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Abstract
This study builds upon the promising diffusion
models for protein backbone generation, address-
ing their limitation in guiding the generation with
sequence-specific attributes and functional prop-
erties. To overcome this, we present Antibody-
SGM, a novel joint structure-sequence diffusion
model that enables the joint generation of pro-
tein sequences and structures. Our model starts
from random sequences and structural features,
and iteratively denoises to generate valid pairs of
sequences and structures, resulting in full-atom
native-like antibodies. Antibody-SGM demon-
strates its versatility by designing full-atom an-
tibodies, antigen-specific CDR design, antibody
optimization, validation with Alphafold2, and key
antibody sequence and structural features. By
allowing simultaneous optimization of both se-
quence and structure, Antibody-SGM opens new
possibilities for designing functional proteins with
precise sequence and structural attributes, pro-
viding a pathway for protein function optimiza-
tion through active inpainting learning. These
advancements showcase the potential of our ap-
proach in protein engineering and expand the ca-
pabilities of protein design models.

1. Introduction
Antibodies are Y-shaped proteins utilized by the immune
system to identify and neutralize foreign objects, such as
pathogens (Litman et al., 1993). Their high specificity and
affinity make antibodies excellent therapeutic candidates for
targeting disease-related molecules. Antibodies consist of
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two identical heavy chains and two identical light chains,
with Complementarity Determining Regions (CDRs) play-
ing a key role in antigen specificity. Designing therapeutic
antibodies is challenging due to their complex structures,
functionalities, and antigen specificities.

Traditional experimental methods for antibody design are
time-consuming and impractical for large-scale screening,
prompting the exploration of deep generative models as an
efficient alternative (Strokach & Kim, 2022). Recent deep
generative models for antibody design have emerged in two
folds: sequence design using language models (Shin et al.,
2021; Saka et al., 2021) and structure models to generate
antibody backbones (Eguchi et al., 2022). However, these
sequence-based or structural-based methods are largely lim-
ited in that they are unable to generate full-atom structures
and cannot create antibodies for specific antigen structures.

To be effective in antibody design, a model should jointly
generate both sequence and structure by modeling their de-
pendencies, and be antigen-specific, with a particular focus
on CDR generation to optimize existing antibodies. To ad-
dress these challenges, this study proposes a score-based
generative diffusion model for antibody design (Antibody-
SGM) which co-designs sequences and structures of the an-
tibody heavy-chain upon previous work (Yang et al., 2020;
Lee et al., 2023). We also propose the Markov chain Monte
Carlo (MCMC) technique for calibrating the generated sam-
ples. We further extend our method to antigen-specific con-
ditional CDR generation and compare our results with the
state-of-the-art Diffab model (Luo et al., 2022), demonstrat-
ing the effectiveness of Antibody-SGM. These contributions
advance the field of generative models for antibody design
and provide researchers with new tools for developing ther-
apeutic antibodies with improved functionalities.

2. Methods
We developed a score-based diffusion model that performs
both structural and sequence generation for antibodies, elim-
inating the need for additional design steps. Antibodies
were represented using image-like representations, where
the heavy chain was encoded as a concatenated vector of
one-hot encoded sequences and structure information us-
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Figure 1. Antibody representation and flowchart. A) Encoded features to represent antibody heavy chain using one-hot encoded primary
sequence and structural features (6D coordinates). The structral features include Cβ-Cβ distances, ϕ, ψ, and ω angles. B) Encoded
features to represent bounded antibodies (antibodies with antigens). Antigens are represented using epitopes (showing red). An additional
label channel is added to distinguish epitopes (red boxes) and antibodies. C) The score-based diffusion model is trained to generate
realistic antibody samples from noise by learning a reverse ”denoising” process given the forward diffusion process that maps data to
Gaussian noise. The generated structral features and protein primary sequences are passed to Rosetta as the constrained minimization to
generate full-atom antibodies. D). The antigen-specific CDR inpainting model flowchart. This flowchart is an illustration of how CDR
inpainting works. The red boxes are the masking regions (H1, H2, or H3), showing as the white regions in encoded matrices. Given those
unmasked information, the CDR inpainting model is trained to generated the plausible CDR regions tailored to the specific antigen.

ing inter-residue 6D coordinates (Fig 1 A). As shown in
Fig S1, those structural features include Cβ-Cβ distances,
torsional angles, and planar angles, fully defining the anti-
body backbone (Yang et al., 2020). A merged vector with
both the structural features and one-hot encoding sequence
represented a single chain of antibody structure.

We leverage the score-based generative modeling framework
of Song et al. (2020), modeling the perturbation process of
the antibodies with the following SDE:

dxt = µ(xt, t)dt+ g(t)dWt, (1)

where xt is the perturbed antibody at time t, µ(·, t) is the
drift coefficient, g(t) is the diffusion coefficient, and Wt is
the standard Wiener process.

Then the reverse-time diffusion process can be derived as
follows (Anderson, 1982; Song et al., 2020):

dxt=
[
µ(xt, t)− g(t)2∇xt

log pt(xt)
]
dt̄+ g(t)dW̄t, (2)

where pt is the marginal density of the perturbation process,
t̄ is an infinitesimal negative time step. In order to use this
process as a generative model, we train a score network
to approximate the score function with the score matching
objective (Hyvärinen & Dayan, 2005; Song et al., 2020).

We illustrate our framework that learns to generate struc-
tural features and sequences in Fig 1 C. We use the U-Net
architecture (Lin et al., 2017) for the score network, and the
generated structural constraints and sequences were used in
Rosetta minimization to obtain the final full-atom structures,
which we describe in detail in Appendix 1.1.

To apply our model for antigen-dependent antibody gener-
ation and optimisation, we developed a conditional CDR

inpainting model that is specifically tailored to the antigen
of interest. We use epitopes to represent the antigen infor-
mation, which is defined as the antigen residues staying
within 5 Å distance with the CDR regions. The epitopes
and the antibody complex are encoded using the same struc-
tural features and sequence features with an additional label
channel that distinguishes them (Fig 1 B). Similar to image
inpainting, our work uses the surrounding context to gener-
ate CDR regions, as visualized in Fig 1 D. Our model could
generates different plausible estimations of the missing H1,
H2, and H3 regions. The CDR inpainting framework offers
a valuable tool for designing antibodies with improved bind-
ing properties, reducing the time and cost associated with
traditional experimental methods.

3. Results
In this section, we extensively validate the effectiveness
of our framework on the generation of antibodies through
diverse experiments.

3.1. Dataset

The datasets were obtained from abYbank/AbDb/SAbDab,
which are popular datasets containing antibody sequence
and structure data (Choi & Deane, 2010; Dunbar et al.,
2014). For the unconditional generation experiments, we
use the dataset which consists of antibody heavy-chain do-
mains with structures ranging from 89 to 128 residues. To
fit the fixed input size of our model (128 residues), struc-
tural padding was applied using RosettaRemodel (Huang
et al., 2011). For the conditional generation experiments,
the CDR-specific inpainting model was trained on antigen-
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Figure 2. Results analysis. A) Sequence identity between 10k generated samples and real data. B). The Rosetta score distribution
regarding generated samples. C) RMSD between generated samples and closet structural matching training set. D) H3 sequence identities
for generated data. E) H3 length distribution for generated data and training data. F) MCMC test results regarding the RMSD distributions
for all 11 test cases. G) TSNE regarding full sequences between all training data and 10k generated data. H) TSNE regarding H3
sequences. I). Sequence distribution for unmasked seq channels using random 1280 noises J). Sequence distribution after masking seq
channels K). Structural parameter distributions (Cβ-Cβ) regarding masked or unmasked seq channels. L) Structural comparisons between
100 random-selected samples with alphafold2. The sequence of each generated sample is given to Alphafold2 for structure predictions.
RMSD is calculated between the diffusion-generated samples and corresponding Alphafold2 predictions. M) Structural cluster. The
RMSD is utilized as the distance matrix and each data is represented as the RMSD vectors with other samples. The UMAP is implemented
for dimensionality reduction. N) Structural cluster. The clusters (M) are separated using DBSCAN into 10 clusters. O) Top: H2 Sequence
logo from cluster 6 (showing red in N). H2 canonical sequences are from (North et al., 2011) Bottom: H1 Sequence logo from cluster 8
(showing purple in N) H1 canonical sequences are from (Gaudreault et al., 2022)

antibody complexes, and the padding was not necessary as
the framework regions were provided.

3.2. Unconditional generation

Results analysis. To verify that our Antibody-SGM is able
to generate valid pairs of the structures and sequences, we
generate 10,000 synthetic heavy-chain antibody structures
with our Antibody-SGM. Fig S2 demonstrates that the dis-
tribution of the generated antibodies closely resembles the
distribution of encoded structural parameters in the training
data. Fig 2 A shows that the majority of the generated data
exhibits over 65% sequence identity compared to the real
data, indicating a high degree of homology. Further, as
shown in Fig 2 B, we can observe that the majority of the
generated structures have Rosetta scores below -250 REU,

which shows that the generated structures are reasonable
and clash-free. Additionally, we conducted sequence and
structural analyses on the H1, H2, and H3 regions based on
the Chothia definition, and the results are visualized in Fig 2
C-E and Fig S3. These analyses show significant similarity
in both sequences and structures between the generated data
and the training data for each individual H1, H2, and H3
region. The results confirm that Antibody-SGM is capable
of generating diverse and high-quality antibodies through
the joint generation of structures and sequences, particularly
in these critical regions.

Clustering analysis. We conducted sequence and structural
clustering analyses on both the generated and training data.
For sequence clustering, t-Distributed Stochastic Neighbor
Embedding (t-SNE) was applied to the 10,000 generated
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sequences and training sets on the full and CDR regions. As
shown in Fig 2 G-H and Fig S3, the generated sequences
are clustered with the training data, demonstrating similar
characteristics and greater diversity compared to the train-
ing data. For structural clustering, we utilized RMSD as
the distance matrix and randomly selected 500 generated
samples and 500 real data. Uniform Manifold Approxima-
tion and Projection (UMAP) was used for dimensionality
reduction. The results of Fig 2 M-O show a similar dis-
tribution between generated and real structures, supported
by 10 identified clusters using Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN). Especially,
by analyzing cluster 6 and cluster 8, we observe similar
sequence distributions in H1 and H2 regions. Comparison
with canonical sequences (H1-13-1 and H2-10-1) confirms
the similarities in the generated sequences.

Learning structural and sequential dependencies. To
explore the flow of information between the sequence and
the structure channels, we conduct an analysis by separately
masking the channels. As shown in Fig 2 I-K, masking the
structural channels has a significant impact on the generated
sequences, resulting in decreased sequence similarity and
diversity compared to the previous results without mask-
ing. The results indicate that structural information plays
a crucial role in guiding the generation of sequences and
that the generation of sequences is heavily dependent on
the underlying structural features. On the other hand, mask-
ing the sequence channels has less impact on the generated
structural features, which suggests that the structural infor-
mation has a stronger influence on the generation of the
antibodies. Additionally, we can see that masking either
the sequence or structural channels leads to more concen-
trated distributions and reduced diversity in the generated
samples. This observation emphasizes the importance of
jointly generating both sequences and structures for diverse
and high-quality antibodies. Overall, our analyses highlight
the significance of incorporating both sequence and struc-
tural information in diffusion models for the generation of
the antibodies and further validate the necessity of the joint
generation of sequence and structure.

Leveraging MCMC. In particular, we assess the model
performance using MCMC for sampling. we select the anti-
body structures that significantly differ from the training set
(over 3.5 rmsd) and evaluate the model’s ability to generate
novel antibody structures by optimizing the RMSD. The
results in Fig 2 F. Besides, we observe a predominant nega-
tive Pearson values when comparing RMSD and sequence
similarities in most test cases, although our optimization
focused solely on structural differences. This indicates that
our model has effectively learned the dependencies between
sequence and structure.

Validations with Alphafold2. To validate the quality of the

generated samples, we select 100 random sequences among
the 10,000 generated samples and evaluated them using
AlphaFold2 (Jumper et al., 2021). The resulting structures
were compared to the originally generated structures and
the degree of alignment was evaluated based on RMSD
values. The results (Fig 2 L) show a strong match between
the AlphaFold2 predictions and the generated samples, with
over 70% of the full structures exhibiting RMSD values
below 2. Fig S5 visualizes the RMSD distributions for
the H1, H2, and H3 regions. These results verify that the
generated samples of our Antibody-SGM are of high quality,
and further suggest that our framework has the potential to
be an effective tool for generating novel antibodies with
both high accuracy and precision.

3.3. Antigen-specific CDR generations

Antigen-specific CDR generations and optimizations.
Lastly, we evaluate our framework on antigen-specific CDR
generations. We excluded the native CDR from the antibody-
antigen complex and examined the sequence and structure
of the removed segment. We removed antigen-antibody
complex in the test set that exhibited over 50% H3 sequence
similarity to the training set and we prepared in total 11 test
cases. For each test case, we generate 96 samples per CDR
and compare our results with the state-of-the-art model, Dif-
fAb (Luo et al., 2022). Table 1 demonstrates that our method
outperforms in sequence recovery rate for H1 while showing
competitive results for IMP (i.e., the percentage of designed
CDRs with lower (better) binding energy than the original
CDR) in H2 and H3 regions. We note that the results of
DiffAb were obtained by using their provided saved weights
which may have been overfitting. Overall, our benchmark
test results validate the effectiveness of our framework in
generating diverse and high-quality CDR regions.

CDR Method RMSD Seq Recovery IMP
H1 DiffAb 1.119 0.520 42.9%
H1 Ab-SGM 1.183 0.639 42.8%
H2 DiffAb 0.836 0.384 28.7%
H2 Ab-SGM 1.176 0.377 20.0%
H3 DiffAb 2.963 0.206 17.5%
H3 Ab-SGM 3.083 0.191 12.9%

Table 1. Evaluation of the generated antibody CDRs by DiffAb
and our Antibody-SGM (Ab-SGM).

Figure 3. Examples of CDR-H3 designed by our antigen-specific
CDR model with their binding energy (∆G), co-designed se-
quences and structures. The antigen-antibody template is derived
from PDB: 6nn3.
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4. Conclusion
In conclusion, this study presents a score-based generative
diffusion model that effectively addresses the challenges in
antibody design by considering both sequence and structure.
The model demonstrates the ability to generate native-like
full-atom structures and optimize existing antibodies. It
incorporates antigen-specificity, particularly in CDR genera-
tion, and introduces CDR inpainting models for optimizing
CDR regions for specific antigens. By leveraging image-
like representations, the model merges structure and se-
quence encodings, enabling the simultaneous generation of
merged discrete and continuous data. The results highlight
the model’s potential in generating diverse and high-quality
antibody sequences and structures, with implications for
drug discovery and medical applications. Further research
and experimental validation are necessary to optimize the
model for specific purposes and validate the generated se-
quences and structures. Overall, the study contributes to
advancing the field of antibody design by proposing a novel
approach that combines sequence, structure, and antigen
specificity in a generative model.
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Appendix - AntibodySGM
1.1 the Score-based generative modeling

The score-based generative modeling (SBGM) was first introduced by Song et al. and it is also used in

this paper. The forward process or sampling process generates the random variable x_t by simulating the

SDE over time, starting from an initial value . The initial value is corrupted with Guassian noise𝑥
0   

𝑥
0   

during the forward process resulting in perturbed samples . The forward process of the SBGM can be𝑥
𝑡   

described by the following SDE:

 𝑑𝑥
𝑡   

= µ(𝑥
𝑡
 , 𝑡)𝑑𝑡 + 𝑔(𝑡) 𝑑𝑊

𝑡
 

where is the perturbed sample at time t, is the drift coefficient, is the diffusion𝑥
𝑡   

µ(𝑥
𝑡
 , 𝑡) 𝑔(𝑡)

coefficient, and is a standard Wiener process that represents the random fluctuations in the system.𝑊
𝑡
 

The backward process refers to the process of generating a sequence of denoised samples that results in

a clean sample in reverse order, conditioned on a target observation sequence. The backward process is

derived from the forward process by using the gradients of the log-likelihood with respect to the model

parameters, i.e. the score function. Given a forward SDE, a corresponding reverse-time SDE can be

modeled by the following SDE:

𝑑𝑥
𝑡
 = µ(𝑥

𝑡
 , 𝑡) − 𝑔(𝑡)2∇

𝑥
𝑡 

𝑙𝑜𝑔 𝑝
𝑡
( 𝑥
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 )⎡

⎢
⎣

⎤
⎥
⎦
 𝑑𝑡 +  𝑔(𝑡)𝑑𝑊

𝑡

Where is the score function, σ(t) is the diffusion coefficient, and is the standard Wiener∇
𝑥

𝑡 

𝑙𝑜𝑔 𝑝
𝑡
( 𝑥

𝑡
 ) 𝑊

𝑡

process.

The score function captures how the log-likelihood of the perturbed sample changes during the𝑥
𝑡   

forward diffusion process. By computing the score function, we can determine the direction and

magnitude of the gradient of the log-likelihood with respect to , which in turn determines the drift term𝑥
𝑡   

in the reverse-time SDE. This score function is usually estimated using a neural network. In this work, we

used the UNet-based architecture with attention module to estimate the score.

Variance Exploding SDE (VESDE) is a type of SDE that has been proposed as a more efficient

alternative to traditional SDEs for use in score-based generative models. The goal of this diffusion

process is to increase the variance of the noise in the SDE to prevent the samples from collapsing to a



low-dimensional subspace. The Variance Exploding SDE is a specific type of the original SDE which has

a tractable reverse process, where the drift coefficient of the forward process does not affect the process.

The forward process of VESDE takes the following form:

 𝑑𝑥
𝑡   

= 𝑑[σ2(𝑡)]
𝑑𝑡  𝑑𝑊

𝑡
 

The ODE solvers are used to numerically solve the probability flow ODE corresponding to the

VESDE. The ODEs describe the dynamics of the latent variables over time, and can be used to generate

samples by simulating the dynamics from a given initial value. This involves discretizing the SDE over

time and solving it using an ODE solver. The output of the ODE solver is a sequence of discrete samples

that approximate the continuous-time trajectory of the SDE.

𝑥
𝑡+𝑑𝑡   

= 𝑥
𝑡

− 𝑔(𝑡)2𝑠
θ
(𝑥

𝑡
, 𝑡) 

where is the score function estimated by a neural network.𝑠
θ
(𝑥

𝑡
, 𝑡)

We simulate the reverse diffusion process by solving the corresponding probability flow ODE, which is

the deterministic process with trajectories that share the same marginal probability with the original SDE.

We use an ODE solver based on the Euler method in order to numerically solve the corresponding

probability flow ODE through time backward. This gives a sequence of denoised samples which results in

a clean data sampled from the desired data distribution.

Full-atom generation using Rosetta minimizations. The model generates 6d coordinates working as

structural constraints and the one-hot vectors for the protein primary sequence. This information is passed

into the Rosetta minimizations protocol to generate final full-atom structures. To achieve this, we

utilized a HARMONIC function for d and ϕ, and a CIRCULARHARMONIC function for ω and θ. This

approach allows for the generation of reproducible structures using a set of 6D coordinates and the fixed

protein sequences, while also ensuring that the constraints are relaxed enough to produce realistic

structures. Rosetta minimizations would convert those constraints and primary sequences into plausible

solutions of full-atom antibody structure.



Figure S1: The structural features used in our model (Inter-residue 6D coordinates): d (CB-CB distance), ω, θ, φ between

any two residues.

A. B. C.

D. E. F.

Figure S2: 6D coordinate, sequence and Rosetta analysis. (A-D) 10k samples were generated with the model and compared to

features in the training set. d,ω,θ, and φ distributions of true (blue) vs generated (orange) samples show significant overlap,

suggesting that the model has learned native-like constraints of inter residue 6D coordinates. (E). Sequence identity between 10k

generated samples and real data. (F). The Rosetta score distribution regarding 10k generated samples.
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D. E. F.

G. H. I.

J. K, L.

Figure S3. Sequence identity regarding 10k random generation. Sequence identity is calculated by highest matching with
training data. H1, H2, H3 are captured using chothia definition. A H1 sequence identity. B.) H2 sequence identity. C.) h3
sequence identity. D-I): CDR length distributions and seq logo. CDR length distributions btw 10k generated data and training
sets, as well as the seq logo with the most frequent length. J-L). RMSD distribution by best matching with training data.



A. (Full seq) B. (H1 seq)

C. (H2 seq) D. (H3 seq)

Figure S4: Sequence analysis regarding 10k random generation and all training sets using TSNE. TSNE is implemented
between all training data (5k heavy chains) and 10k generated data. H1, H2, H3 are captured using chothia definition. A.) TSNE
in full sequence. B.) H1 sequence. C.) TSNE in H2 sequence identity. D.) TSNE in h3 sequence.

A. B. C.

Figure S5. Structural comparisons between 100 random-selected samples with Alphafold2. The sequence of each generated
sample is given to Alphafold2 for structure predictions. RMSD is calculated between the diffusion-generated samples and
corresponding Alphafold2 predictions. A.) H1 regions. B.) H2 regions. C.) H3 regions


