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Abstract

Protein homology detection is a pivotal aspect
of bioinformatics, enabling insights into protein
functions and evolution; however, detection of
remote homologs – proteins with low sequence
similarity – has proven challenging in classi-
cal bioinformatic methods. In this work, we
present a novel approach that employs open do-
main question-answering to retrieve remote ho-
mologs, aided by a carefully curated dataset with
biologically-relevant hard negatives for Dense
Passage Retrieval (DPR) training. To evaluate
our approach, we introduce a diverse CRISPR-
Cas and evolutionary-related nucleases protein
dataset, providing a robust testbed for algorithmic
improvement.

1. Introduction
Remote homology detection is a crucial task in computa-
tional biology that seeks to identify proteins that are evo-
lutionarily related, but share little sequence similarity. Ho-
mology refers to proteins that share a common evolutionary
origin. Remote homologs often perform similar functions
or have similar structures, despite their sequences differing
significantly due to evolutionary divergence over time. Iden-
tifying these relationships can provide insights into protein
function, structure, and evolution. However, the task is chal-
lenging due to the vast sequence space and the subtlety of
the signals that indicate homology.

In NLP, searching and retrieving over large collections of
documents is traditionally performed using methods such
as TF-IDF, which work using word matching and alignment
between a user’s query and each document in the collection.
In recent years, search has been dramatically improved by
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shifting to deep-learning-based approaches, which largely
combine two ingredients: (1) pre-trained language mod-
els, which can extract powerful semantic features from text,
and (2) carefully-curated training sets that contain pairs of
related documents as well as false positives (non-related
documents) returned by traditional word-overlap methods.
The advantage of deep learning approaches for search is
that they provide high accuracy and fast speeds, due to em-
bedding documents into low-dimensional semantic vectors
that can be quickly searched over using approximate nearest
neighbor methods.

Biology, on the other hand, continues largely to use tradi-
tional tools. BLAST and Hidden Markov Models have a
long history of use searching over large databases of protein
sequences scoring by residue overlap and alignment-based
features. Structure based methods such as DALI (Holm,
2020) and TM-align (Zhang & Skolnick, 2005) have long
conferred higher sensitivity to find remote homologs, but
struggled to capture more widespread adoption due to their
speed and number of available protein structures. With the
advent of accurate protein structure prediction methods such
as AlphaFold2 (Jumper et al., 2021), using prior tools to
search through homologous structures has become all but
untenable. Deep learning based methods such as Foldseek
(van Kempen et al., 2023), TM-vec (Hamamsy et al., 2022),
SMAMPNN (Trinquier et al., 2022), Progres (Greener &
Jamali, 2022) have sought to meet this gap, but do not yet
rival the sensitivity of DALI or speed of sequence searches
(Steinegger & Söding, 2017).

Our work has 2 main contributions. First, we apply open
domain question answering for sensitive and rapid retrieval
of remote homologs. To this end, we carefully curate a
dataset of hard negative proteins for DPR style training.
Second, we introduce a dataset of single-effector (class 2)
CRISPR-Cas proteins and evolutionary related nucleases
with high sequence and structural diversity for evaluation of
remote homology algorithms.
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2. Methods
2.1. DPR (Dense Passage Retrieval)

Dense passage retrieval (DPR) (Karpukhin et al., 2020) is
an approach employed in open-domain question answering
(QA) systems, which uses fine-tuned language models to
improve information retrieval. We focus on the retriever
component. Given a question q and passage p, DPR fine
tunes a BERT model to maximize dot product similarity
sim(q, p) = ET

Q(q)EP (p), where EQ and EP are the ques-
tion and passage encoders respectively. A contrastive objec-
tive is used to train:

L(qi, p
+
i , p

−
i,1, . . . , p

−
i,n) =

− log
esim(qi,p

+
i )

esim(qi,p
+
i ) +

∑
j e

sim(qi,p
−
i,j)

At inference time, Ep is applied to all the passages.Given
a question q, its embedding is derived and top k passages
with the closest embeddings are retrieved.

Hard negative sampling and in-batch negative sampling
are essential techniques employed in the training of Dense
Passage Retrieval (DPR) models. Hard negative sampling
involves selecting samples that are difficult for the model to
classify correctly, thereby pushing it to learn more nuanced
features. For example, hard negatives might come from non-
related documents that traditional word-overlap methods,
like BM25, incorrectly return as relevant, or from errors in
a trained DPR model itself. In-batch negative sampling, on
the other hand, leverages the other negative examples within
the same training batch as the current query-document pair.
Both strategies are designed to strengthen the model’s abil-
ity to discern between truly relevant documents (the Gold
standard) and false positives, enhancing the precision of the
retrieval process.

We adapt DPR to the protein search in several ways. We
finetune on protein sequence models, such as ESM-2 (Lin
et al., 2022), instead of BERT. We treat full proteins as
both the question and passage, and proteins with known
homology are considered positive examples. Instead of
sourcing hard negatives from BM25, we choose proteins
misclassified by existing protein search models.

2.2. Training and Evaluation

For training, we use sequences in the Structural Classifica-
tion of Proteins database (SCOPe) database, using 40% se-
quence identity threshold on version 2.08 (Fox et al., 2013).
We train on 40% sequence identity pairs in order to enrich
for hard positives: homologous proteins with low sequence
similarity. In contrast to related works like Progres (Greener
& Jamali, 2022) that use higher sequence identity thresh-
olds, we hypothesize that the ESM embeddings we feed into

DPR implicitly capture sequence-structure relationships for
domains where high sequence similarity indicates high struc-
tural similarity. This leaves 15,177 domains in the training
set across over 4693 families. For a given protein pair within
the same family, we select its hard negative by retrieving
the protein within a different fold with the highest TM-vec
score to the pair.

For evaluation, we use the same test set of 400 domains
as Progres, which are ensured to have < 30% sequence
identity to every protein in the training set. The domains in
the set are filtered to have at least one other family, super-
family and fold member. For each domain, we measure the
fraction of true positives (TPs) detected until the first incor-
rect family/fold/superfamily detected. ESM-2 embedding-
based baselines use both the esm2 t33 650M UR50D
and esm2 t36 3B UR50D models, which have 1280 and
2560-dimensional embeddings, respectively, ESM-2 in GPU
mode was run using a NVIDIA RTX A6000 GPU.

We trained two models, fine-tuning either the
esm2 t6 8M UR50D or esm2 t33 650M UR50D
as the question and passage encoders with the DPR
contrastive objective. We train the DPR model initialized
with the ESM t6 weights (with 8M parameters), fine-tuning
the final 3 layers. We train TOPH on initializing with
ESM t33 weights (with 650M parameters), fine-tuning the
final 8 layers. Both models are trained on a single NVIDIA
A100 GPU and with lr = 1e− 4.

2.3. CRISPR-Cas datasets for Remote Homology
Detection

CRISPR-Cas, well-known for its revolutionary role in
genome editing, is a key defense mechanism in adaptive bac-
terial immunity against foreign genetic elements (Jinek et al.,
2012). We utilize a diverse CRISPR-Cas and evolutionary
related nucleases protein dataset for remote homology de-
tection. Our dataset draws from (Makarova et al., 2020)
(Pausch et al., 2020) (Urbaitis et al., 2022) (Al-Shayeb et al.,
2022), in addition to hand-curation from structural biolo-
gists. This choice is underpinned by the fact that the remote
homologs are verifiable due to the unique biological charac-
teristic of Cas genes being upstream of CRISPR loci. Fur-
thermore, the ancestral and other evolutionary related RNA-
guided nucleases originating from mobile genetic elements,
such as TnpB (Sasnauskas et al., 2023), IscB (Schuler et al.,
2022), and IsrB (Hirano et al., 2022), demonstrate similarity
in structural organization and RNA-guided cleavage mecha-
nism. This ensures a high level of confidence in our ground
truth for homology detection. The related proteins in the
dataset are highly varied in length, containing both long
(which existing protein models struggle on; up to 1600 a.a.)
and short sequences (as low as 400 a.a.). The sequence and
structural diversity of Cas and evolutionary related nucle-



TOPH: True Retrieval Of Proteins Homologs

ases further renders them a valuable and challenging testbed
for the evaluation of remote homology detection algorithms,
given the complexity and subtlety of the signals indicating
homology. Furthermore, anecdotes from structural biolo-
gists suggest Foldseek fails to find Cas proteins which can
be found by DALI.

3. Results
3.1. SCOPe 2.08 sensitivity

We first assessed our model on sensitivity using the SCOPe
2.08 holdout set. Sensitivity is measured as the fraction
of true positives (TPs) until the first incorrect fold, follow-
ing the analysis in (van Kempen et al., 2023) and (Greener
& Jamali, 2022). We consider TPs as same family, same
superfamily but different family, and same fold but differ-
ent superfamily for the family, superfamily, and fold tasks
respectively. We chose to assess results in comparison to
methods using both classical bioinformatic and deep learn-
ing approach on either structure or sequence.

Our results are comparable to Foldseek, without the need
to search or process through folded structures. TM-Vec,
another deep learning model learning on sequence pairs,
shows a marginal improvement over TOPH in sensitivity on
the SCOPe2.08 holdout set, but trains on the much larger
CATH dataset. We have not done extensive hyperparameter
tuning nor training on multiple GPUs. Furthermore, we
suspect that a model trained on the fold/superfamily/family
task should outperform a model that well-estimates TM-
alignment scores. Classical structural alignment algorithms
TM-Align and DALI perform similarly, with DALI return-
ing the highest sensitivity of all models, but suffer from
long run-times. We also benchmark against a class of
ESM models that are not fine tuned on the family detec-
tion task. TOPH outperforms all ESM models, showing
the benefit in DPR style training and fine tuning. Inter-
estingly, we observe that when using the cosine similar-
ities among ESM-embedded SCOPe proteins as a way
to rank protein sequences, a surprising initial decrease in
family/subfamily/fold prediction performance occurs going
from the ESM 8M to 650M parameter models, before an
increase when benchmarking the predictive power of the
ESM 3B embeddings.

3.2. CRISPR-Cas identification

Cas12 identification. Cas12 is a compact and efficient pro-
tein that creates staggered cuts in dsDNA, conferring great
potential for genome editing. We curated a list of 436 Cas12
proteins from recent efforts in Cas12 effector identification
(Makarova et al., 2020) (Pausch et al., 2020) (Urbaitis et al.,
2022) (Al-Shayeb et al., 2022). As a frame of comparison,
we included 8 unique TnpB proteins, which are Cas12 ances-

Family Superfamily Fold

ESM2 (8M) 0.412 0.265 0.010
ESM2 (650M) 0.314 0.134 0.010

ESM2 (3B) 0.477 0.221 0.014
MMseqs2 0.433 0.165 0.001
TM-Vec 0.848 0.596 0.121

TM-Align (avg) 0.868 0.619 0.163
DALI 0.885 0.709 0.168

Foldseek 0.821 0.578 0.070
Progres 0.878 0.680 0.144

TOPH (ESM-650M) 0.818 0.528 0.065
TOPH (ESM-8M) 0.571 0.392 0.0376

Table 1. Retrieval sensitivity for homologous proteins in SCOPe.
Sensitivity measures fraction of true positives (TPs) up to the first
incorrect fold (higher is better). We consider TPs as same family,
same superfamily but different family, and same fold but different
superfamily for the family, superfamily, and fold tasks respectively.
We split the table by sequence, structure, and our models. Italicized
results are reported from (Greener & Jamali, 2022). Results in
bold are the best performing models on the family, superfamily,
and fold result respectively. TM-align (avg) refers to the average
of TM scores 1 and 2 outputted from the structural alignment.

tors only recently shown to be RNA guided endonucleases
(Shmakov et al., 2017) (Karvelis et al., 2021). When passed
forward through our model, we observed clear separation be-
tween Cas12 subtypes 1. Many Cas12 subtypes clustered to-
gether suggesting similar embedded structures. Of particular
interest, biphyletic groups Cas12a and Cas12b (Makarova
et al., 2020) were indeed separated into two groups. Simi-
larly, the polypheletic Cas12f (Harrington et al., 2018), was
the least distinct cluster and co-located with TnpB proteins.
Of particular note, Cas12k which guides targeting Tn7 trans-
position (Strecker et al., 2019) formed the most separated
clade. Curiously, remaining uncharacterized Cas12 proteins
Cas12U2, Cas12U3, and Cas12U4 were also highly sepa-
rable from all other Cas12 proteins within this embedding.
Potentially, this indicates a distinct biological role for these
proteins.

Skopintsev dataset. In addition, we composed a dataset
comprising of protein sequences which correctness was
validated structurally. Specifically, the structures of Cas9,
Cas12, or the ancestral TnpB, IscB, IsrB were initially in-
cluded. The sequences were further enriched with HMMER
(Zimmermann et al., 2018) and BLAST search (Altschul
et al., 1990), which were additionally validated for structural
integrity with AF2 (Jumper et al., 2021). Other proteins com-
ing from mobile genetic elements having putative similar
mechanism were processed in a similar fashion (Altae-Tran
et al., 2021). As expected, Cas9’s and Cas12’s fell into
distinct groups 2. Interestingly, Cas12’s showed higher di-
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Figure 1. t-SNE plot of TOPH embeddings on subset of (Makarova
et al., 2020), focusing on Cas12 proteins.

Figure 2. t-SNE plot of TOPH embeddings on the Skopintsev
dataset.

versity than Cas9’s and separated into a few distinct, but
related clusters, some of which were categorized together
with the evolutionary related TnpBs, and other putative
RNA-guided nucleases. The negative control (”X”) dataset
was composed of random Protein Data Bank entries (wwp,
2019), and did not co-localize with the Cas9’s or Cas12’s
clusters.

4. Discussion
We have demonstrated preliminary results applying ideas
from open domain question answering to the problem of de-
tecting remote homologs. Our model, without being trained
on a larger dataset, any hyperparameter tuning, or use of
protein structures, is able to achieve comparable perfor-
mance to Foldseek. Furthermore, we are able to show our
model is able to reproduce evolutionary classifications of
CRISPR-Cas proteins produced by biologists, despite being
trained on single protein domains in SCOPe. We hope that

our CRISPR-Cas datasets can serve as a valuable bench-
mark dataset for the remote homology problem, and plan to
quantify the dataset further with metrics such as sequence
identities.

In our DPR training, we make use of its split encoder archi-
tecture, which is currently unnecessary because questions
and passages are both simply SCOPe domains. Classically,
DPR models involve using a retriever to get possible con-
texts the contain an answer to a given question. For the
protein universe, we can think of this as a question being a
single- domain protein and passage being a multi-domain
protein. Further incorporating DPR analogies, we can then
build a reader to select an answer, i.e. annotate protein
domains within a sequence or structure.

The goals of this work is to demonstrate the viability of
adopting open-domain question-answering style methods
to protein search. There exist a few directions for future
improvements. We chose to only train on sequences, as
sequences are far more abundant in public databases and
require less computational power to process. One way to
incorporate further biological intrinsic biases is to use em-
beddings of both sequence and structure. Paired structural
and sequence data is required for this, via databases such as
CATH or the AlphaFold Protein Structure Database (Varadi
et al., 2022). Additionally, leveraging the curated hierarchi-
cal structure within SCOPe and CATH (Nallapareddy et al.,
2023) can further instill biological priors, e.g. training using
a curriculum learning strategy, and gradually fine-tuning on
increasingly complex tasks within the SCOPe or CATH hier-
archy. Biological datasets for targeted applications (such as
the Cas-related experiments in the current work) are often
small enough at inference time to be less computationally
demanding. Incorporating the FAISS package (Johnson
et al., 2019), as in the original DPR paper, (Karpukhin et al.,
2020) can enable compatibility with a further range of appli-
cations by conferring speed benefits which will be especially
pronounced for large datasets.

In summary, we apply techniques from question-answering
to detect homologous proteins and introduce a new CRISPR-
Cas dataset for evaluation. These preliminary results, we
hope, can help springboard biology into the era of deep
learning for retrieval.
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M., and Ovchinnikov, S. Swampnn: End-to-end protein
structures alignment. Machine Learning for Structural
Biology Workshop, NeurIPS, 2022.

Urbaitis, T., Gasiunas, G., Young, J. K., Hou, Z., Paulraj,
S., Godliauskaite, E., Juskeviciene, M. M., Stitilyte, M.,
Jasnauskaite, M., Mabuchi, M., et al. A new family
of crispr-type v nucleases with c-rich pam recognition.
EMBO reports, 23(12):e55481, 2022.

van Kempen, M., Kim, S. S., Tumescheit, C., Mirdita, M.,
Lee, J., Gilchrist, C. L., Söding, J., and Steinegger, M.
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J., Lozajic, M., Gabler, F., Söding, J., Lupas, A. N., and
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