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Abstract
Deep learning models have found wide applica-
tions in capturing sequence dependencies of bio-
logical functions. These models are often used to
predict the effect of a large number of mutations
in a sequence, a method also known as in silico
mutagenesis (ISM). ISM is a common approach
for interpreting the sequence dependencies cap-
tured by the model. However, this process can
be computationally expensive as the naive im-
plementation requires the model to individually
process each mutation. Here, we introduce a new
framework called ”Multiplexer” that can simul-
taneously predict the effects of a high number
of input variations given any ”Base” sequence
model. Multiplexer models can help identify im-
portant sequence patterns underlying its function,
such as transcription factor binding, by discov-
ering impactful mutations. We demonstrate that
Multiplexer models can be 100x faster than naive
methods and 10x faster than existing acceleration
methods, while achieving very similar accuracy
when applied to experimental datasets. We ex-
pect the ability to make fast, large-scale, predic-
tions of mutation effects to accelerate the process
of understanding the sequence dependencies of
genome regulation. Furthermore, to further facil-
itate the use of the Multiplexer model, we have
developed a Python package that allows users to
easily visualize Multiplexer predictions and train
sequence-based Multiplexer models.

1. Introduction
Deep learning models are widely used in the biomedical
sciences to predict various biological features such as
chromatin profiles, gene expression, or 3D genome
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structure from a DNA sequence (Alipanahi et al., 2015;
Zhou & Troyanskaya, 2015; Kelley et al., 2015; Zhou
et al., 2018; Jaganathan et al., 2019; Fudenberg et al.,
2020; Žiga Avsec et al., 2021; Zhou, 2022) by capturing
sequence-dependencies of biological functions. Because
sequence models are able to generalize to new unseen
sequences, one key application of sequence models is the
prediction and analysis of mutation effects. In particular,
sequence models allow for the systematic characterization
of all possible single-nucleotide mutations, i.e. performing
in silico mutagenesis (ISM), which is commonly used to
identify key base-pairs in regulatory sequences or to predict
all mutation consequences (Zhou & Troyanskaya, 2015;
Kelley et al., 2015; Žiga Avsec et al., 2021). However,
because the computational cost of sequence models
scales linearly with the number of variants, predicting the
effects of a high number of sequence mutations can take a
considerable amount of time. Accelerated ISM methods
including fastISM, Yuzu, and multiplexed ISM (Nair et al.,
2022; Schreiber et al., 2021; Zhou, 2022) have recently been
developed to leverage model architecture-specific properties
to improve model efficiency, but these methods only offer
a modest improvement in ISM speed and require specific
model designs such as convolution-based architectures.

More broadly, predicting the effects of a large num-
ber of input variations is a common task in deep learning
model interpretation. By tracking how input perturbations
change a model’s output, it is possible to determine the
critical features of an input space. Therefore, analyzing
how input perturbations effect model predictions is a
fundamental building block of many deep learning model
interpretation methods (Zeiler & Fergus, 2013; Ribeiro
et al., 2016; Lundberg & Lee, 2017) and a generally appli-
cable method for accelerating input variation prediction can
also accelerate other methods of model interpretation.

Here, we introduce a “Multiplexer” model that pro-
vides fast and systematic prediction of all SNV (single
nucleotide variant) effects. Given a “Base” model that
makes predictions for sequence-based inputs, Multiplexer
models are trained to simultaneously generate Base model
predictions for a large set of input variations with drastically
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Figure 1. Multiplexer speeds up systematic prediction of variant effects by deep learning sequence models (a) Schematic overview
of Multiplexer framework applied to sequence models. The Base model takes in one input at a time to generate predictions. Training data
for the Multiplexer model is created by using the Base model to generate predictions for all possible input variants and the Multiplexer is
trained to predict the same set of variant predictions with only one pass given the base, non-variant input. (b) Schematic overview of
the DeepSEA “Beluga” and BelugaMultiplexer models. DNA sequence inputs to Beluga need to be mutated at each position before the
forward pass whereas the BelugaMultiplexer only needs to forward propogate a single input. (c) ISM examples for sequences containing
known pathogenic mutations. The reference sequence is shown above the plot, each of the four rows indicate a nucleotide mutation, and
known motifs are annotated with a horizontal line. Darker letters and bluer heatmap values indicate more negative mutation effects.

reduced computation (Figure 1a). For example, a nucleotide
sequence of length n can have 3n SNVs and would normally
require 3n+1 instances of forward propagation to compute
ISM. However, for Multiplexers, it would only require one.
By obviating the need to individually compute predictions
for each input variation, Multiplexer models significantly
improve the computation speed of ISM and other methods
of model interpretation.

2. Methods
2.1. Base Model and Model Design

To demonstrate that a genomic sequence Multiplexer can ac-
celerate both the systematic prediction of genomic mutation
effects and the interpretation of DNA-sequences, we train a
Multiplexer that uses the DeepSEA ‘Beluga’ model (Zhou
et al., 2018), a sequence model that predicts chromatin pro-
files (including 2,002 transcription factors, histone marks,
and chromatin accessibility profiles), as a Base model. Our
trained “BelugaMultiplexer” can simultaneously predict the
chromatin profile effects of every SNV in the sequence and
thus offers a significant speed-up when performing in silico

saturation mutagenesis as it can make the equivalent of 6,001
Base model predictions (1 reference + 2,000 base-pairs x 3
alternative sequences) given a single sequence as input (Fig-
ure 1b). Furthermore, BelugaMultiplexer predictions can
also directly allow users to interpret which sequence patterns
are important for any of the 2002 chromatin profiles. For ex-
ample, using the sequence containing a Delta thalassaemia
mutation (chr11:5255790, Atak et al. (2021)) as input, Bel-
ugaMultiplexer identified a sequence element containing
the GATA motif and the disease-causing mutation, as well
as a second weaker GATA motif nearby (Figure 1c). In an-
other example, for a sequence carrying a familial skewed X-
chromosome inactivation mutation (chrX:73072592, Atak
et al. (2021)), BelugaMultiplexer identified the sequence el-
ement that contained the CTCF motif as well as the skewed
X-chromosome inactivation mutation that was known to
establish a new CTCF binding site (Figure 1c).

2.2. Data Processing And Model Training

To train BelugaMultiplexer, genomic sequences were re-
trieved by sampling from the hg19 human reference genome,
in consistency with the DeepSEA “Beluga” model. To con-
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struct a Multiplexer training sample, a sequence of 2,000
base-pairs was sampled (reference sequence) and mutated
to create 6,000 SNV sequences (alternative sequences) that
represented all possible mutations of the reference sequence.
We then used the Base model to make chromatin profiles
predictions for both the reference and alternative sequences
and took the log-odds difference between them. Specifically,
we defined training target y to have entries yijk where:

yijk = log

[
(altijk + ϵ)(1− refk + ϵ)

(1− altijk + ϵ)(refk + ϵ)

]
Where alt is the set of chromatin profile predictions made
for the alternative sequences, ref is the set of predictions
made for the reference sequence, ϵ is 1e−6, and i, j, k index
the position, possible mutations, and the chromatin profiles,
respectively.

Then, given the reference sequence as input, BelugaMul-
tiplexer was trained to minimize the mean-squared error
between its predictions and y. A detailed description of
model training can be found in Appendix A.

3. Results
3.1. Model Architecture and Correlation Comparison

To determine the best architecture, we trained four varia-
tions of the Multiplexer model and measured the correlation
between their predictions and the predictions made by the
Base mode on a set of 2,500 validation sequences. For each
predicted chromatin profile, we calculated the weighted
correlation between the Multiplexer and Base model pre-
dictions, where mutations were weighted by the absolute
predicted effects from the Base model (as detailed in ap-
pendix B). All Multiplexer variations were fundamentally
composed of seven convolutional blocks. However, the
model architecture with the highest correlation (Figure 2a)
additionally employed two design features to facilitate base-
pair resolution output: first, it used a U-Net structure (Ron-
neberger et al., 2015) that allows the model to both integrate
sequences across a long range and also reintroduce high-
resolution information from early layers to the later layers in
the network; second, since early convolution layers have no
information about relative position within sequence, it intro-
duces positional information to the input in the forward pass
of the Multiplexer model. Because positional information is
important for Beluga predictions, positional encodings help
BelugaMultiplexer’s predictive performance. The model
architecture is further detailed in appendix C.

3.2. Speed Comparison

To quantify the speed improvement of the BelugaMulti-
plexer model, we compared the time the Multiplexer model
takes to compute ISM with the time it takes for Beluga
and Yuzu, a method that accelerates ISM with compressed

Figure 2. Multiplexer architecture design achieves high con-
sistency with Base model and 100x speed up (a) Performance
comparison of Multiplexer architectures. The performance of sev-
eral Multiplexer architectures that combined positionally encoded
inputs, U-Net structure, and convolution layers. (b) Speed compar-
ison of several ISM methods. We found that the Multiplexer model
is over 10x faster than other published methods. Each method was
run up to the largest batch size that fit on GPU memory.

sensing (Figure 2b). To facilitate this comparison, we
sampled 512 sequences and tracked the time for each
method to compute ISM at different batch sizes. Further
implementation details are given in appendix D.

We found that the trained BelugaMultiplexer model
was able to compute ISM 94x faster than the Base model
and 13x faster than Yuzu, a substantial speed up. Moreover,
we found that Yuzu consumes significantly more memory
than the Multiplexer model and can only process relatively
small batch sizes. BelugaMultiplexer could be further
accelerated in tasks where predicting an average mutation
effect per position is sufficient, such as assigning sequence
importance scores. To demonstrate this, we trained a
position-specific Multiplexer model that predicts the
average mutation effect at each position and found this
model to be 142x faster than the Base model and 20x faster
than Yuzu (Figure 2b). Further analysis of the viability of
the model is shown in appendix E.

3.3. Performance on Experimental Data

To evaluate the performance of the Multiplexer model on
external experimental data, we compared the accuracy of
the BelugaMultiplexer model with the Base model on allele-
imbalanced variants from the ATAC-seq (Tehranchi et al.,
2018), DNase-seq (Neph et al., 2012), and histone mark
QTLs datasets (Chen et al., 2016) where one allele leads to
more accessible chromatin or more histone marks compared
to the other (Figure 3a). The datasets were first filtered
and only the variants with the lowest 8,000 p-values were
retained for analysis. Each variant contained a nucleotide
mutation and an indication of whether the alternative or
reference allele was overrepresented. For each variant, a
reference and alternative sequence was generated. The se-
quences and their reverse-complements were then forward-
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Figure 3. Multiplexer achieves variant effect prediction accuracy comparable to the base model (a) Overview of variant effect
prediction evaluation with experimental data. Experimental data are used to identify alternative-allele or reference-allele-based variants.
These variants were then used to evaluate the predictions provided by computational methods using only the sequence carrying each of
the alleles (shown in figure 3b). (b) The variant effect prediction performance of Beluga Multiplexer is comparable with Beluga model on
variants from DNase, ATAC-seq, H3K27ac, and H3K4me1 datasets. The y-axis shows the accuracy of predicting the direction of variant
effect for variants above a threshold of absolute predicted effect (|Alt − Ref|) (x-axis).

propagated through the models and averaged to produce
chromatin profile predictions. Accuracy was determined by
analyzing whether the predictions were in agreement with
which allele is over-represented. To provide a confidence
threshold for these predictions, we created margins based
on the absolute value of the difference between reference
and alternative prediction and calculated the accuracy at
each margin. Importantly, we observed very similar perfor-
mance between the two models on all of the allele imbal-
ance datasets (Figure 3b). Both models accurately predicted
which allele leads to more accessible chromatin or more en-
hancer histone marks (H3K27ac or H3K4me3) for variants
with strong predicted effects. We also note that DNase pre-
dictions from Beluga and BelugaMultiplexer demonstrate
comparable performance when evaluated on allele imbal-
ance data from either ATAC-seq or DNase-seq, suggesting
that these predictions generalize across techniques. We
conclude that Multiplexers show no obvious reduction in
generalized performance on external datasets compared to
the Base model.

3.4. Python Library and Web Server for Sequence
Interpretation with Multiplexer

Because Multiplexer outputs illustrate how specific nu-
cleotide mutations in the reference sequence change the
chromatin profile, it becomes easy to identify key regula-
tory elements in the reference sequence (as demonstrated
in Figure 1c). Therefore, the Multiplexer model provides a
fast and straightforward method for sequence interpretation.
We expect Mutliplexer to be an useful tool for studying reg-

ulatory sequence, and have developed a command line tool1

and web server that enables users to generate Multiplexer
predictions to facilitate such analysis. This tool can visual-
ize predictions as heatmaps, which represents the changes
in chromatin profiles resulting from every mutation at each
position in the reference sequence (shown in appendix F).

4. Discussion
We demonstrated that Multiplexer models can significantly
speed up large-scale mutation effect prediction without loss
of accuracy and observe that Multiplexers can generalize
well to external datasets, reaching similar or better perfor-
mance compared to the Base model even though the corre-
lation with base model is not perfect. This may be because
Multiplexer training has a regularization effect, similar to
the case of knowledge distillation (Hinton et al., 2015). Ad-
ditionally, we have shown that, when applied to sequence
interpretation, Multiplexer models can be a powerful tool to
identify which sequence patterns contribute the most to bio-
logical functions. Finally, even though this paper is focused
on Multiplexers’ application to sequence models, the Multi-
plexer approach is generally applicable to diverse problems
that involve simultaneous predictions of programmed input
variations. This can include predicting other types of input
variations such as small indels or random shuffling of small
sequence segments. The Multiplexer framework is in princi-
ple also applicable to other areas of deep learning such as
predicting occlusion effects in image models, or semantic
analysis in sentiment classification tasks.

1Available at https://github.com/jzhoulab/Multiplexer
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Appendix

A. Model Training
Training sequences were drawn from all chromosomes except chr8 and chr9 which were reserved for validation. For both
training and validation sequences, the chromosomes were sampled with probability proportional to their length while
the position within each chromosome was sampled uniformly at random. Specifically, BelugaMultiplexer was trained to
minimize the objective defined by:

loss = ||y − ŷ||2

Where y is the training target defined previously and ŷ is the output of BelugaMultiplexer.

Additionally, the BelugaMultiplexer was trained with Adam optimization and a 0.0001 learning rate. During
each training epoch, a new batch of 16 training samples was generated and the validation loss was computed every 1,000
epochs. Validation was conducted on a fixed set of 288 validation samples that were randomly drawn before the start
training. Training was stopped when there were no further decreases in validation loss at which point the model parameters
with the lowest validation loss were returned. In total, the best performing Multiplexer model was trained for 50,000 epochs.

B. Weighted Correlation
To calculate the weighted correlation, let:

WM(x, y) =

∑
i

xiyi∑
i

yi

WV (x, y, z) =

∑
i

zi(x−WM(x, z))(y −WM(y, z))∑
i

zi

WC(x, y, z) =
WV (x, y, z)√

WV (x, x, z)WV (y, y, z)

Where WM calculates the weighted-mean, WV calculates the weighted-covariance, and WC calculates the weighted-
correlation. For our comparison, we calculate:

WC(Base,Multiplexer, |Base|)
Where Base is the log-odds difference between the predictions made by the Base Model for the alternative and reference
sequences, Multiplexer is the set of predictions make by the Multiplexer model, and || indicates absolute value.

C. Model Architecture
The Multiplexer model consists of 7 sequential convolutional blocks which each contain 1-dimension convolutional layers,
batch normalization layers, and ReLU activation layers. Our implementation of the U-Net structure organizes these blocks
such that the inputs of blocks one through five are the outputs of the previous block, the input to the sixth block is the sum of
the outputs of the fifth and third block, and the input to the seventh block is the sum of the outputs of the second and sixth
block. The output of the seventh block is then reshaped and returned as the prediction. Furthermore, positional encodings
are included as a feature of the model’s forward propagation method and the value of the positional encoding concatenated
to each value of the input is a function of the position defined by:

f(position) = min(0.001 ∗ position, 2− 0.001 ∗ position)

where 0 ≤ position ≤ 2000

A visualization of the BelugaMultiplexer architecture can be found in figure C.1 .
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Figure C.1. BelugaMultiplexer architecture The BelugaMultiplexer model consists of seven ”Multiplexer Blocks”. The best performing
model also concatenates a positional encoding vector to the input and uses residual connections that sum earlier activations with later
activations in the network.

D. Speed Comparison
Yuzu is an ISM acceleration method that improves upon fastISM, which was the previous fastest ISM method (Nair
et al., 2022). Yuzu works by modifying a sequence model with compressed sensing to accelerate the speed of its’ ISM
computations. In our comparison, we apply Yuzu to the Beluga model.

Since ISM requires predictions for every possible input variation, the naive implementation requires preparing
the same number of mutated input sequences as the number of variations. In our comparison of model speeds, we assumed
that these mutated sequences are pre-computed and did not include the time to generate them in our measurement of the
Base model’s speed. In practice, generating one sequence input for Multiplexer takes significantly less time than generating
all input sequences for naive ISM, so including the time for sequence generation would result in a greater speed-up than our
reported figure. Additionally, the Yuzu method is currently limited in the architectures it supports (e.g reshapes and residual
connections are not supported, maxpool layers must be rewritten, etc) so the size of the Base model had to be altered before
Yuzu was applied which marginally increased the padding of the convolution layers. In order to account for this increase, we
computed ISM with both this larger, padded Base model and our original Base model and then proportionally scaled down
the computed times for Yuzu (the larger model was 10% slower so the calculated Yuzu time by multiplied by a factor of
0.91) .

E. Position-Specific Multiplexer
To demonstrate the viability of the position-specific Multipexer model, we also compared the predictive performance of
the position-specific Multiplexer and the mutation-specific Mutliplexer. We found that prediction of averaged mutation
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effects by the position-specific Multiplexer model is slightly improved over the mutation-specific Multiplexer model,
while the mutation-specific Multiplexer predicts individual mutation effects better than using the averaged effect from the
position-specific Multiplexer model (Figure E.1). Thus, the position-specific Multiplexer is superior in both speed and
performance in applications where only average mutation effects are needed.

Figure E.1. Performance comparison between mutation-specific Multiplexer and position-specific Multiplexer on individual
mutation effects prediction (left) and per-position averaged mutation effect prediction tasks (right). Performance on the former task
was measured by calculating the correlation between Beluga predictions and the mutation-specific Multiplexer predictions as well as the
correlation between Beluga predictions and repeated position-specific Multiplexer predictions (repeated 3 additional times to match the
dimensions of the mutation-specific Multiplexer). The latter task similarly computed correlations but averaged the alternative predictions
in the mutation-specific Multiplexer predictions and Beluga model and did not repeat the position-specific Multiplexer predictions.

F. Webserver
Here, we also include a visualization of the Mutliplexer python library’s capabilities.

Figure F.1. Schematic illustration of the Multiplexer python library This library includes a training notebook that enables users to
provide a Base model and train a custom SNV Multiplexer, and also a command line interface where users can make predictions and plots
with either the trained BelugaMultiplexer model or a custom model.


