
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

HiC2Self: Self-supervised Hi-C contact map denoising
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Abstract

We propose HiC2Self, a self-supervised method
for denoising Hi-C contact maps that needs only
low coverage data for training and imputes high
coverage interaction count data that can be used
for downstream analyses. Using a self-denoising
framework based on Noise2Self, we designed a
unique mask structure tailored for Hi-C contact
maps and adopted a negative binomial loss func-
tion in order to directly process the raw count ma-
trix without additional normalization or recovery
steps. By training on multiple resolutions simulta-
neously, HiC2Self is able to capture global and lo-
cal contact structures. We find our self-supervised
method is competitive with or outperformed exist-
ing supervised Hi-C denoising algorithms while
providing greater ease of use, as well as having
the potential to be applied to single-cell Hi-C data.

1. Introduction
Hi-C is a genome-wide chromatin conformation capture
assay that is used to study 3D genomic organization. Hi-
C paired-end sequencing data produces a contact matrix
between genomic bins that reveals principles of chromatin
folding at resolutions, such as A/B compartments when
data is binned at megabase scale and topologically associat-
ing domains (TADs) for 10-50kb bins (Szabo et al., 2019).
Intra-chromosomal Hi-C contact maps are usually visual-
ized by a symmetric heatmap, where x and y coordinates
indicate genomic locations along the chromosome, and each
pixel shows the strength of chromatin interaction (normal-
ized read count) between the corresponding bins. High-
resolution Hi-C contact maps require generation of multiple
replicate libraries and extremely high sequencing coverage
(1-2B reads), incurring considerable costs. Contact maps
generated from libraries with only shallow sequencing have
high noise due to sparsity.
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Given the success of deep learning technology for image de-
noising and super-resolution, several groups have designed
supervised deep learning models to ”denoise” Hi-C contact
maps. HiCPlus (Zhang et al., 2018) and HiCNN (Song et al.,
2018) use convolutional neural networks to predict high cov-
erage 2D contact maps from low coverage or downsampled
contact maps in the same cell type. hicGAN (Liu et al.,
2019), DeepHiC (Hong et al., 2020) and HiCSR (Dimmick
et al., 2020) all use generative adversarial networks (GAN)
to impute high resolution data, with DeepHiC and HiCSR
employing loss functions specifically tailored to Hi-C data.
These supervised approaches all require paired low-/high-
coverage Hi-C data to train the model, which can then be
applied to other cell types where only low-coverage data are
available. Existing approaches also normalize and prepro-
cess Hi-C input data to fit the training framework, which
typically requires an additional post-prediction recovery pro-
cedure to reconstruct a genome-wide matrix for downstream
analysis.

In this study, we present HiC2Self, a self-supervised Hi-
C denoising model that only requires low-coverage Hi-C
data for training and can be applied directly to raw count
matrices without normalization steps. The self-supervision
framework is based on Noise2Self (Batson & Royer, 2019),
with a mask structure and negative-binomial loss function
designed for Hi-C raw count matrices.

2. Method
2.1. Data Preparation

High coverage Hi-C data sets are generated by sequenc-
ing multiple libraries and aggregating read counts across
libraries. To obtain low-coverage Hi-C training data, we
generated a contact map from a single library and evaluated
performance against the aggregated multi-library map. Intra-
chromosomal Hi-C raw count contact maps were generated
without normalization. For each chromosome in the low-
coverage dataset, we further extracted equal-sized square
submatrices along the diagonal, representing genomic in-
teractions up to 1Mb in linear distance. These symmetric
submatrices X are used as the training set for our model.
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2.2. Self-supervised framework

Noise2Self (Batson & Royer, 2019) is a self-supervised de-
noising framework that uses J -invariant functions f , where
J represents a partition of the input data dimensions m into
subsets, and we consider a subset J ∈ J and its comple-
ment JC . Given an unseen clean signal y ∈ Rm, we assume
that x is a mean-zero noisy observation, where E[x|y] = y.
For any fixed subset J , we further assume that a noisy ob-
servation on subdimension xJ is independent of the one on
its complement xJC given y. With these two assumptions, a
function f : Rm → Rm is defined as J -invariant if f(x)J
is independent of xJ for every J ∈ J .

The ordinary denoising loss function is defined as

Lf = Ex,y||f(x)− y||2

= Ex||f(x)− x||2 + ||x− y||2 − 2〈f(x)− x, x− y〉

which is the sum of a self-supervised loss and the variance
of the noise. With a J-invariant function f and the previous
assumptions, this simplifies to

L(f) =
∑
J∈J

E||fJ(xJC )− xJ ||2

so that the denoising function f can be optimized using only
noisy observations x.

The J -invariance property is realized using masks. We
denote the masked area as xJ and the unmasked area as
xJC . Given the symmetric nature of Hi-C contact maps and
the requirement that xJ ⊥⊥ xJC |y, we designed masks that
are symmetric with respect to the diagonal.

The self-supervised training scheme is shown in Figure 1A.

2.3. Multi-resolution training

As introduced in Section 1, Hi-C contact maps can be binned
into different resolutions, which provides diverse insights of
chromatin folding structures. Therefore, training HiC2Self
on multiple resolutions simultaneously to capture both local
and global information of 3D structure has become a nat-
ural choice. Define function g : Rm → Rm

2 as resolution
degradation. For each resolution, HiC2Self is trained to min-
imize the loss between gJ(x) and gJ(f(xJC )). We trained
HiC2Self at four different resolutions simultaneously.

By incorporating multiple resolutions into the training pro-
cess, HiC2Self can effectively capture the intricate details
of local chromatin interactions as well as considering the
broader, global genomic associations. This approach greatly
improves the signal recovery ability of HiC2Self, especially
on sparse single-cell Hi-C data. Multi-resolution training
approach is shown in Figure 1B.

Figure 1. Training framework and model architecture

2.4. Model architecture

HiC2Self uses a simple convolutional neural network
(CNN), as shown in Figure 1C. Within the model, raw
count input matrices X were first log2-transformed (X ′ =
log2(XJC + 1)) in order to guarantee numerical stability
for subsequent steps.

Singular value decomposition (SVD) and low-rank recon-
struction is a classic approach for 2D image compres-
sion and denoising. In order to enhance the low-rank
structures extracted from low-coverage submatrices in the
log2-transformed space, we performed SVD on the log2-
transformed matrices X ′ = UΣUT , generated reconstruc-
tions X ′

k =
∑k

i=1 uiΣiu
T
i using the top k eigenvectors,

k ∈ [1, 4], and concatenated these matrices with X ′ as
additional input channels for the CNN.

The convolutional part of the model consists of five equal-
sized convolutional layers, where each of the first three
layers is followed by ReLU activation functions. An expo-
nential function was used as the activation function for layer
4 and 5 in order to transform output values back into raw
count space.

2.5. Loss function

2.5.1. DENOISING BULK HI-C

Inspired by the deep count autoencoder (DCA) model for
single cell data (Eraslan et al., 2019), we used a negative
binomial loss for the raw count matrices to train our model.
We assume that count from each bin (xij) of the contact map
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X follows a negative binomial distribution with parameters
µij and θij , xij ∼ NB(µij , θij). The loss function is
defined as

L(f)

= −logLNB

=
∑

(logΓ(x+ 1) + logΓ(θ)− logΓ(x+ θ)+

θlog(
µ+ θ

θ
) + xlog(

µ+ θ

µ
))

As shown in Figure 1B, HiC2Self outputs two channels,
corresponding to µ and θ in the loss function above. We use
µij , the expected value for each bin xij , as the predicted
value for our denoising results.

2.5.2. APPLICATION ON SINGLE-CELL HI-C

Due to the highly sparse nature of single-cell data, employ-
ing a likelihood-based loss function poses challenges when
training HiC2Self. To address this issue, we incorporated an
alternative training function by applying structural similarity
(SSIM) loss during the training of HiC2Self on single-cell
Hi-C. SSIM is a perceptual loss metric that measures the
structural similarity between two images. It takes into ac-
count information about luminance, contrast, and structural
similarity, making it potentially more robust to sparse tar-
gets.

2.6. Genome-wide prediction

HiC2Self produces denoised results as raw counts, which
can easily be assembled into a whole-chromosome predic-
tion. To do this, we extracted submatrices along the diago-
nal, consecutively striding by one bin each time. Denoised
results were generated for each submatrix, and predicted
counts for overlapping submatrices were averaged. The re-
sulting predicted high coverage results were saved as a .hic
file using Juicer tools (Durand et al., 2016) for downstream
analysis.

3. Experiments and Results
3.1. Data Preparation

Bulk Hi-C data. HiC2Self was trained and evaluated
on real low- and high-coverage Hi-C data as described
above. Low-/high-coverage raw count matrices for the EN-
CODE GM12878 cell line were downloaded from GEO
(GSE63525 (Rao et al., 2014)). A single low-coverage li-
brary (experiment HIC001) with 2.5M reads was used as
low-coverage data to train the model, and pooled primary
libraries with 3.5B reads (low/high ratio = 1/18) was used
as high-coverage Hi-C data to evaluate model performance.
Raw count data were downloaded in .hic format and further
binned at 10kb resolution matrix using Juicer (Durand et al.,

2016). Equal-sized (100× 100) submatrices were extracted
along the diagonal from intra-chromosomal low-coverage
Hi-C contact maps to train the model.

Single-cell Hi-C data. Single-cell Hi-C contact maps
were downloaded from GEO (GSE49262 (Nagano et al.,
2013)). Contact maps of chromosome 1 from each cell
are binned at 1Mb resolution, and equal-sized (198× 198)
submatrices were used for training.

3.2. Denoising on bulk Hi-C

We first evaluated the prediction performance on bulk Hi-
C using the low-coverage library (2.5M reads), and the
distance-adjusted Pearson correlation of each chromosome
with unseen high-coverage library (3.5B reads) is shown in
Figure 2A. HiC2Self was trained with only low-coverage
contact maps for each chromosome. Both low- and high-
coverage maps are binned into 10kb resolution, and up to
1M distance from the diagonal are recovered using HiC2Self.
Bar plot shows the mean and standard deviation of Pearson
correlation from each genomic distance of chromosome
1-22. Red bars show the correlation between low- and high-
coverage maps; green bars show the correlation of another
high-coverage biological replicate (1.8B reads) with the
ground truth (3.5B reads), and blue bars show the perfor-
mance of HiC2Self recovered maps. Using a single library
with less than 0.1% reads, HiC2Self is able to recovery
comparable performance to biological library.

Figure 2. HiC2Self performance on bulk Hi-C

In order to validate our model framework and compare
with previously published methods, we also trained our
model using mean squared error on normalized data (log2-
transformation followed by min/max rescaling to produce
values between -1 and 1). The supervised model hicGAN
was trained on 5,000 submatrices extracted from paired
low-/high-coverage Hi-C data, with chromosome 3, 8, 12
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held out for testing. We again use Pearson correlation per
genomic distance with high-coverage data as the metric for
evaluation and found comparable performance to hicGAN
(Figure 2B).

We also use TAD caller TopDom (Shin et al., 2016) to evalu-
ate the performance of recovered maps on downstream anal-
ysis. Figure 2C shows the comparison of low-coverage map
(top), HiC2Self recovered map (middle) and high coverage-
map (bottom). Dashed blue lines are showing the TAD
calls from each contact map. HiC2Self provides consistent
results with the high-coverage library.

Since HiC2Self is a self-supervised denoising method, it
could be easily applied to different cell types without gen-
eralization problems. Figure 2D shows a comparison of
GM12878 (top row in each panel), K562 (middle row),
and the absolute difference between the two cell types (bot-
tom row). Low-coverage data are shown on the left, with
HiC2Self recovery in the middle, and high-coverage on the
right. We can see from the absolute difference map that
HiC2Self can differentiates well for different cell types.

3.3. Denoising on single-cell Hi-C

In additional to bulk Hi-C libraries, we also explored the
application of HiC2Self on single-cell Hi-C data. Figure 3
shows the single-cell contact map of chromosome 1 from an
example cell. From left right: 1Mb resolution, sum-pooling
to 2Mb resolution, further sum-pooling to 4Mb resolution,
and 8Mb resolution. Figure 3A shows the raw contact map
of the example cell at four resolutions, and Figure 3B shows
the corresponding HiC2Self recovered maps.

Figure 3. HiC2Self recovery of single-cell Hi-C

By training with multiple resolution, HiC2Self is able to
capture both local and global structures from the single-cell
contact map, and recovery signals.

Model availability
Data preparation pipeline and model scripts are available at
github.com/ruy204/HiC2Self.
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