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Abstract
In single-cell RNA sequencing analysis, despite
the importance of identifying cell types through
clustering techniques for downstream analysis,
challenges of scRNA-seq data, such as perva-
sive dropout phenomena, hinder obtaining robust
clustering outputs. Although existing studies try
to alleviate these problems, they mainly rely on
reconstruction-based losses that highly depend on
the data quality, which is sometimes noisy. This
work proposes a graph-based prototypical con-
trastive learning method, named scGPCL. Specif-
ically, scGPCL encodes the cell representations
using Graph Neural Networks on cell-gene graph
that captures the relational information inherent
in scRNA-seq data and introduces prototypical
contrastive learning to learn cell representations
by pushing apart semantically dissimilar pairs and
pulling together similar ones. Through extensive
experiments on both simulated and real scRNA-
seq data, we demonstrate the effectiveness and ef-
ficiency of scGPCL. Code is available at https:
//github.com/Junseok0207/scGPCL

1. Introduction
By measuring transcriptome-wide gene expression at single
cell level, single-cell RNA sequencing (scRNA-seq) studies
have helped researchers to better understand complex bio-
logical questions, such as exploring cellular heterogeneity.
To this end, clustering techniques that identify cell types
of cells have been widely studied. Early studies mainly
relied on dimensionality reduction techniques, such as PCA,
t-SNE (Maaten, 2008), and UMAP (McInnes et al., 2018),
however, they fall short of handling scRNA-seq data that
typically contains tens of thousands dimensional features,
which incurs the curse of dimensionality leading to poor
clustering performance of traditional clustering algorithms.
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Moreover, a considerable fraction of truly expressed genes
is not well observed in scRNA-seq data owing to the perva-
sive dropout phenomenon, which results in false zero counts
incurring further difficulties in analyzing scRNA-seq data.

Recently, Deep Neural Networks (DNN) have emerged as
powerful feature extractors for dimensionality reduction
or clustering, and several recent methods have translated
this success to scRNA-seq data. Most of them, such as
DCA (Eraslan et al., 2019), and scDeepCluster (Tian et al.,
2019), leverage an autoencoder network that learns cell rep-
resentations with compression and reconstruction schemes.
However, these methods are hard to learn cell representa-
tions for accurate clustering when input features are not
informative enough (e.g., input gene expression matrix is
highly sparse) because they do not leverage any relational
information between cells.

Although reconstruction-based representation learning is a
dominant way of learning cell representations in scRNA-
seq data, contrastive learning-based representation learning
methods have also been investigated for the scRNA-seq data.
We argue that the contrastive learning framework is espe-
cially well-suited for analyzing highly sparse scRNA-seq
data, since contrastive learning generates cell representa-
tions that are more tolerant to noise than the reconstruction-
based representation learning framework. This is because
the contrastive learning framework aims to learn cell repre-
sentations by comparing the similarity between a positive
pair and negative pairs in the representation space, whereas
the reconstruction-based approaches solely rely on recon-
structing the input matrix that is highly sparse in nature due
to the inevitable dropout phenomenon. Recently proposed
contrastive-sc (Ciortan & Defrance, 2021) adopts instance-
wise contrastive learning where a positive pair is defined
by randomly masking some gene expression values of a
cell, while all other cells are considered as negative pairs.
However, we argue that such a simple augmentation scheme
is less sufficient to fully leverage the benefit of contrastive
learning as it fails to incorporate any relational information
between cells.

To leverage the relational information between cells, several
existing studies construct a cell-cell graph on which Graph
Neural Networks (GNNs) are applied. Although the exist-
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ing studies have shown the effectiveness of reflecting the
relational information between cells for the cell clustering
task, we argue that since they construct a cell-cell graph
based on the learned cell representations or raw expression
value, the inherent sparseness of the input gene expression
matrix used to compute the similarity between cells leads to
a low-quality cell-cell graph, which eventually hinders the
construction of high-quality cell representations1.

In this paper, we propose a graph-based prototypical con-
trastive learning method aiming at clustering cells in the
scRNA-seq data that fully leverages the relational informa-
tion between cells. We introduce a bipartite cell-gene graph,
which is constructed by connecting two nodes (i.e., cell and
gene) if a particular gene is expressed in that cell on the
given input gene expression matrix. This preserves the in-
herent relationship in the given data, which eventually main-
tains the quality of the constructed graph. Then, we conduct
instance-wise contrastive learning with augmentation tech-
niques that mimics the nature of scRNA-seq data to better
capture the characteristics of scRNA-seq data. Moreover,
we adopt the prototypical contrastive learning scheme to
help our model learn cluster (i.e., cell type) specific informa-
tion and alleviate the sampling bias (Chuang et al., 2020) by
pulling together an anchor cell and its corresponding cluster
prototype. Hence, we name our proposed method as single-
cell Graph Prototypical Contrastive Learning (scGPCL).
Through extensive experiments on both simulated and real
scRNA-seq data, we demonstrate the robustness and efficacy
of scGPCL compared with state-of-the-art methods.

2. Methods
scGPCL is a graph-based prototypical contrastive learning
method designed for clustering cells in the scRNA-seq data,
and its overall architecture is shown in Figure 1. First of all,
we define a bipartite cell-gene graph denoted by G = (V, E),
where V represents a set of nodes consisting of cell and gene
nodes and E represents set of edges, where a cell node and
a gene node are connected with an associated expression
value (i.e., edge weight) if the gene is expressed in that
cell. Note that scGPCL leverages the cell-gene bipartite
graph obtained from the original gene expression matrix
to preserve the natural relationship between cells inherent
in the given data rather than leveraging a cell-cell graph
constructed based on the pre-calculated cell-cell similarity,
as it may incur information loss if the similarity values are
inaccurate leading to a noisy cell-cell graph.

1The experiments about this argument can be found in the
appendix A
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Figure 1. The overall architecture of scGPCL.

2.1. Phase 1: Pre-training

The learning strategy of scGPCL is divided into the pre-
training and fine-tuning phases. In the pre-training phase,
we generate two augmented views G̃ = (Ṽ, Ẽ) and G̃′ =
(Ṽ ′

, Ẽ ′
) from the original cell-gene graph by applying two

different stochastic augmentation functions composed of
subgraph sampling and feature masking. This augmen-
tation process is designed to mimic the technical limita-
tions in sequencing, where only a fraction of the gene
expression is detected for each cell. Then, scGPCL ob-
tains anchor cell representations H̃ = f(G̃) ∈ RNb×d and
H̃

′
= f(G̃′

) ∈ RNb×d from two differently augmented
graphs by passing them through a GNN encoder f , where d
is the dimensionality of the cell representation and Nb is a
number of anchor nodes in the current batch.

Instance-wise Contrastive Loss. After the encoding pro-
cess described above, we apply the contrastive learning
framework whose overview can be found in Figure 6 in
the appendix. More precisely, scGPCL computes the in-
foNCE (Oord et al., 2018) objective for each positive cell
node pair (h̃i, h̃

′

i), where h̃i and h̃
′

i are the i-th row of the
H̃ and H̃

′
, respectively, which denote the representation of

cell i from the two views:

lIns(h̃i, h̃
′
i) = log

e(sim(h̃i,h̃
′
i)/τ)∑Nb

j=1 1[i ̸=j]e
(sim(h̃i,h̃j)/τ) +

∑Nb
j=1 e

(sim(h̃i,h̃
′
j)/τ)

(1)
where sim(·, ·) is the cosine similarity between two vectors,
1[·] is the indicator function, and τ is the temperature hy-
perparamter. The overall instance-wise contrastive loss is
calculated by

LIns = − 1

2Nb

Nb∑
i=1

[lIns(h̃i, h̃
′
i) + lIns(h̃

′
i, h̃i)]. (2)

By minimizing the above contrastive loss, scGPCL learns
the cell representations by pulling together positive pairs and
pushing apart negative pairs in the cell representation space.
Note that such a contrastive learning scheme is especially
beneficial for scRNA-seq data, because it is hard to learn cell
representations with only reconstruction-based loss when
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the given input matrix is highly sparse due to the pervasive
dropout phenomenon.

Prototypical Contrastive Learning Framework. How-
ever, the instance-wise contrastive loss exhibits an inherent
limitation, called sampling bias. In other words, given an
anchor cell, since all other cells apart from the augmented
version of the anchor cell are considered as negative in-
stances, it is highly likely that negative instances contain
cells that belong to the same cell type as the anchor cell,
which is undesirably pushed apart from the anchor cell. To
alleviate this problem, scGPCL adopts the prototypical
contrastive learning framework that treats the pairs of cells
assigned to the same prototype as positive pairs and the
remaining pairs as negative pairs. The loss for a particular
cell i is given as follows:

lPro(h̃i) =
1

T

T∑
t=1

Kt∑
s=1

1(h̃i∈zts)
log

e(sim(h̃i,z
t
s)/τ)∑Kt

j=1 e
(sim(h̃i,z

t
j)/τ)

(3)

where T is the number of clustering rounds to provide pro-
totypes in various granularities, Kt denotes the number of
prototypes in t-th iteration, and zts ∈ Rd denotes the rep-
resentation of the prototype s in the t-th iteration. The
indicator function 1(h̃i∈zt

s)
is defined as 1 if the cell i be-

longs to the cluster represented by zts, and 0 otherwise. Note
that the prototypical loss defined as above is especially ben-
eficial for clustering task, because it groups cells that belong
to the same cell type together by minimizing the distance
between each cell and the corresponding cluster prototype.
The overall prototypical contrastive loss is given as follows:

LPro = − 1

Nb

Nb∑
i=1

lPro(h̃i). (4)

ZINB-based Reconstruction Loss. Following existing
studies (Tian et al., 2019; Gan et al., 2022), we assume that
the gene expression matrix follows a zero-inflated negative
binomial (ZINB) distribution and estimate the parameters of
the ZINB distribution, namely, the mean (µ), dispersion (θ),
and dropout probability (π) by passing through the output
of the decoder to the additional layer for each of the three
parameters. The overall ZINB-based reconstruction loss of
scGPCL from the two views is given by:

LPre
ZINB =

1

2
[lZINB(Π̃, M̃ , Θ̃) + lZINB(Π̃

′
, M̃

′
, Θ̃

′
)] (5)

where lZINB is negative log-likelihood of ZINB distribution
and Π̃, M̃ , and Θ̃ denote the estimated parameters from the
view 1, and Π̃

′
, M̃

′
, and Θ̃

′
denote those from the view 2.

More details can be found in Appendix C.

Final Objectives of Pre-training Phase. Finally, scG-
PCL combines LIns, LPro, and LFine

ZINB with balance coeffi-
cients λ1 and λ2 to learn cell representations in the pre-

(a)

(b)

(c)

Figure 2. Performance comparisons of scGPCL and other base-
lines on the simulated dataset. (a), (b), and (c) represent the
performance over the various dropout rates, sigmas (small sigma
indicates low signals for clustering), and minimum retention rates
(small value indicates more imbalanced data), respectively.

training phase as follows:

LPre = λ1LIns + λ2LPro + LPre
ZINB (6)

2.2. Phase 2: Fine-tuning

Clustering Task-Oriented Loss. In the fine-tuning phase,
scGPCL adopts a self-training scheme to encourage each
cell to be assigned to a cluster of high confidence. Specif-
ically, it minimizes the Kullback-Leibler (KL) divergence
between the soft cluster assignment distribution Q, calcu-
lated based on the similarity between the cell representa-
tions and the cluster centroids, and the target distribution P ,
which is obtained by sharpening Q. Formally, this objective
is denoted as LCluster = DKL(P∥Q). More details about
clustering loss can be found in Appendix D.

Final Objectives of Fine-tuning Phase. Finally, the over-
all loss of scGPCL in the fine-tuning phase is defined by
combining LCluster and LFine

ZINB with a balance coefficient λ3

as follows:
LFine = LCluster + λ3LFine

ZINB (7)

Note that scGPCL maintains the reconstruction-based loss
LFine

ZINB = lZINB(Π̃, M̃ , Θ̃) during the fine-tuning phase to
preserve the local structure of data.

3. Results
3.1. Evaluation of scGPCL on simulated data

To demonstrate the effectiveness of scGPCL, we simulate
scRNA-seq data with Splatter (Zappia et al., 2017) package
assuming three situations in which learning cell representa-
tions may be challenging: Case 1: Gene expression matrix
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Figure 3. Performance comparisons of scGPCL and other base-
lines on the nine real scRNA-seq datasets.

is highly sparse due to the dropout phenomena (Figure 2a),
Case 2: Gene expression values contain relatively low sig-
nal strength required for clustering (Figure 2b), and Case
3: The size of cell clusters is imbalanced in number (Fig-
ure 2c). To evaluate the clustering performance, we com-
pare scGPCL with seven state-of-the art baselines using
three standard clustering evaluation metrics, i.e., normalized
mutual information (NMI), clustering accuracy (CA), and
adjusted rand index (ARI) and we replace CA with Macro-
F1 and Micro-F1 score both of which are well suited for the
imbalance cases in Case 3. Through all these results, we
demonstrate that scGPCL can robustly separate the cluster
of the cells in challenging scenarios, even when the gene
expression matrix exhibits severe dropout phenomena, low
signal strength, and highly imbalanced cell types.

3.2. Evaluation of scGPCL on real scRNA-seq datasets

To verify the effectiveness of scGPCL on real-world ap-
plications, we conduct experiments on real scRNA-seq
datasets over various sequencing platforms 2. Figure 3
shows the overall clustering performance on all nine real-
world datasets. Through these experiments, we have the fol-
lowing observations: 1) scGPCL consistently outperforms
the state-of-the-art baselines on six datasets, and achieves
competitive scores on the three remaining datasets. 2) It
is worth noting that scGPCL outperforms contrastive-sc
that only leverages instance-wise contrastive learning with
a naive augmentation strategy that simply masks some gene
expression values. We argue that more advanced augmen-
tation strategy is required to fully leverage the benefit of
contrastive learning, and that using the relational informa-
tion between cells is beneficial. 3) scDSC (Gan et al., 2022)
that enhances scDeepCluster using GNNs with a cell-cell
graph performs worse than scDeepCluster, implying that
simply infusing relational information through a cell-cell
graph cannot generally achieve positive effects in many
cases. However, scGPCL generally outperforms scDSC
by introducing a bipartite cell-gene graph by reflecting the

2Data statistics can be found in Appendix F.

Figure 4. Overlap between gold standard cell types and the top 10
DEGs in clusters detected by ground truth cell type on scGPCL,
and baseline methods.

inherent relational information between cells.

3.3. Marker gene identification

We find the top 10 differentially expressed genes (DEGs)
using the Wilcoxon rank sum test based on the clusters
detected by each method and compute the overlap with the
gold standard cell types on the Zeisel dataset (Zeisel et al.,
2015). In Figure 4, DEGs computed based on clustering
results obtained from scGPCL highly focus on one cell
type except for the ‘ependymal’ cell type that is hard to
detect with the ground truth cell type (upper left). Note
that scGPCL succeeds in learning clusters with ‘mural’ cell
type that belongs to a minority class with a small number of
cells, whereas other baseline methods fail to do so. Through
this result, we show that scGPCL can learn cells that belong
to the minority cell type from a biological perspective.

4. Conclusion
In this paper, we propose a graph-based prototypical con-
trastive learning method aiming at clustering cells in the
scRNA-seq data that fully leverages the relational infor-
mation between cells. Instead of relying on the feature
information of each cell, scGPCL learns the cell represen-
tations using GNNs applied on a bipartite cell-gene graph to
reflect the natural relationship between cells inherent in the
scRNA-seq data. Moreover, scGPCL adopts instance-wise
contrastive learning scheme to fully leverage the relational
information as well as prototypical contrastive loss to allevi-
ate the limitation of instance-wise contrastive loss. Through
extensive experiments on both simulated and real scRNA-
seq datasets, we demonstrate the effectiveness and robust-
ness of scGPCL under real-world challenging scenarios.
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A. Performance comparison of different encoder structures

Figure 5. Performance comparison of different encoder structures on the simulated dataset over various dropout rates. We construct the
autoencoder style models which have the same 2-layer MLP decoders which output the three parameters of ZINB distribution (i.e., mean,
dispersion, and dropout probability) and three different encoders that are MLP, GNNs on a cell-cell graph, and GNNs on a cell-gene graph,
respectively. More precisely, pearson correlation is used to calculate the similarity between cells to construct cell-cell graphs following
scGNN (Wang et al., 2021) and scDSC (Gan et al., 2022), and we conduct experiments by varying the number of nearest neighbors
(i.e., Cell-Cell Graph (10) represent the 10 nearest neighbors graph based on pearson correlation). The cell-gene graph is constructed by
connecting two nodes, if a particular gene is expressed in that cell as proposed on scGPCL.

To validate the impact of the input data types for the cell clustering task, in Figure 5, we compare the clustering performance
of encoders applied on three different input data types (i.e., Multi-layer Perceptron (MLP) on cell features, GNNs on a
cell-cell graph, and GNNs on a cell-gene graph). We observe that GNNs on both the cell-cell graph and the cell-gene graph
show good performance over relatively low dropout rates (i.e., < 40%) thanks to the reflection of the relational information
between cells, while the performance of GNNs on the cell-cell graph significantly degrades when the dropout rate is higher
than 40%. We argue that this is because the highly sparse gene expression matrix makes it hard to accurately compute the
similarities between cells, which eventually leads to the drop in the quality of the cell-cell graph. In consequence, this incurs
a negative effect on the neighborhood aggregation scheme of GNNs, which eventually results in a poor performance of
GNNs on the cell-cell graph.
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B. Prototypical Contrastive Learning

Cell nodes from view 1 (�𝑯𝑯)

Prototypes from view 2 (Z)

Cell nodes from view 2 (�𝑯𝑯′)

Positive pair for instance-wise contrastive learning

Positive pair for prototypical contrastive learning

Cluster1 Cluster2

Cluster3

�𝒉𝒉𝒊𝒊
�𝒉𝒉′𝒊𝒊

Anchor

Figure 6. An overview of prototypical contrastive learning of cell node i on the representation space. Given an anchor node representation
of cell i from view 1 denoted by h̃i, it pulls another cell node representations of the same cell i from view 2 (i.e., h̃′

i), and pushes all other
cell representations from both view 1 and view 2 using contrastive loss to learn a generic representation of each cell. In addition, h̃i pulls
the prototype assigned for the same cell i from view 2, and also pushes all other prototypes to complement the limitation of contrastive
loss which suffers from sampling bias.

C. ZINB-based Reconstruction Loss
As we mentioned before, we assume that the gene expression matrix follows the ZINB distribution to capture the characteristic
of the scRNA-seq data. Specifically, the ZINB distribution is defined as:

NB(x|µ, θ) = Γ(x+ θ)

x!Γ(θ)

(
θ

θ + µ

)θ (
µ

θ + µ

)x

ZINB(x|π, µ, θ) = πδ0(x) + (1− π)NB(x|µ, θ)
(8)

where µ, θ, and π represent the parameters of ZINB distribution that are mean, dispersion, and dropout probability,
respectively. To estimate these parameters, we introduce a shared feed-forward decoder layer g, and an additional layer
for each of the three parameters. Specifically, the output of the decoder D = g(H) ∈ RNb×Ng is independently fed into
additional layers for three parameters (i.e., µ, θ, and π) as follows:

M = S × exp(DWµ), Θ = exp(DWθ), Π = sigmoid(DWπ) (9)

where S ∈ RNb×Nb is a diagonal matrix whose diagonal element for the i-th row is the size factor (i.e., si) of cell i,
M ∈ RNb×Ng , Θ ∈ RNb×Ng , and Π ∈ RNb×Ng are the matrix representation of estimated mean, dispersion, and dropout
probability, respectively, and Wµ ∈ RNg×Ng , Wθ ∈ RNg×Ng , and Wπ ∈ RNg×Ng are trainable parameters. Note that the
exponential function is adopted for M and Θ due to the non-negative range of mean and dispersion, whereas the sigmoid
function is adopted for Π as the dropout probability lies between 0 and 1. The ZINB-based reconstruction loss for the
estimated parameters given by Eqn. 9 is calculated based on the negative log-likehlihood of ZINB distribution as follows:

lZINB(Π,M,Θ) =
1

Nb ×Ng

Nb∑
i=1

Ng∑
j=1

− log(ZINB(Xcount
ij | Πij ,Mij ,Θij)) (10)

where Xcount denotes the raw read count matrix, and Xcount
ij , Πij , Mij , and Θij denote the element at the i-th row and the

j-th column for each matrix. The overall ZINB-based reconstruction loss of scGPCL from the two views is given by:

LPre
ZINB =

1

2
[lZINB(Π̃, M̃ , Θ̃) + lZINB(Π̃

′
, M̃

′
, Θ̃

′
)] (11)
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where Π̃, M̃ , and Θ̃ represent the estimated parameters from the view 1, and Π̃
′
, M̃

′
, Θ̃

′
denote those from the view 2.

D. Clustering Task-Oriented Loss.
Given a soft cluster assignment distribution matrix Q ∈ RNb×K , where K represents the number of clusters, with each row
denoting the soft cluster assignment distribution of each cell, we introduce a target distribution matrix P ∈ RNb×K that is
obtained by sharpening Q, and minimize the Kullback-Leibler (KL) divergence between the two distributions as follows:

LCluster = DKL(P∥Q) =

Nb∑
i=1

K∑
k=1

pik log
pik
qik

(12)

where qik and pik are the assignment probabilities of cell i to cluster k in terms of the soft cluster assignment distribution
matrix Q and the target distribution matrix P . Note that qik is calculated by measuring the similarity between the
representation of cell i, (i.e., hi), and the centroid of cell i, (i.e., ck), based on the Student’s t-distribution as follows:

qik =
(1 + ∥hi − ck∥22/α)

−α+1
2∑K

j=1(1 + ∥hi − cj∥22/α)
−α+1

2

(13)

where α is the degree of freedom of the Student’s t-distribution. Then, the target distribution pik is calculated by normalizing
the second power of the soft assignment distribution by the frequency per cluster as follows:

pik =
q2ik/fk∑K
j=1 q

2
ij/fj

(14)

where fk =
∑Nb

i=1 qik is the soft cluster frequencies used to prevent degenerate solutions in which case some clusters are
not assigned any instances at all. In other words, Eqn. 14 sharpens qik (i.e., pik is a sharpened version of qik), by making a
large value to be larger and a small value to be smaller. As a result, by minimizing the KL divergence defined in Eqn.12, in
which Q and P are defined as in Eqn. 13 and Eqn. 14, respectively, we aim to provide more confident cluster assignments to
each cell, which in turn explicitly optimizes the cell representations for the cell clustering task. Note that we run K-means
clustering only once before starting the fine-tuning phase to initialize the cluster centroids (i.e., {ck}Kk=1), and K-means
clustering is not performed anymore thereafter. Moreover, to improve the robustness of the clustering assignments, we use
H̃ obtained from an augmented graph G̃ (i.e., H̃ = f(G̃)) to compute the soft cluster assignment matrix Q ∈ RNb×K .

E. Evaluation metrics
To compare the clustering performance of the scGPCL with the state-of-the-art baselines, we use four standard evaluation
metrics, i.e., NMI, CA, ARI, and F1-score, defined as follows:

1) Normalized Mutual Information (NMI) evaluates the clustering quality by measuring the uncertainty of predicted class
labels. Specifically, when ground-truth cell type S and the cluster assignment of models C are given, NMI is calculated as
follows:

NMI =
2× I(S;C)

[H(S) +H(C)]
(15)

where I(·, ·) denotes the mutual information between two distributions, and H denotes the entropy function. NMI is ranged
0.0 and 1.0 and becomes higher when the predicted cluster assignment and ground-truth are well aligned.

2) Clustering Accuracy (CA) measures the clustering performance in a manner similar to that of the supervised classification.
More precisely, we find the best matching function which maps the predicted cluster assignments to the ground-truth cell
types, and then calculate the alignment between them. CA is computed as follows:

CA = max
m

∑N
i=1 1[si=m(ci)]

N
(16)
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where N is the number of instances and m is a matching function which maps the predicted cluster assignments to the
ground-truth cell types, and si and ci denote the ground-truth cell type and predicted cluster assignment of the i-th cell,
respectively.

3) Adjusted Rand Index (ARI) adjusts the Rand Index (RI) which is defined as

RI =
a+ b

NC2
(17)

where a represents the number of pairs that successfully belong to the same cluster, while b represents the number of pairs
correctly labeled as not belonging to the same cluster. ARI is computed as follows:

ARI =
RI − E[RI]

max(RI)− E[RI]
(18)

where E[RI] means the expectation of RI. ARI is ranged between -1 and 1, and becomes larger when the agreement between
ground-truth cell types and predicted cluster assignment is similar.

4) F1-score is the harmonic mean of precision and recall which is suitable for the imbalanced data where the precision is
the proportion of positive instances out of positively predicted instances and recall is the proportion of positively predicted
instances out of all positive instances on the binary classification setting. F1-score is computed as follows:

F1-score =
2(Precision×Recall)

Precision+Recall
(19)

To measure the clustering performance, we also find the best matching function to map the predicted cluster assignments
to the ground truth cell types and generalize to the multi-class setting by applying micro and macro average scheme (i.e.,
Micro-F1 and Macro-F1, respectively).

F. Data Statistics.

Data Sequencing platform # of Cells # of Genes # of Subgroups
Camp SMARTer 777 19,020 7

Mouse ES cells inDrop 2,717 24,047 4
Mouse bladder cells Microwell-seq 2,746 19,771 16

Zeisel STRT-seq UMI 3,005 19,972 9
Worm neuron cells sci-RNA-seq 4,186 13,488 10

10X PBMC 10X 4,340 19,773 8
Human kidney cells 10X 5,685 25,215 11

Baron inDrop 8,569 20,125 14
Shekhar mouse retina cells Drop-seq 27,499 13,166 19

Table 1. Statistics for real datasets used for experiments.

G. Baseline methods
The cluserting performance of scGPCL is compared with eight state-of-the-arts baseline methods incorporating graph based
methods, instance-wise contrastive learning method, ZINB-based autoencoder methods, graph based deep learning methods,
and non-deep learning based methods.
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• Clustering through imputation and dimensionality reduction (CIDR) (Lin et al., 2017) implicitly imputes gene
expression data to alleviate the impact of dropout and then calculates dissimilarity matrix. After that, it performs PCoA
and clustering using the first few principal coordinates.

• Deep embedded clustering (DEC) (Xie et al., 2016) jointly optimizes the feature representation and cluster assignments
using the self-training strategy.

• Single-cell model-based deep embedded clustering (scDeepCluster) (Tian et al., 2019) simultaneously learns the cell
representation and clustering assignment following DEC, and replaces the MSE loss with negative likelihood of ZINB
distribution.

• Single-cell graph neural networks (scGNN) (Wang et al., 2021) aggregates the relationship between cells in cell-cell
graph using GNNs and adopts left-truncated mixture Gaussian (LTMG) model to reflect the heterogeneous gene
expression patterns. In addition, it infuses cell-type specific information using cluster autoencoder.

• Contrastive self-supervised clustering of scRNA-seq data (contrastive-sc) (Ciortan & Defrance, 2021) adopts instance-
wise contrastive learning scheme for the scRNA-seq data by randomly generating two differently augmented views in
terms of cell features.

• Structural deep clustering for single-cell RNA-seq data (scDSC) (Gan et al., 2022) enhances scDeepCluster by jointly
optimizing ZINB-based autoencoder and the GNNs on cell-cell graph to aggregate cell-cell relationship.

• scNAME (Wan et al., 2022) utilizes an auxiliary mask estimation task to grasp the gene pertinence by distinguishing
the uncorrupted structure and achieve intra-cluster compacteness and inter-cluster separation using neighborhood
contrastive loss that enhances similarity between k-nearest neighbors.
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H. Visualization

Figure 7. Visualization of cell representations obtained from various methods including scGPCL.
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I. Model Analysis

Figure 8. Ablation studies regarding each component in scGPCL.

Figure 9. Ablation studies regarding the types of the underlying graph (i.e., cell-gene graph vs. cell-cell graph) for scGPCL.

We conduct ablation studies to clarify the benefits of each component of scGPCL. In Figure 8, we test each loss function in
the pre-training phase and have the following observations: 1) Contrastive learning scheme consistently shows an increased
performance compared with the one that only uses the reconstruction-based loss (i.e., Recon only) except for 10X PBMC
and Worm neuron cells datasets. 2) Using prototypical contrastive loss (i.e., Ins+Proto) is more beneficial than using only
instance-wise contrastive learning (i.e., Ins only) because it can alleviate the sampling bias and help to infuse cell type
information during the pre-training phase. 3) Adding the reconstruction loss (i.e., scGPCL) is beneficial in some cases,
however, it does not show consistent performance improvements. Through these results, we argue that the reconstruction
loss can be considered as an auxiliary loss that is helpful in stabilizing the performance, but not the main component of
scGPCL.

Furthermore, we conduct ablation studies on the types of the underlying graphs (i.e., cell-gene graph vs. cell-cell graph).
Our goal is to verify our claim that it is better to leverage a cell-gene graph to maintain the quality of the constructed graph
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compared with a cell-cell graph which may have an adverse effect when the quality of constructed graph dropped due to the
instability of the pre-computed cell-cell similarity. To this end, in Figure 9, we conduct experiments by changing the type of
the underlying input graph of scGPCL to the cell-cell graph, which is constructed based on 10 nearest neighbors of each
cell based on the pearson correlation as the similarity measure following scGNN and scDSC, and compare its performance
with that of the original scGPCL that uses a cell-gene graph. More precisely, both of them have same decoder structures,
but encode the cell representations using GNNs on cell-cell graph and GNNs on cell-gene graph, respectively. We observe
that scGPCL with a cell-gene graph as the input consistently outperforms that with a cell-cell graph, which demonstrates
that the cell-gene graph better helps to infuse the inherent relational information between cells.


