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Abstract
Molecular docking aims to predict the 3D pose of
a small molecule in a protein binding site. Tradi-
tional docking methods predict ligand poses by
minimizing a physics-inspired scoring function.
Recently, a diffusion model has been proposed
that iteratively refines a ligand pose. We combine
these two approaches by training a pose scoring
function in a diffusion-inspired manner. In our
method, PLANTAIN, a neural network is used to
develop a very fast pose scoring function. We pa-
rameterize a simple scoring function on the fly and
use L-BFGS minimization to optimize an initially
random ligand pose. Using rigorous benchmark-
ing practices, we demonstrate that our method
achieves state-of-the-art performance while run-
ning ten times faster than the next-best method.
We release PLANTAIN publicly and hope that
it improves the utility of virtual screening work-
flows.

1. Introduction
Proteins play many vital roles in the human body, and their
functions can be modified by small molecules that bind to
them. Designing such ligands for protein targets is an es-
sential task in drug discovery. Molecular docking aims to
predict the 3D pose of the ligand in the protein binding site.
Docking is commonly used in structure-based virtual screen-
ing, wherein a large library of compounds are docked to a
protein structure of interest. Their poses are used to score
their binding affinity and the highest-scoring compounds are
selected for experimental testing (Maia et al., 2020). Virtual
screening promises to quickly discover binders for a target,
but its utility is currently limited due to the low accuracy of
docking algorithms (Bender et al., 2021).
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1.1. Prior Work

Traditionally, molecular docking has been framed as a prob-
lem of energy minimization (Trott & Olson, 2010; Friesner
et al., 2004). The ground-truth pose is considered to be the
one that minimizes the potential energy of the protein-ligand
complex. Calculating the true energy is intractable due to its
quantum mechanical nature; thus, many scoring functions
have been developed to approximate it. Unfortunately, these
physics-based approaches need to make many assumptions
in order to run quickly. Notably, they generally assume that
the protein binding site is inflexible, and only modify the
ligand pose. This means the scoring functions are often very
sensitive to the specific conformation of the given protein
structure.

Recently, several methods have been proposed that use ma-
chine learning (ML) to directly predict ligand poses (Stärk
et al., 2022; Lu et al., 2022). Notably, DiffDock (Corso
et al., 2022) is a diffusion mode that predicts a pose by ini-
tializing the ligand in a random conformation and iteratively
updating the translation, rotation, and torsional angles.

One disadvantage of these ML approaches is that they focus
on the problem of whole-protein (or “blind”) docking, im-
plicitly combining the tasks of binding site prediction and
ligand pose prediction. In practice, whole-protein docking
makes the problem unnecessarily difficult; in most practical
applications, researchers already know the binding site of
their protein target and only want compounds that bind to
that site (Yu et al., 2023). In this paper, therefore, we fo-
cus on the problem of predicting the ligand pose given the
protein binding site (“site-specific“ docking).

1.2. A Diffusion-inspired Pose Scoring Function

We note that both traditional docking methods that rely
on energy minimization and the diffusion-based DiffDock
share some cursory similarities. Namely, both methods
initialize a ligand in a random pose and permute the pose (by
translating, rotating, and modifying torsional angles) to give
the final prediction. Traditional methods explicitly minimize
an energy function, while the diffusion approach uses a
neural network to propose new poses directly. Because
DiffDock does not explicitly compute any pose score when



PLANTAIN

x16

RA x F

TwistBlock

Per-atom distances to correct pose

a) b)

1. Encoder (only run once)

2. Fast scoring function
c)

Dense
and Norm

Dense
and Norm

Dense
and Norm

Dense
and Norm

Dense
and Norm

Dense
and Norm

EGAT

EGAT

Receptor
atom feats

RR x F

L x F

RBF 
Coefficients
L x RA x C

L x L x F

Distance
matrix 
L x RA

TwistBlock

Embedding

Embedding

TwistBlock

L x L 

L x RR x F

Residue attention
expand

Residue attention
contract

Attention
contract

Attention
contract

Attention
contract

Attention
contract

Attention
expand

Attention
expand

Attention
expand

Attention
expand

Attention
expand

Attention
contract

L x RA x F

lig - rec atom
 interaction

 feats

lig - rec residue
 interaction

 feats

lig - lig atom
 interaction

 feats

Receptor
 residue feats

Ligand 
atom feats

L x L x C

Figure 1. Overview of the PLANTAIN workflow. a) The Twister encoder is composed of 32 TwistBlocks. Each TwistBlock updates
the internal representation of the ligand and receptor atom features, receptor residue features, and all the interaction features. b) 1. The
encoder uses the protein binding pocket and 2D ligand representation to produce coefficients for the scoring function. The encoder is
only run once during inference. 2. The scoring function uses the coefficients from the encoder, along with all the ligand-ligand and
ligand-residue inter-atomic distances, to quickly score a proposed ligand pose. c) When training, we add Gaussian noise to the translations,
rotations, and torsional angles of the ground-truth ligand pose. We use our model to predict each ligand atom’s distance to its correct
position.

the pose is generated, it requires a separate confidence model
to rank the poses generated by the diffusion model.

We hypothesized that we could train a pose scoring model
in a diffusion-inspired manner. When inferring, we then ex-
plicitly minimize this score. This approach is conceptually
simpler than DiffDock. Additionally, by explicitly training
on proteins and ligands from different crystal structures, we
hoped that our learned scoring function would be less sensi-
tive to the specific protein conformation than physics-based
methods.

We validated this hypothesis by developing PLANTAIN
(Predicting LigANd pose wiTh an AI scoring functioN).
PLANTAIN uses a novel neural network that, given a pro-
tein binding pocket and a 2D representation of the ligand,
will compute coefficients for a scoring function that can
then be quickly computed for a given 3D ligand pose. This
score function computes the predicted mean absolute error
(MAE) of the current pose as compared to the correct pose.
We then use this function to minimize the score of the ligand
pose using the L-BFGS optimizer (Liu & Nocedal, 1989).

Using the rigorous benchmarking techniques outlined below,
we show that our method improves upon the accuracy of
GNINA (McNutt et al., 2021), the next best method, while
running significantly faster.

1.3. The Importance of Rigorous Benchmarking

Proper benchmarking of docking methods is difficult; it is
very easy for hidden biases in the data to artificially inflate
reported accuracy. We identify three best practices that
should be followed to make docking benchmarks align as
closely as possible with actual prospective docking runs.

First, one should not simply take a ligand out of a crystal
structure and attempt to re-dock it to the protein from that
structure. Protein residues are flexible and will change con-
formation upon binding to a particular ligand. Thus, we can-
not assume knowledge of the exact locations of the protein
pocket residues. The more realistic way to perform bench-
marking is to dock a ligand to a different crystal structure
of the same protein. This procedure is called cross-docking
(Francoeur et al., 2020; McNutt et al., 2021).
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Second, it is important to ensure the method is tested on
proteins unseen in the training set. Previous ML work has
frequently used time-based splits to separate train and val-
idation/test data. While such splits ensure that the same
protein-ligand complex is not present in both train and test
splits, the same proteins can be present in both. ML methods
can achieve deceptive performance by memorizing the kinds
of interactions made by the protein in question. Addition-
ally, proteins that are very similar to one another should be
placed in the same data split. Thus, the most rigorous way
to split the data is to first cluster proteins based on sequence
(or, better yet, structural) similarity, and place different clus-
ters in different splits (Kramer & Gedeck, 2010; Francoeur
et al., 2020).

Finally, when docking to a defined binding site, additional
bias can be introduced by the definition of the binding
pocket. Prior work has often defined the pocket by drawing
a box around the ligand with a certain amount of padding.
However, the actual pocket might be larger, and we cannot
assume knowledge of the specific location within the pocket.
Thus, in this paper, we follow Brocidiacono et al. (2022) and
define the binding site using x-ray crystallographic poses of
all known ligands, not just the ligand in question. To our
knowledge, this paper is the first work to report docking
results using this more rigorous binding pocket definition.

2. Methods
2.1. Model Architecture

PLANTAIN consists of two parts: (i) a neural network
encoder that uses a 3D protein pocket and a 2D ligand graph
to produce coefficients, and (ii) a scoring function that uses
these coefficients to rapidly evaluate candidate ligand poses.
Following Autodock Vina (Trott & Olson, 2010), we use
the L-BFGS optimization method to generate poses that
minimize this function.

The encoder, which we call the Twister, is composed of 32
TwistBlocks, each of which updates the internal represen-
tation of the ligand atoms and bonds, the protein binding
pocket at both the residue and atomic level, and interac-
tions between the ligand atoms with themselves, the protein
residues, and the protein atoms. After every other Twist-
Block, there is a residual connection; each of the hidden
features is summed with the features from two layers earlier.

The Twister encoder takes as input the ligand molecular
graph and a graph computed from the protein binding pocket.
The nodes in the ligand graph are the heavy atoms, labeled
with the element, formal charge, hybridization, number of
bonded hydrogens, and aromaticity; the edges are the bonds,
labeled with the bond order. Following previous studies
(Jing et al., 2021; Brocidiacono et al., 2022), the nodes in
the protein graph are the residues (labeled with the amino

acid), and an edge exists between them if their α-carbons
are within 10 Å. The edges in this graph are annotated with
the inter-α-carbon distances, encoded with Gaussian radial
basis functions (RBFs). The model also requires all the
pocket’s heavy atoms, annotated with both the atom element
and residue amino acid. The model initializes its learned
representation to embeddings from all these input features;
the ligand-ligand and ligand-receptor interaction features
are initialized to zeros. These representations are then fed
into the TwistBlocks.

The architecture of each TwistBlock is shown in Figure 1.
We use the EGATConv graph convolutions from DGL
(Wang et al., 2020) to update the ligand atom and protein
residue graph information. We use a variant of scaled-dot-
product attention (Vaswani et al., 2017) to pass information
between the residue-level and atomic-level representations
of the protein pocket. We use this same attention mechanism
to pass information to and from all the interaction represen-
tations. After all the graph convolutions and attention layers,
we use dense layers followed by layer normalization (Ba
et al., 2016) to finalize the update for each feature. We
use a LeakyReLU activation after each operation outlined
above.

We use the Twister encoder to produce coefficients Cijk

for each ligand-ligand and ligand-protein atom pair. We
can then use these coefficients to score any ligand pose.
For a given pose, we compute all the relevant inter-atomic
distances dij , and use the following equation to predict the
distance of each ligand atom i to its true position (D̂i).

D̂i =
∑
j

∑
k

Cijke
(dij−d̃k)

2

+ β (1)

Here β is a learnable bias and d̃k are 24 RBF reference
distances, evenly spaced from 0 to 32 Å. i indexes over
ligand atoms, j indexes over both ligand and protein atoms,
and k indexes over the RBFs.

When training, we predict the individual ligand atom dis-
tances D̂i directly. When inferring, we use the mean pre-
dicted distance 1

L

∑
i D̂i as the global score for a given pose

that we seek to minimize during inference.

2.2. Training

Following DiffDock, our training procedure consists of tak-
ing the ground-truth ligand pose of each complex and adding
increasingly large amounts of noise to its translation, 3D
rigid-body rotation, and torsional angles. We represent the
3D rotations as vectors pointed along the rotation axis whose
magnitude is the rotation angle.

We desire that, at the final timestep, the ligand is an essen-
tially “random” conformation within the pocket. We use 16
timesteps; at each timestep, we add Gaussian noise to the
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translation vectors, rotation vectors, and torsional angles.
We use a quadratic noise schedule with maximum standard
deviations of 4 Å for translation, 1.5 radians for the 3D
rigid-body rotation, and 2.5 radians for each torsional angle.

Once we have the noised the ligand poses, we compute the
distance of each atom to its position in the crystal structure.
Our model predicts these distances, and we use the mean-
squared-error (MSE) loss function when training. We note
that, when training, our model is given the protein pocket
from a different crystal structure than the ligand cognate
structure (but aligned to the cognate structure so the lig-
and pose is reasonable). This is done to ensure our model
performs well on cross-docking tasks.

2.2.1. DATASET PREPARATION

In order to follow the best practices for docking benchmark-
ing outlined above, we start with the CrossDocked 2022
dataset (Francoeur et al., 2020). This dataset already con-
tains ligand crystal poses aligned to the poses of cognate
receptors, so we can test cross-docking performance. We
use data splits aligned with those from the CrossDocked
paper so we can benchmark GNINA on complexes it wasn’t
trained on (see A.2.2). These splits were created by clus-
tering the pockets in the dataset according to their ProBiS
similarity score, a measure of structural similarity between
two pockets (Konc & Janežič, 2010). Following Brocidia-
cono et al. (2022), the binding pockets are defined to be the
set of all residues within 5 Å of any ligand co-crystallized
in that pocket. We filtered out all pockets with less than 5
residues or with bounding boxes greater than 42 Å on any
side.

2.3. Inference

To predict the ligand pose for a new protein-ligand com-
plex, we start by running the Twister encoder to produce the
score function coefficients from the pocket structure and 2D
ligand graph. We then use RDKit (noa) to generate a 3D
conformer and optimize it with the UFF force field (Rappe
et al., 1992). To generate a possible pose, we randomize the
torsional angles of the conformer and place the ligand in the
centroid of the binding site, rotated randomly and translated
by Gaussian noise. The centroid of the binding site is de-
fined as average coordinate of all the heavy atoms in the site.
We then use the L-BFGS optimizer to compute translation,
rotation, and torsional updates necessary to minimize the
scoring function. We generate 16 poses with this method
and return the one with the lowest final score.

3. Results
We benchmarked PLANTAIN on the CrossDocked test set
and compared the performance with GNINA and Vina. Fol-

Table 1. Performance of PLANTAIN, Vina, and GNINA on the
CrossDocked test set. The accuracies reported are averaged over
all the pockets in the dataset. The unnormalized accuracies are in
parentheses.

METHOD % <2 Å % <5 Å RUNTIME (S)

VINA 11.8 (14.4) 39.1 (36.9) 70.9
GNINA 21.5 (21.5) 50.0 (46.1) 51.2
PLANTAIN 21.4 (15.1) 68.0 (59.5) 4.9

Table 2. Performance of all models on the test set without the
DiffDock training proteins.

METHOD % <2 Å % <5 Å RUNTIME (S)

VINA 11.7 (15.6) 40.2 (37.9) 73.7
GNINA 21.5 (23.5) 51.7 (47.3) 51.6
DIFFDOCK 17.3 (11.6) 46.6 (35.4) 98.7
PLANTAIN 24.4 (15.2) 73.7 (71.9) 4.9

lowing prior convention, a pose is considered to be correct
if it is within 2 Å root-mean-square deviation (RMSD) of
the correct pose. We also report the accuracy within 5 Å
RMSD. To account for the large disparity in the number
of ligands per protein in the dataset, we report the average
accuracy per pocket in the dataset (in addition to the total,
unnormalized, accuracy).

In order to compare our method to DiffDock, we created a
subset of the test set without any proteins from the DiffDock
training set. We then run all the methods, including Diff-
Dock, on this set. We note that DiffDock is disadvantaged
in this benchmark because it is not given any knowledge of
the binding pocket.

The results are shown in tables 1 and 2. PLANTAIN per-
forms as well as GNINA, the previous state of the art, on 2
Å accuracy, and beats it considerably in 5 Å accuracy. Addi-
tionally, it runs ten times as fast. Intriguingly, PLANTAIN
does not do as well at unnormalized 2 Å accuracy (15.7% vs
21.4% normalized). This indicates that PLANTAIN strug-
gled on some pockets in the dataset with large numbers of
inhibitors, but performs well overall.

4. Discussion
In this paper, we present PLANTAIN, a docking method that
uses a novel neural network encoder to generate coefficients
for a very fast scoring function. This scoring function is
used to optimize an initially random ligand conformation.
We show, using best practices for benchmarking, that our
method achieves state-of-the-art accuracy while running
significantly faster than competing methods.
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There are many future directions to pursue. Most impor-
tantly, we desire to see how much PLANTAIN is able to as-
sist in virtual screening. We plan on combining PLANTAIN
pose prediction with GNINA’s binding affinity prediction in
order to test its effect on virtual screening benchmarks.

Additionally, the speed of PLANTAIN opens up many new
possibilities. Previously, researchers have avoided flexible
docking (wherein some or all of the protein residues are also
able to move) because of performance concerns. It remains
to be seen if PLANTAIN’s fast scoring method is amenable
to flexible docking.

Overall, PLANTAIN improves the state of the art in pose
prediction, and there are clear directions for future improve-
ment. We hope that this method will be useful in future
drug discovery scenarios. Full source code for training and
evaluating PLANTAIN is available at https://github.
com/molecularmodelinglab/plantain.
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PLANTAIN

A. Appendix
A.1. Training details

PLANTAIN was trained for 67 epochs with a learning rate of 10−4 on a single NVIDIA GeForce GTX TITAN X GPU. We
used the model saved on the 33rd epoch because it achieved the highest validation accuracy.

When training, we used a custom batch sampler to account for the fact that the protein-ligand complexes took up variable
amounts of memory. Our sampler greedily adds complexes to the current batch until B ·R ≥ 120, where B is the proposed
batch size and R is the maximum number of receptor pocket residues in the batch.

A.2. Benchmarking details

A.2.1. RUNNING VINA

In order to run AutoDock Vina, we prepared each ligand with Meeko (Durant, 2022) and each receptor with OpenBabel
(O’Boyle et al., 2011). Following Brocidiacono et al. (2022), we used a bounding box that contained all the known ligands
for that pocket with 4 Å padding on all sides.

A.2.2. RUNNING GNINA

We ran GNINA using the same bounding boxes as Vina. We also used an ensemble of 5 models from Francoeur et al. (2020)
that were not trained on the CrossDocked set data (by default, GNINA uses an ensemble of models that were trained on the
entire CrossDocked set).

A.2.3. CALCULATING RUNTIMES

We timed all the models on a laptop with an NVIDIA GeForce RTX 2060 Mobile GPU, using a single CPU thread. We note
that Vina did not utilize the GPU.


