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Abstract
Deep learning in computational biochemistry has
traditionally focused on molecular graphs neu-
ral representations; however, recent advances in
language models highlight how much scientific
knowledge is encoded in text. To bridge these two
modalities, we investigate how molecular prop-
erty information can be transferred from natural
language to graph representations. We study prop-
erty prediction performance gains after using con-
trastive learning to align neural graph representa-
tions with representations of textual descriptions
of their characteristics. We implement neural
relevance scoring strategies to improve text re-
trieval, introduce a novel chemically-valid molec-
ular graph augmentation strategy inspired by or-
ganic reactions, and demonstrate improved per-
formance on downstream MoleculeNet property
classification tasks. We achieve a +4.26% AU-
ROC gain versus models pre-trained on the graph
modality alone, and a +1.54% gain compared to
the recently proposed molecular graph/text con-
trastively trained MoMu model (Su et al., 2022).

1. Introduction
Deep molecular representation learning models have demon-
strated significant potential for important tasks in computa-
tional biology and chemistry, such as predicting molecular
properties or screening candidates for drug discovery. How-
ever, existing AI models typically focus on either graph-
based representations, or knowledge extraction from natural
language, leaving a gap between these two modalities.

In this work, we investigate whether learning molecular
graph representations jointly with textual representations of
the corresponding molecule improves those representations.
Specifically, we improve on a recently proposed molecular
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multimodal model (MoMu) for contrastive joint text-graph
representation learning (Su et al., 2022) by enhancing the
relevance of natural language property descriptions to which
we align neural molecular representations. We implement
neural relevance based methods to improve text sampling,
and introduce a novel, principled approach for chemically-
valid graph augmentation which yields promising results.

We hope our improved multimodal pre-training strategy
for property prediction, along with experimental results
and identified avenues for future work, contribute to the
development of more expressive models for computational
biochemistry and molecular sciences.

2. Related Work
Molecular representation learning. Molecular represen-
tation learning has played a crucial role in recent compu-
tational biology advances. Traditional molecular represen-
tations, such as SMILES (Weininger, 1988) which repre-
sent molecules as strings of atoms, have limited capacity
to capture complex molecular structures. Molecular graph
representations (Duvenaud et al., 2015; Kearnes et al., 2016)
have have been shown to better capture the structural and
functional properties of molecules. Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2016), Graph Attention
Networks (GATs) (Veličković et al., 2017), and Graph Iso-
morophism Networks (GINs) (Xu et al., 2018) are popular
Graph Neural Network (GNNs) architectures which out-
perform traditional machine learning algorithms in various
molecular prediction tasks (Gómez-Bombarelli et al., 2016;
Gilmer et al., 2017; Wu et al., 2018b).

Language models in chemistry. The advent of large lan-
guage models, such as GPT (Radford et al., 2018), BERT
(Devlin et al., 2018), and T5 (Raffel et al., 2019), has trans-
formed the field natural language processing. Researchers
have started exploring their potential in cheminformatics,
leading to the development of models such as ChemBERTa
(Korolev et al., 2020) and MolBERT (Napolitano et al.,
2021). These models have shown promising results in tasks
like reaction prediction, retro-synthesis, and molecular prop-
erty prediction (Kusner et al., 2017)—so much so that White
(2023) concludes: “the future of chemistry is language.”
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Contrastive learning Contrastive learning has been used
to learn good pre-trained representations of data unsuper-
visedly (You et al., 2020; Wang et al., 2022). Contrastive
learning can also be used in a multimodal setting to learn
joint representations of the image and text modalities (Rad-
ford et al., 2021). Su et al. (2022) use a similar method to
jointly train graph and text encoders and call their model
MoMu. Our work builds on MoMu as our baseline model.

3. Methods
3.1. Foundation Model Paradigm: Pretrain & Finetune

We approach the task of extracting molecular properties
from natural language through the lens of the foundation
model paradigm, following a “pre-train and fine-tune” strat-
egy (Bommasani et al., 2022) presented in figure 1, with
(1) pre-trained text and graph encoder models, (2) aligned
through contrastive learning, then (3) evaluated on down-
stream classification tasks:

• We use two previously pre-trained encoders: a bidirec-
tional transformer (SciBERT) for text (Beltagy et al.,
2019b), and a pre-trainGraph Isomorphism Network
(GIN) (Xu et al., 2018) for graphs;

• We align their representations in a joint latent space
through contrastive pre-training over graph-text pairs;

• We then fine-tune the graph encoder on a series of
downstream molecular property prediction tasks, and
evaluate the quality of our pre-training based on per-
formance on these downstream tasks.

3.2. Multimodal Contrastive Pre-Training

3.2.1. CONTRASTIVE LEARNING STRATEGY

The core machine learning task in our approach is to learn
aligned representations of pairs of molecular graphs and
paragraphs of text in natural language describing the prop-
erties of that molecule. We use the self-supervised learning
technique of contrastive learning, based on a loss function
which promotes smaller euclidian distances in the joint la-
tent space between graph and text samples of the same data
samples (positive pairs), and larger euclidian distances be-
tween non-matching samples (negative pairs).

Building on the original MoMu implementation (Su et al.,
2022), we use the following contrastive learning paradigm:

• Form of batch of N molecules i ∈ [1, ..., N ];

• Sample 2N relevant text fragments where {T 1
i , T 2

i }
describe molecule i;

• From the original Gi graphs, form 2N graphs {G̃1
i , G̃2

i }
through deliberate graph augmentations;

• Update text and graph encoder through gradient de-
scent on a loss designed to promote proximity between
matching cross-modality (Ti, G̃i) and graph (G̃1

i , G̃2
i )

embedding pairs from the same molecule, and higher
distance between non-matching pairs.

We implement the InfoNCE loss function (Oord et al., 2018),
comprising of a term for graph pairs and a term for text-
graph pairs (here the cross-modality pair):

ℓ(Ti, G̃i) = −log
exp

(
cos(zTi , zGi )/τ

)∑
j ̸=i exp

(
cos(zTi , zGj )/τ

)
3.2.2. PRE-TRAINED TEXT AND GRAPH ENCODERS

The goal of contrastive pre-training is to align the represen-
tations of matched text fragments and molecular 2D graphs
in the same embeddings space. For efficiency purposes, we
start with previously pre-trained models for both our text
encoder and our graph encoder, which we present.

To optimize for extraction of information from fragment
of scientific papers, we base our text encoder on SciBERT
(Beltagy et al., 2019a), a pre-trained language model based
on BERT (Devlin et al., 2019), trained on a large multi-
domain corpus of scientific publications to improve perfor-
mance on downstream scientific NLP tasks.

For our graph encoder, we use the GraphCL 80 pre-trained
model (You et al., 2020), a 1.9 million parameters Graph
Isomorphism Network (GIN) pre-trained through graph con-
trastive learning on MoleculeNet (Wu et al., 2018a).

3.3. Relevance-Based Sampling

3.3.1. NEURAL TEXT RELEVANCE SCORING

The MoMu baseline retrieves text sequences by uniformly
sampling two paragraphs associated with a molecule per
epoch. As mentioned by the authors themselves, this ap-
proach assumes equal relevance of the retrieved paragraphs
to the molecule’s properties (Su et al., 2022).

To address this issue, we propose a neural text retrieval
strategy informed by the relevance of each text segment
for the molecule it describes. For each paragraph, we com-
pute the cosine similarity between the SciBERT CLS token
embeddings for (i) the paragraph and (ii) a query:

• Mean similarity: average embedding of the molecule
name and its top 20 synonyms (see section 4.1)

• Max similarity: maximum similarity with any of the
molecule name or its top 20 synonyms

• Sentence similarity: cosine similarity with a natural
language query consisting of the following sentence:
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“Molecular, chemical, electrochemical, physi-
cal, quantum mechanical, biochemical, biological,
medical and physiological properties, character-
istics, and applications of {NAME}, a compound
also known as {SYNONYM1}, . . . , {SYNONYMi},
. . . , or {SYNONYMN}.”

We then apply epsilon sampling (Hewitt et al., 2022) to
rank paragraphs by the cosine score and sample only from
scores above a threshold, using the probability distribution
(re-normalized over the strictly positive terms) and a tem-
perature hyper-parameter to skew the sampling distribution
towards the highest cosine score terms:

P(Ti∈[1..N ]) = Softmax
(

cos(zquery, zi)
Temp

)
if ≥ ϵ

N

3.3.2. CHEMICALLY-VALID PRINCIPLED GRAPH
AUGMENTATIONS

The baseline model is trained through the general contrastive
learning strategy of modifying graphs by randomly dropping
nodes and subgraphs, which had been shown to be effective
for chemical tasks in the past (You et al., 2020). However,
the resulting molecule graphs may not make physical sense.

Here, we introduce a graph augmentations inspired by bio-
chemical reactions, which lead to chemically valid aug-
mented graphs. Specifically, we implement augmenta-
tions {G̃1

i , G̃2
i } to the molecular graph Gi which add or

remove functional groups corresponding to the following
methylation/de-methylation (replacing a hydrogen with a
CH3 group or vice versa), amination/de-amination reac-
tions (replacing a hydrogen with an NH3 or vice versa):

R−H+CH4 −−⇀↽−− R−CH3 +H2

R−H+NH3 −−⇀↽−− R−NH2 +H2

Notably, methylation and amination involve adding nodes to
the molecular graph, instead of node dropping and random-
walk subgraphs which remove nodes.

Each of these augmentations is performed on randomly
selected nodes of the graph at batch sampling time (see
appendix A.3). Crucially, we carefully control for chemical
validity of the reactions, and update the molecular graph
tensor to comply with fundamental chemical rules such a
bond valences and implicit hydrogens count.

4. Experiments
4.1. Molecular Property Prediction

We measure the performance impact of our novel augmen-
tations and pretraining strategy using the downstream task

of molecular property prediction (Wu et al., 2018a). From
pre-training, we obtain two encoders that embed molecu-
lar graph and text descriptions within the same joint latent
space: fG : G → zG ∈ Z and fT : T → zT ∈ Z . We fine-
tune our graph encoder for classification tasks by adding a
classifier MLP layer, which we adapt and fine-tune to each
specific downstream task and dataset:

MLPCLASSIFIER(·) ◦ fG : G → ŷG

We pre-train on the molecular graph-text pairs dataset pre-
sented in figure 2, constructed in Su et al. (2022), which
comprises of 15,613 graph-document pairs, with 37 million
paragraphs or 47.5 gigabytes of text (∼3 megabytes per
molecule) from scientific articles, presented in appendix
A.1. We then evaluate our models by fine-tuning them
on biochemical classification tasks from MoleculeNet (Wu
et al., 2018a), a multi-faceted set of benchmark tasks and
reference datasets. Specifically, we use 7 datasets from
DeepChem and their associated classification tasks (BACE,
BBBP, Clintox, MUV, SIDER, Tox21, and ToxCast), which
are all detailed in appendix A.2.

We fine-tune and evaluate the graph encoder on seven
MoleculeNet datasets: BACE (Subramanian et al., 2016),
BBBP (Martins et al., 2012), Tox21, ToxCast (Richard et al.,
2016), SIDER (Kuhn et al., 2016), ClinTox (Gayvert et al.,
2016), and MUV (Rohrer & Baumann, 2009). We use Area
Under Receiver-Operator Curve (AUROC) to measure per-
formance and evaluate for three random seeds and report
the mean and standard deviation in Table 1.

4.2. Experiments

We use the following baselines for experimentation:

• MoMu: the original model presented in Su et al. (2022)
which samples text and graph augmentations with a
uniform random distribution;

• Naive text relevance: as a non-neural control for the
impact of relevance selection, we create a naive dataset
with only sentences where molecule names and their
synonyms appear explicitly;

• Pruning: to control for the impact of a smaller (thus
potentially less noisy) data, we prune the dataset and
keep only the first 256 characters of each paragraph;

• Single modality pre-training: as a baseline to mea-
sure performance gains from aligning graph represen-
tations with text, we also report performance of a GIN
trained only on the graph modality.

We run the following experimental protocol and report re-
sults in table 1:

https://deepchemdata.s3-us-west-1.amazonaws.com/index.html
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Experiment BACE BBBP Tox21 ToxCast SIDER ClinTox MUV

Graph only pre-training 70 65.8 74 63.4 57.3 58 71.8

Baseline (MoMu) 70.31 ±3.67 68.04 ±1.67 74.6 ±0.68 63.27 ±0.53 59.39 ±0.51 61.09 ±1.1 75.66 ±0.55
Baseline (pruned) 71.14 ±1.93 67.86 ±2.1 74.77 ±0.37 62.71 ±1.3 59.31 ±0.72 61.17 ±1.39 75.18 ±1.06
Baseline (relevant) 72.13 ±0.47 68.73 ±2.21 74.85 ±0.3 62.47 ±0.66 60.05 ±0.7 59.99 ±1.73 74.47 ±0.95

Mean cosine similarity (best) 72.6 ±2.77 68.48 ±1.68 74.54 ±0.7 63.37 ±0.72 60.07 ±0.41 61.36 ±3.36 75.07 ±1.13
Max cosine similarity (best) 72.71 ±0.59 68.27 ±2.35 74.77 ±0.45 63.73 ±0.59 60.14 ±1.05 62.28 ±1.61 75.15 ±1.07
Sentence cosine similarity (best) 72.05 ±0.52 68.11 ±2.5 74.94 ±0.79 63.6 ±0.29 59.84 ±0.24 61.47 ±2 74.61 ±0.27
Principled graph augmentation 71.45 ±2.24 69.23 ±0.93 74.31 ±0.36 62.61 ±0.49 61.33 ±0.69 58.97 ±2.22 75.03 ±1.52

Table 1. Results of our experiments: AUROC classifier task performance for multiple random seeds for each MoleculeNet dataset, reported
for each pre-training experiment and baseline model/dataset.

Cosine similarity pre-processing: to speed up retrieval
at train time, we pre-compute the cosine similarity scores
for each paragraph in the dataset, with each of the query
types in our experiments (mean, max, sentence).

Cosine similarity retrieval: we ran experiments on the
3 cosine similarity query types, with hyper-parameters se-
lected via an intrinsic evaluation based on hand-labeling of
a small sub-set of text paragraphs, presented in appendix
(table 2). For pre-trained each model for 30 epochs (2 hours
each on an A100 GPU).

Chemically-relevant graph augmentations: lastly, we
trained a comparison model trained on a uniform random
text sampling strategy, but with chemically-relevant molec-
ular graph augmentations, for a full 30 epochs run (2 hours
on an A100 GPU).

4.3. Results

We report our experiment in table 1, where we observe a
consistent improvement on baseline performance for 6 of
the 7 MoleculeNet molecular property prediction datasets
and associated classification tasks.

Overall, using our strategy, the AUROC performance metric
for molecular property prediction improves by an aver-
age of +4.26% across MoleculeNet classification tasks
compared to molecular representations trained on the graph
modality alone. We found that max and sentence cosine
similarity tend to outperform random draw most consis-
tently, followed by mean cosine similarity, and that our
principled graph augmentations markedly improved the re-
sults on the BBBP and SIDER datasets.

The performance increase with regards to MoMu and the
baselines controlling for text pruning (relevance-based and

length-based) are +1.54%, +1.59% and +1.49% respectively.
Of note: the naive relevance strategy only improves perfor-
mance by +0.06% vs. baseline, and pruning the paragraphs
decreases performance by -0.05%. We conclude that it is
the molecular property knowledge extracted from scientific
papers that improves graph representations through the mul-
timodal contrastive training process.

5. Conclusion
We demonstrated an improved strategy for multimodal con-
trastive learning of molecule representations from text cor-
pora with principled augmentation and neural relevance
scoring at sampling time. Our approach outperforms the
baseline model (MoMu) for the downstream task of molec-
ular property prediction on most MoleculeNet datasets with
an average performance gain of +1.54%, and outperforms
models trained on graphs only by +4.26%.

Our results provide strong evidence that natural language
encodes key knowledge on the properties of molecules. Ex-
tracting this information effectively through a deliberate
alignment of graph representation and text embeddings is
a powerful approach to improve property prediction mod-
els, and holds clear promise for computational biology and
molecular sciences.
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A. Appendix

Figure 1. Contrastive pre-training of joint representations of molecular graph-text. Our contribution focuses on improvements to the text
retrieval and graph augmentation strategies, which we evaluate on downstream property prediction tasks.

A.1. Pre-Training Dataset

We train on the molecular graph-text pairs dataset presented in figure 2, constructed following (Su et al., 2022) by retrieving
scientific papers in the S2ORC (?) database by using the name and synonyms of compounds from PubChem (Kim et al.,
2022) as query, and transforming their SMILES intro a molecular graph using OGB smile2graph (Hu et al., 2020).

The dataset comprises of 15,613 graph-document pairs, with 37 million paragraphs or 47.5 gigabytes of text (∼3 megabytes
per molecule). To make training tractable, the text beyond the first 500 paragraphs per molecule is left out.

Importantly, the molecule graph and text sequences datasets are only weakly correlated: text fragments are extracted form
the original SO2RC database on the basis of the name of the molecule appearing in that paragraph, with no further controls
for relevance.

Lastly, the dataset is highly bi-modal: out of 15,613 text-graph pairs, 8,700 samples have less than 50 paragraphs of text,
and 2,967 molecules have ≥500 paragraphs. Our sampling strategies based on cosine similarity scores aim to counter this
inherent imbalance, by training on most of the small text corpus for the sparsely described molecules, and only relevant text
for richly described ones.

Figure 2. Joint molecular graph-text samples data set based on the PubChem and S2ORC database.

A.2. Downstream Molecular Property Prediction

We use the following datasets retrieved from DeepChem:

https://deepchemdata.s3-us-west-1.amazonaws.com/index.html
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• BACE: classification of inhibitors of a human enzyme involved in Alzheimer, which, if blocked, may prevent build up
of proteins in the brain associated with the disease.

• BBBP: classification for the prediction of blood-brain barrier penetration by small molecules.

• Clintox: classification of drugs approved/rejected by the FDA for toxicity.

• MUV: classification for virtual molecule screening built on PubChem.

• SIDER: classification of adverse side reactions of marketed drugs.

• Tox21: classification of toxicity measured by biological reactions and stress response.

• ToxCast: classification over 600 tasks linked to in vitro toxicology data.

A.3. Chemically-Valid Principled Graph Augmentations

We implement algorithm 1:

Algorithm 1 Chemically-Valid Principled Graph Augmentations.
Example: methylation reaction, addition of a – CH3 functional group to the molecular group.
Require: PyG graph tensor xi, node features, edge features

1. Randomly sample nodes that are C atoms with implicit hydrogen count ≥ 1
2. Add a new node to the graph for the additional functional group and update node features for valid covalence and
implicit hydrogen numbers
3. Add an edge to the molecule graph with a single bond feature to bind the additional functional group
4. Decrease implicit hydrogen count for the original site to account for functional group addition

A.4. Intrinsic Evaluation for Hyper-parameter Search

To inform our search for the hyper-parameters with which to compute cosine similarity scores for sampling purposes, we
ran an intrinsic evaluation of several potential retrieval methods and hyper-parameters.

We hand labeled each paragraph in a small subset of text samples, and used paragraphs which all labelers classified as
relevant to the molecule as the ground truth for our retrieval problem.

We controlled for consistency between different human labelers by using Cohen’s Kappa ((Cohen, 1960)). We report a score
of 0.4874.

We varied the temperature and epsilon hyper-parameters and computed recall, precision and F1 score based on the ground
truth from hand labeling. Results for the mean similarity query schema are reported in figure 2.

On the basis of these results, we chose to run our cosine similarity pre-training experiments with ϵ = 0.5 and Temperature
= {0.05, 0.1, 0.2}.

Temperature 0.05 0.1 0.2 0.05 0.1 0.2
E-threshold 0.5 0.5 0.5 1 1 1

Recall 0.5 0.7419 0.9354 0.3 0.4375 0.5
Precision 0.5172 0.5227 0.5178 0.5294 0.56 0.5172
F1 score 0.5085 0.6133 0.6667 0.383 0.4912 0.5084

Table 2. Intrinsic evaluation for the selection of epsilon sampling hyper-parameters.
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A.5. Future work

Evaluation of deep generative tasks in general, and molecular generation tasks in particular, is an open challenge in machine
learning (Yousefzadegan Hedin, 2022). As a next step, we could use the graph encoder and text encoder we trained to train
generative models that help bridge these two modalities, with multi-model tasks such as:

• Molecular captioning: given a molecular graph, generating text that accurately describes the molecule and its properties;

• Molecular generation: given a text description of desiged properties in natural language, generate a graph for a molecule
that exhibits such properties.

For that purpose, and following Su et al. (2022), we implemented MoFlow (Zang & Wang, 2020), a flow-based deep
generative model, on our pre-trained graph encoders, to experiment with molecular generation from free text. This showed
very promising results for zero-shot molecular generation (zero-shot since we did not fine-tune the flow model to match out
encoder specifically). A logical avenue for future work could be to use our trained graph encoder as a teacher model to train
our own flow or diffusion-based model and measure improvements in molecular generation capacity.


