Laplace distribution,
we make use of the Soft-Laplace, a smooth distribution with Laplace-like tail behaviour, which is infinitely differentiable
everywhere.

F.4. Non-Negativity

An additional way to achieve sparsity is using non-negativity constraints (Lee & Seung), i.e.

p(qmdk) = N (µm
p , (σ

m
p )2)

p(wm
dk) = g−1(qmdk)

where g−1 is an inverse link function, such as softplus, ReLU or exponential. The mean and variance of the Normal
distribution are constant across all elements in W in our experiments. For simplicity, we choose softplus and define µp = 0
and σp = 1.
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Figure 4. An overview of factor activeness measured using the ℓ2-norm of each factor. Different colours represent different feature sizes
on a dataset with three views and 200 samples. Data was generated with 10 active factors and estimated with 20 factors.


