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Abstract

Supervised dictionary learning (SDL) is a popular
machine learning method that tackles the tasks of
feature extraction and classification tasks simul-
taneously, which are not necessarily inherently
aligned. Training an SDL model involves solving
a non-convex and possibly constrained optimiza-
tion with at least three blocks of parameters. In
this paper, we provide a novel framework that
‘lifts’ SDL as a low-rank matrix estimation prob-
lem in a combined factor space and propose an
efficient algorithm that provably converges expo-
nentially fast to a global minimizer of the objec-
tive with arbitrary initialization. Our framework
applies to a wide range of SDL-type problems for
multi-class classification with the inclusion of pos-
sible auxiliary covariates. We demonstrate that
our algorithm successfully identifies discrimina-
tive gene groups that include well-known cancer-
associated genes.

1. Introduction

In classical classification models, such as logistic regression,
the conditional class-generating probability distribution is
modeled as a simple function of the observed features with
unknown parameters to be trained. However, the raw ob-
served features may be high-dimensional, and most of them
might be uninformative and hard to interpret (e.g., pixel
values of an image). Therefore, it would be desirable to
extract more informative and interpretable low-dimensional
features prior to the classification task.

A classical unsupervised feature extraction framework is
called dictionary learning (DL), a machine-learning tech-
nique that learns latent structures of complex datasets and is
regularly applied in the analysis of text and images (Elad &
Aharon, 2006; Mairal et al., 2007; Peyré, 2009). Extensive
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research has been conducted to adapt dictionary learning
models to perform classification tasks by supervising the dic-
tionary learning process using additional class labels. Note
that dictionary learning and classification are not necessarily
aligned objectives, so some degree of trade-off is necessary
when seeking to achieve both goals simultaneously. Su-
pervised dictionary learning (SDL) provides systematic ap-
proaches for such multi-objective tasks (Mairal et al., 2008;
Austin et al., 2018; Leuschner et al., 2019; Ritchie et al.,
2020). SDL has been widely applied in diverse research
domains, demonstrating its versatility and effectiveness. For
instance, it has been successfully applied in speech and
emotion recognition (Gangeh et al., 2014), music genre clas-
sification (Zhao et al., 2015a), concurrent brain network
inference (Zhao et al., 2015a), structure-aware clustering
(Yankelevsky & Elad, 2017), and object recognition (Li
et al., 2019). See the survey (Gangeh et al., 2015) on SDL.

Various SDL-type models have been proposed in the past
two decades. We divide them into two categories depend-
ing on whether the extracted low-dimensional feature or
the feature extraction mechanism itself is supervised. We
refer to them as “feature-based” and “filter-based” SDL, re-
spectively. Feature-based SDL models include the classical
ones by Mairal et al. (see, e.g., (Mairal et al., 2008; 2011))
as well as the more recent model of Convolutional Matrix
Factorization by Kim et al. (2016) for a contextual text rec-
ommendation system. Filter-based SDL models have been
studied more recently in the supervised matrix factorization
literature, most notably from supervised nonnegative matrix
factorization (Austin et al., 2018; Leuschner et al., 2019)
and supervised PCA (Ritchie et al., 2020). In spite of the
vast literature on SDL, due to the high non-convexity of
the associated optimization problem, algorithms for SDL
mostly lack rigorous convergence analysis and there has
not been any algorithm that provably converges to a global
minimizer of the objective at an exponential rate.

In this paper, we formulate a general class of SDL-type
models encompassing both feature-based and filter-based
approaches for multi-class classification. These models are
designed to effectively handle high-dimensional features
and incorporate valuable information from low-dimensional
auxiliary covariates. To find the solutions of SDL-type
models, we provide a novel framework that ‘lifts’ SDL as
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Figure 1. Overall scheme of the proposed method for SDL-H. Model: The model is designed for multi-class classification by combining
low-dimensional informative features (such as age and sex) and high-dimensional features (such as genes) that may not all be informative
or easily interpretable. ‘Discriminative feature extraction® is performed so that we can identify meaningful, low-dimensional structures
from the original high-dimensional features for classification tasks, such as cancer-associated gene groups containing genes that are highly
correlated with each other. These extracted features, along with the low-dimensional features themselves, are utilized in the classification
task. Our approach performs classification and feature extraction tasks simultaneously, ensuring effective performance in learning the
classification model. Training: We propose a novel framework that transforms the problem into a low-rank matrix estimation problem
and an exponentially fast algorithm for finding the global optimum, providing reliable and efficient results. Qutput: The resulting model
takes the form of (multinomial) logistic regression, which offers interpretability in its outputs. Specifically, the regression coefficients
reveal insights into the importance of the low-dimensional features, discriminative gene groups, and individual genes within its groups on
a covariate-wise, group-wise, and gene-wise level, respectively.

a low-rank matrix estimation problem in combined factor dictionary W = [wy,...,w;,] € RP*" that is reconstruc-

space. Additionally, we introduce an efficient algorithm that
converges exponentially fast to a global minimizer of the ob-
jective, regardless of the initial conditions. Our theoretical
findings are validated through extensive numerical exper-
iments. Applying our method to microarray datasets for
cancer classification, we show that not only it is competitive
against benchmark methods, but also it is able to identify
groups of genes including well-known cancer-associated
genes.

2. Methods
2.1. Model setup

Suppose we are given with n labeled signals (y;,x;,x})
fori = 1,...,n, where y; € {0,1,...,k} is the label,
x; € RP is a high-dimensional feature of 7, and x; € R¢
is a low-dimensional auxiliary feature of i (p > ¢). For
a vivid context, think of x; as an X-ray image of a pa-
tient ¢ and x;, denoting some biological measurements, such
as gender, smoking status, and body mass index. When
making predictions of y;, we use a suitable r (< p) di-
mensional compression of the high-dimensional feature x;
as well as the low-dimensional feature x as-is. We as-
sume such compression is done by some latent basis or

tive in the sense that the observed signals x; can be re-
constructed as (or approximated by) the linear transform
of the ‘atoms’ w,...,w, € RP for some suitable ‘code’
h; € R". More concisely, Xgaa = [X1,...,Xn] = WH,
where H = [hy,...,h,] € R™*™. In practice, we can
choose r to be the approximate rank of data matrix X,
(e.g., by finding the elbow of the scree plot).

Now, we state our probabilistic modeling assumption. Fix
parameters W € RP*" h; € R", 3 € R"™ ", and
v € RI*% We assume y; is a realization of a ran-
dom variable whose conditional distribution is specified
as [P(y; =0]x4,%5), ..., Py, = 6 |x4,%5)] = glay) =
Cll,exp(a;1),...,exp(a; )], where C is the normaliza-
tion constant and a; = (a;1,...,a;,) € R" is the activa-
tion for y; defined in two ways, depending on whether we
use a ‘feature-based’ or ‘filter-based” SDL model:

BTh; + 7%}
BTWTx; +~+Tx,

feature-based (SDL-H), )
filter-based (SDL-W).

a; =

One may regard (3, ) as the ‘multinomial regression co-
efficients’ with input feature (h;,x}) or (W7x;,x}). We
regard the code h; (coming from x; ~ Why;) or the “filtered
signal’ WT'x; as the r-dimensional compression of x;.

In order to estimate the model parameters (W, H, 3,~)
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from observed training data (x;,y;) for: = 1,...,n, we
consider the following multi-objective optimization:

n

min (yi,a;) + €| Xgaw — WHI|Z, 2
WH 5~ ; (yirai) + &l X ata % 2

where Xgu = [X1,...,X,] € RP*™, a; is as in (1), and
£(-) is the classification loss measured by the negative log-
likelihood: £(y,a) = log >, exp(ac)—> o Liy,—c}ac.
In (2), the tuning parameter £ controls the trade-off between
the two objectives of classification and dictionary learning.
The above is a nonconvex problem involving four blocks
of parameters that could have additional constraints (e.g.,
bounded norm). In Figure 2, we will demonstrate that the
best reconstructive dictionary W could be significantly dif-
ferent from the supervised dictionary learned by SDL and
may not be very effective for the classification tasks.

2.2. Sketch of algorithm

Our key idea to solve (2) is to transform it into a variant
of the low-rank matrix estimation problem (3) and then
use a Low-rank Projected Gradient Descent (LPGD) algo-
rithm (4) (7 > 0 a fixed stepsize):

i F(Z 3
Z:[G,’y]ern(')l,liank(e)gr ( ) )

Z; 10, (e (Zi—1 — TVF(Zi—1)) ). )

In (3), one seeks to minimize an objective F' w.r.t. a paired
matrix parameter Z = [0, -] within a convex constraint set
© and an additional rank constraint rank(6) < r. In (4),
II,. denotes applying rank-r projection on the first factor 0
while keeping -~ the same. Below we give a sketch of the
steps for applying the above scheme to SDL (2) and we refer
to Alg. 1 in the appendix for details. For a more detailed
explanation of the algorithm, see Sec. B in the Appendix.

Step 1: Convert SDL problem into a low-rank matrix
estimation problem In this step, instead of a four-block,
nonconvex optimization problem (2) that is computationally
challenging to solve exactly, we consider reformulating it
into a problem with a convex objective function with two
blocks by suitably stacking up the matrices. For SDL-H, we
bind ‘rows‘ of ,BTH and WH so that we have one matrix
0 € R(5tP)xn in (3) instead of three factors 3, W, and H
(See Fig. 1 “Training”). Similarly, for SDL-W, we make
0 c RP*(*+7) by binding ‘columns* of W3 and WH.
’yTx; remains the same in a; in (2).

Step 2: Apply LPGD algorithm To solve (3) with prop-
erly defined @ through step 1, we propose to use the LGPD
algorithm (4). We iterate gradient descent followed by pro-
jecting onto the convex constraint set ® of the combined
factor [0,~] and then perform a rank-r projection of the
first factor @ via the truncated singular value decomposition
(SVD) until convergence.

Step 3: Decompose the lifted solution Since we stack
matrices to reformulate the problem in step 1, it is necessary
to recover the original three factors W, H, and 3. Once we
have a solution [0, v*] from step 2, we can implement rank-
r SVD of 6* to obtain a solution to (2). Let 8* = UX V7T
denote the SVD of 8. For SDL-H, as 8* constitutes the
row-binded matrix of (3*)TH* and W*H?*, we can assign
H* = 2'/2VT while the row binding of [(3*)T, W*] =
Ux'/2, Similarly, in the case of SDL-W, we assign W* =
U and column binding of [3,, H,] = XV,

2.3. Exponentially convergence to the global minimum

Our main result, Theorem 2.1, establishes that the algorithm
introduced in Sec. 2.2 can obtain optimal parameters, up to
rotation, that globally minimize the objective function at an
exponential rate. With technical assumptions of bounded
activation in (1) and bounded eigenvalues of the covariance
matrix of the features, we have the following Theorem.

Theorem 2.1. (Exponential convergence) Let Z; :=
[0+, 7] denote the iterates of (4) for SDL and y and L be a
strongly convex parameter and smoothness parameter of I,
respectively (see (16) in the appendix). Fix T € (ﬁ, %),
and let p := 2(1 — ) € (0,1). Suppose L/ < 3 and
let Z* = [0",~*] be any stationary point of F over © s.t.
rank(0*) < r. Then Z* is the unique global minimizer
of F among all Z = [0, ~] with rank(6) < r. Moreover,
1Ze — 2|5 < ot |Zo — 2|5 fort > 1.

While the LPGD algorithm is in general more expensive
per iteration than the nonconvex method by using truncated
SVD, the iteration complexity is only O(log ¢~!) thanks to
the exponential convergence to the global optimum. Hence
for € small enough, our algorithm achieves an e-accurate
global optimum for SDL with a total computational cost
comparable to a nonconvex SDL algorithm to achieve at best
an e-stationary point with O(¢~!). See Appendix F for the
proof of Theorem 2.1 and Sec. I for numerical validations.

3. Application: Microarray Analysis for
Cancer Classification

We apply the proposed methods to two datasets from
the Curated Microarray Database (CuMiDa) (Feltes et al.,
2019). CuMiDa provides well-preprocessed microarray data
for various cancer types for various machine-learning ap-
proaches. One consists of 54,676 gene expressions from
51 subjects with binary labels indicating pancreatic cancer;
The other we use has 35,982 gene expressions from 289
subjects with binary labels indicating breast cancer. The
primary purpose of the analysis is to classify cancer patients
solely based on their gene expression. We compare the ac-
curacies of the proposed methods — SDL-W and SDL-H
with a binary logistic classifier trained using our algorithm —
against the following benchmark algorithms: SDL-W and
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Figure 2. (a-b) Two selected supervised/unsupervised principal gene groups (low-dimensional compression of genes) learned by rank-16
SDL-W/SVD and their associated logistic regression coefficients for breast cancer detection. (¢-d) Similar to a-b learned by rank-2
SDL-W/SVD for pancreatic cancer detection. (e) Blue-circled genes within each gene group of extreme coefficients coincide with known
prognostic markers (for pancreatic cancer) and oncogene (for breast cancer). (f) Average classification accuracies and their standard
deviations (in parenthesis) for various methods on two cancer microarray datasets over five-fold cross-validation. The highest-performing

instances are marked in bold.

SDL-H trained using BCD (Grippo & Sciandrone, 2000; Xu
& Yin, 2013); Naive Bayes (NB); Support Vector Machine
(SVM); Random Forest (RF); Logistic Regression with Ma-
trix Factorization by truncated SVD (MF-LR). For the last
benchmark method MF-LR, we use rank-r SVD to factorize
Xiain ~ USVT and take W = Uand H = V7.

We normalize gene expression for stable matrix factoriza-
tion and interpretability of regression coefficients. We split
each data into 50% of the training set and 50% of the test
set and repeat the comparison procedure 5 times. A scree
plot is used to determine the rank r. Other parameters are
chosen through 5-fold cross-validation (¢ € {0.1,1,10}
and A € {0.1,1,10}), and the algorithms are repeated in
1,000 iterations or until convergence. As can be seen in
the table in Figure 2f, the proposed methods show the best
performance for both types of cancers.

An important advantage of SDL methods is that they provide
interpretable results in the form of supervised dictionaries
with associated regression coefficients. In the context of
microarray analysis for cancer research, each column of
supervised dictionary W corresponds to a weighted group
of genes (which we call a ‘principal gene group’), and its
corresponding 3 represents the strength of its association
with cancer. SDL learns supervised gene groups (Fig. 2a,
¢) with significantly higher classification accuracy than the

unsupervised gene groups (Fig. 2b, d). Both gene groups
(consisting of p genes) in Fig. 2a, ¢ have positive regression
coefficients, so they are positively associated with the log
odds of the predictive probability of breast/pancreatic can-
cer. Remarkably, total ten genes (in Fig. 2 e) in these groups
of extreme coefficients are known to be prognostic mark-
ers of pancreatic/breast cancer or well-known oncogene
for breast cancer (see Human Protein Atlas (Sjostedt et al.,
2020)). The high classification accuracy, along with find-
ings of oncogene and prognostic markers, suggests a strong
association between the identified supervised principal gene
groups and cancer. These findings not only demonstrate the
effectiveness of the classification model but also provide
valuable insights into potential biological discovery.

4. Conclusion

We propose an exponentially convergent algorithm for non-
convex SDL problems using novel lifting techniques. In
cancer classification using microarray data analysis, our al-
gorithm successfully identifies discriminative gene groups
for pancreatic/breast cancer and shows potential for identi-
fying important gene groups as protein complexes or path-
ways in biomedical research. Our analysis framework can
be extended to more complex classification models, such
as combining a feed-forward deep neural network with a
dictionary learning objective.
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A. Recap of the model: SDL-H and SDL-W

Suppose we are given with n labeled signals (y;, x;,x}) fori = 1,...,n, where y; € {0,1, ..., x} is the label, x; € RP is
a high-dimensional feature of ¢, and x; € R? is a low-dimensional auxiliary feature of 7 (p > ¢). When making predictions
of y;, we use a suitable 7 (< p) dimensional compression of the high-dimensional feature x; as well as the low-dimensional
feature x as-is. We assume such compression is done by some latent basis or dictionary W = [w1, ..., w,] € RP*" that
is reconstructive in the sense that the observed signals x; can be reconstructed as (or approximated by) the linear transform
of the ‘atoms’ wy, ..., w, € RP for some suitable ‘code’ h; € R". More concisely, Xgua = [X1, ..., X,] & WH, where
H = [h;,...,h,] € R"™". In practice, we can choose r to be the approximate rank of data matrix Xy, -

Fix parameters W € RP*" h; € R", 3 € R™™" and v € R?*". Let h : R — [0,00) be a score function (e.g.,
h(-) = exp(-) for multinomial logistic regression)'. We assume the class label y; is a realization of a random variable whose
conditional distribution is specified as

Py =0|x4,%),...,P(y; = k| xi,%x;)] = g(a;) :== C[1,h(a; 1), ..., h(a; )],

where C'is the normalization constant and a; = (a; 1, ..., a;,) € R" is the activation for y; defined in two ways, depending
on whether we use a ‘feature-based’ or ‘filter-based’ SDL model:

Bh; +~4Tx! feature-based (SDL-H),
a; =
BTWTx,; + ~Tx!  filter-based (SDL-W).

One may regard (3, ) as the ‘multinomial regression coefficients’ with input feature (h;, x}) or (WTx;,x}). In (1), we
may regard the code h; (coming from x; ~ Wh;) or the ‘filtered signal’ W7'x; as the r-dimensional compression of
x;. Note that these two coincide if we have perfect factorization x; = Wh, and the dictionary W is orthonormal, i.e.,
WTW = I, but we do not necessarily make such an assumption.

In order to estimate the model parameters (W, H, 3, ) from observed training data (x;,y;) fori = 1,...,n, we consider
the following multi-objective optimization:

n

min >y, ) + &l Xaa — WH|7,

W.H By
where Xgu = [X1,-..,X,] € RP*™ a;isasin (1), and £(-) is the classification loss measured by the negative log-likelihood:
((y,a) =1log ¥ h(ac) = Y 1(y—cy log hlac). ®)
c=1 c=1

In (2), the tuning parameter £ controls the trade-off between the two objectives of classification and dictionary learning.
The above is a nonconvex problem involving four blocks of parameters that could have additional constraints (e.g., bounded
norm).

There are some notable differences between SDL-H and SDL-W when predicting the unknown label of a test point. If we
are given a test point (Xees, X(oq )» the predictive probabilities for its unknown label y. is given by (5) with activation a
computed as in (1). This only involves straightforward matrix multiplications for SDL-W, which can also be viewed as
a forward propagation in a multilayer perceptron (Murtagh, 1991) with W acting as the first layer weight matrix (hence
named ‘filter’). However, for SDL-H, one needs to solve additional optimization problems for testing. Namely, for every
single test signal Xy, its correct code representation hy needs to be learned by solving the following ‘supervised sparse
coding’ problem (see (Mairal et al., 2008)):

min ~ min £(y, B h) + €||Xesc — Wh||Z. (6)
y€{0,1,....,kx} h

A more efficient heuristic testing method for SDL-H is by approximately computing hi.s by only minimizing the second

term in (6).

"Notice that in (5), we have used a general score function h instead of the exponential function as we did in the main text. We will
analyze this more general SDL model in this appendix. See Section D for background on multinomial logistic regression with general
score function.
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A.1. Notations

Throughout this paper, we denote by RP the ambient space for data equipped with standard inner project (-, -) that induces
the Euclidean norm ||-|]|. We denote by {0, 1,. .., x} the space of class labels with « + 1 classes. For a convex subset © in a
Euclidean space, we denote Ilg the projection operator onto ©. For an integer r > 1, we denote by II,. the rank-r projection
operator for matrices. For a matrix A = (a;;);; € R™*", we denote its Frobenius, operator (2-), and supremum norm
by A% == 32, a3 [[All2 := supgepn, x| =1 |AX]], [|Alloo := max; j[ai;], respectively. For each 1 < i < m and
1 < j < n,wedenote AJi,:] and A[:, j] for the ith row and the jth column of A, respectively. For each integer n > 1,1,
denotes the n x n identity matrix. For square symmetric matrices A, B € R"*", we denote A < B if vIAv < vTBv for
all unit vectors v € R™. For two matrices A and B, we denote [A, B] and [A || B] the matrices obtained by concatenating
(stacking) them by horizontally and vertically, respectively, assuming matching dimensions.

B. Statement of the algorithm and key idea

In the main text, we mentioned that our key idea to solve (2) is to transform it into a variant of the low-rank matrix estimation
problem (3)

F(2),

min
Z=[0,v]€O, rank(0)<r

where one seeks to minimize an objective f w.r.t. a paired matrix parameter Z = [0, -y] within a convex constraint set ©
and an additional rank constraint rank(€) < r. Then, we use a Low-rank Projected Gradient Descent (LPGD) algorithm (4)
(7 > 0 a fixed stepsize) to solve the transformed problem (3)

Zt — Hr (H@) (thl - ’TVF(thl)) )

B.1. Illustration of the key idea: Double-lifting

To illustrate the transformation of the SDL problem (2) into a low-rank matrix estimation (3), first assume we have no
augmented variable . Then consider a much simpler version of SDL-H where the response variable y is scalar and
continuous and Namely, we replace the multi-class classification problem (2) with linear regression. We seek to solve
matrix factorization and linear regression problems simultaneously for data matrix Xg,, € RP*™ and response variable
Y € RV minw mg|Y — BTH|% + €| Xgaa — WH]|2. This is a three-block optimization problem involving three
factors W € RP*" H € R™*" and B € R™!, which is nonconvex and computationally challenging to solve exactly.
Instead, consider reformulating the above nonconvex problem (7) into a problem with a convex objective function by suitably
stacking up the matrices using the following matrix factorization:

2

N

wina? ([W]7) = | [y - [Vow] B

Indeed, we now seek to find rwo decoupled matrices (instead of three), one for 6T and W stacked vertically, and the
other for H. The idea of matrix stacking was used in (Zhang & Li, 2010) for discriminative K-SVD. Proceeding one step
further, another important observation we make is that it is also equivalent to finding a single matrix 6 := [ﬂTH I WH} €

F

R(I+P)X7 of rank at most r that minimizes the function f in (7): (See Fig. 1 Training).

For SDL-W, consider the following analogous linear regression model:

Jin (W8, HJ) = ||Y = B"W! XuallF + & Xaua — WHIIE, ®)

where the right-hand side above is obtained by replacing H with W7 X4, in (7). Note that the objective function depends
only on the product of the two matrices W and [3, H]. Then, we may further lift it as the low-rank matrix estimation
problem by seeking a single matrix 6 := [W3, WH] € RP*(1+") of rank at most 7 that solves (3) with f being the
function in (8).
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B.2. Statement of the algorithm

Motivated by the observation we made in Section B.1, we rewrite SDL-H in (2) as

[013]129 F(6 Zf Yi, A +"Y X, )+§HXdata_BH%+)‘(”AH%+H'VH%)7 ©
rank(0)<r

where A = 37H, B = WH, 0 = [A || B] € R“tP)%" and @ is a convex subset of R(“+P) X" x R9X%_ The last quadratic
term above is the Ly-regularization term for A and ~ with coefficient A > 0, which plays a crucial role in well-conditioning
(9). As for SDL-W, we can rewrite (2) with additional Lo-regularizer for A = W3 and ~ as

Juing F (0 Zé (i, AT +57x) + €] Xawa = BT + A (|AIF + 717 (10)
rank(0)<r

where 6 = [A, B] = W|B, H] € RP*(%+7) and @ € RP*(x+7) x RI¥* is a convex set.

For solving (9), we propose to use the LGPD algorithm (4): We iterate gradient descent followed by projecting onto the
convex constraint set © of the combined factor [0,~] and then perform rank-r projection of the first factor @ = [A || B|
via truncated SVD until convergence. Once we have a solution [0*,~*] to (9), we can use SVD of 6 to obtain a solution
to (2). Let * = UXVT denote the SVD of . Since rank(6*) < 7, ¥ is an r x r diagonal matrix of singular values
of . Then U € R=+P)XT and V € R™ " are semi-orthonormal matrices, that is, UTU = VIV = I,. Then since
6* = [(B8")T | W*|H*, we can take H* = XY2V7T and [(3*)7 || W*] = UX/2. Algorithm 1 for SDL-W follows
similar reasoning as before with the reformulation above.

We summarize this approach of solving (2) for SDL-H in Algorithm 1. Here, SVD,. denotes rank-r truncated SVD and the
projection operators IIg and II, are defined in Subsection A.1.

Algorithm 1 Lifted PGD for SDL
Input: Xy, € RP*™; X! € R7*™ (Auxiliary covariates); Yiape € {0,1,...,5}"
Parameters: 7 > 0 (stepsize); N € N (iterations); » > 1 (rank); A > 0 (Le-reg. param.)
Constraints: Convex ® C R(=+P)Xn o Ra*# for SDL-H, @ C RP*(+n) » RI%F for SDL-W;
Initialize W, € RPX", Hy € R™*", B, € R™¥%_, € RIX%

0o < [BLH, || WoH,] € R+ X" (> for SDL-H)

0o + [WoBy, WoH,] € RP*(+7) (> for SDL-W)
for k =1to N do

0, <11, (H@ (Ok—l —7VeF (0k_1, 7,671))) (> See Appendix ?? for computation)

Vi & Vi1 — TV (Ok—1,74-1)
end for
Oy =UTVT (> rank-r SVD)

By | W] < US'? Hy « (£)V/2V7 (> SDL-H)

Wy «+ U, [By, Hy] + VT (> SDL-W)
Output: (Wx,Hy, By, vN)

A straightforward computation shows (recall that @ = [A || B] for SDL-H and 6 = [A, B| for SDL-W)

Vvee(ay B = 24 vec(A) = {%Z_i g:ﬁg Z; 21{: 5] g zgigv (b
VeF = 26(B — Xgua), Veern F = (Z Val(ys, as) ;) + 2\ vee(y), (12)

where ® denotes the Kronecker product. Here, we have Va/(y,a) = (hi,.. ., h,), where
. b (a;) W (a;) (13)

n—_l E
1+>5  h(ae) 7 h(ay)
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By using randomized truncated SVD for the efficient low-rank projection in Algorithm 1, the per-iteration complexity is
O(pn min(n, p)), while that for the nonconvex algorithm is O((pr + ¢)n). While the LPGD algorithm is in general more
expensive per iteration than the nonconvex method, the iteration complexity is only O(log ¢ ~!) thanks to the exponential
convergence to the global optimum (will be discussed in Theorem 2.1). To our best knowledge, the nonconvex algorithm for
SDL does not have any guarantee to converge to a global optimum, and the iteration complexity of the nonconvex SDL
method to reach an e-stationary point is at best O(e 1) using standard analysis. Hence for ¢ small enough, Algorithm 1
achieves an e-accurate global optimum for SDL with a total computational cost comparable to a nonconvex SDL algorithm
to achieve an e-stationary point.

C. Theoretical guarantees

For theoretical analysis of Algorithm 1, we introduce the following technical assumptions (C.1-C.3).

Assumption C.1. (Bounded activation) The activation a € R” defined in (1) assumes bounded norm, i.e.,
some constant M € (0, 00).

al| < M for

Assumption C.2. (Bounded eigenvalues of covariance matrix) Denote ® = [, ..., @,,] € RPTD>X" where ¢, = [x; ||
x}] € RPT (s0 ® = [Xqua || Xaux))» Where Xpx = [x], ..., x},]. Then, there exist constants 6,1 > 0 such that for all
n>1,

07 < Amin (1B < \pa(n1®@®T) <4t (14)

Assumption C.3. (Bounded stiffness and eigenvalues of observed information) The score function A : R — [0, 00) is twice
continuously differentiable. Further, let observed information H(y, a) := V.V 7 ¢(y, a) for y and a. Then, for the constant
M > 0 in Assumption C.1, there are constants Vax, @, & > 0 s.t. Ymax 1= SUD |a||< M MAX1<5<n, IVal(ys, as)|lco and

- 3 . + .

o = ”alﬂn<fM min Amin(H(ys, a)), o = Supmax, Amax (H(ys, ). (15)
Assumption C.1 limits the norm of the activation a as an input for the classification model in (2) is bounded. This is standard
in the literature (see, e.g., (Negahban & Wainwright, 2011; Yaskov, 2016; Lecué & Mendelson, 2017)) in order to uniformly
bound the eigenvalues of the Hessian of the (multinomial) logistic regression model. Assumption C.2 introduces uniform
bounds on the eigenvalues of the covariance matrix. Assumption C.3 introduces uniform bounds on the eigenvalues of the
Kk X Kk observed information as well as the first derivative of the predictive probability distribution (see (Béhning, 1992) and
Sec. F for more details). In fact, Assumption C.3 is easily satisfied under Assumption C.1 and the multinomial logistic
regression model A(-) = exp(+), as discussed in the following remark.

Remark D.3. (Multinomial Logistic Classifier) In the special case of a multinomial logistic model with the score function

h(-) = exp(-), we have h = h/ = h” so the second term in (29) in the Appendix vanishes, so h;(y,a) = g;(a) — 1(y = j)

and H(y,a);; = g¢:(a) (1(¢ = j) — gj(a)). Under Assumption C.1, according to Lemma D.1, we can take Ymax =
M

M M
e +_ e (1+2(nfl)e )
L+ 1+eM+(k—1)e—M <2 and a™ = (1+eM 4 (k—1)e—M)2"

e—]\l

= THe M (n=D)eM For binary classification, o™ < 1/4.

Now define the following quantities: A\t := Apax (n ™ Xax X1, ),

aux

o {min(2§, 2 A4+ né~a”) I.— {max(2§, 2\ +ndta™) for SDL-W (16)

min(2¢, 2\ 4+ a7) max(2£,2\ + atATn, 2X\ +aT) for SDL-H

C.1. Computational convergence guarantee

Theorem 2.1 in the main text is a special case of the following more general result, specifically when the model is ‘correctly
specified’, allowing the rank-r SDL model to effectively account for the observed data. This implies the existence of a
‘low-rank stationary point’ of F', as also demonstrated in (Wang et al., 2017). In this section, we prove the following more
general result.

Theorem C.4. (Exponential convergence for SDL) Let Z := [0y, ~,] denote the iterates of Algorithm 1. Assume C.1, C.2,

and C.3 hold. Let p and L be as in (16), fix stepsize T € (ﬁ, 2-), and let p := 2(1 — 7p) € (0,1). Suppose L/ < 3.

(i) (Correctly specified case; Theorem 2.1 in the main text) Suppose there exists a stationary point Z* = [0™,~*] of F over
the convex constraint set © s.t. rank(0™) < r. Then Z* is the unique global minimizer of F among all Z = [0, ~] with
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rank(0) < r. Moreover,

|Z; — Z*||F < p' || Zo — Z*||p  fort>1. (17)

(ii) (Possibly misspecified case) Let Z* = [0*,~*] be arbitrary in © s.t. rank(6*) < r. Denote the gradient mapping at Z*
as [A*, AT*] := L (0" — Tl (0" — TVF(Z*)). Then fort > 1,

.
120~ 2 < 120 = 2+ 1 (VERIAO* | + 1877 ). (18)

Note that we may view the ratio L/ that appears in Theorem 2.1 as the condition number of the SDL problem in (2),
whereas the ratio L*/u* for u* := 6o~ and L* := 6Ta™ as the condition number for the multinomial classification
problem. These two condition numbers are closely related. First, note that for any given p*, L* and sample size n, we
can always make L/u < 3 by choosing sufficiently large £ and A so that Theorem 2.1 holds. However, using large
Ls-regularization parameter A may perturb the original objective in (2) too much that the converged solution may not be
close to the optimal solution. Hence, we may want to take A as small as possible. Setting A = 0 leads to

0<Li<3 & << for SDL-W

L 1S
— < 3, )\ = O = { max(2§,a+)\+n) "
M Tmin(28,a-) < 3 for SDL-H.

19)

First, for SDL-W, if the multinomial classification problem is well-conditioned (L*/p* < 3) and the ratio £/n is in the
above interval, then SDL-W enjoys exponential convergence in Theorem 2.1. However, the condition for SDL-H in (19)
is violated for large n, so Ls-regularization is necessary for guaranteeing exponential convergence of SDL-H. Second,
suppose no auxiliary covariate is used (e.g., Xqx = O) so that AT = 0. Then the condition L/y < 3 in Theorem 2.1
reduces to % < A< %, which holds for A\, = O(1). This contrast is closely related to the statistical robustness of
SDL-H over SDL-W, see Theorem C.5 and the following remark.

The proof of Theorem 2.1 involves two steps: (1) We establish a general exponential convergence result for the general
LPGD algorithm (4) in Theorem E.2 in the Appendix. (2) We compute the Hessian eigenvalues of the SDL objectives
(9)-(10) and apply the result to obtain Theorem 2.1. The proof contains two challenges: first, the low-rank projection in
(4) is not non-expansive in general. To overcome this, we show that the iterates closely approximate certain ‘auxiliary
iterates’ which exhibit exponential convergence towards the global optimum. Secondly, the second-order analysis is highly
non-trivial since the SDL problem (2) has a total of four unknown matrix factors that are intertwined through the joint
multi-class classification and DL tasks. See Appendix F for the details.

C.2. Statistical estimation guarantee

In this section, we formulate a generative model for SDL (2) and state statistical parameter estimation guarantee. Fix
dimensions p > ¢, and let n > 1 be possibly growing sample size, and fix unknown true parameters B* € RP*" C* ¢
RI*™ ~* € R?7*% In addition, fix A* € R**" for SDL-H and A* € RP** for SDL-W. Now suppose that class label,
data, and auxiliary covariates are drawn i.i.d. according to the following joint distribution:

x; = B*[:,i] +&;, x,=C*[:,i]+¢],
yi | xi,} ~ Multinomial (1, g (a;) ), {rank([A* | B*]) <r forSDL-H,

{A*[:7 i+ (v*)Tx,  SDL-H, rank([A*, B*]) <r  for SDL-W. @0

7

(A)Tx; + (v*)Tx, SDL-W,

i =

where each €; (resp., €;) are p x 1 (resp., ¢ x 1) vector of i.i.d. mean zero Gaussian entries with variance o2 (resp., (07)?).
We call the above the generative SDL model. In what follows, we will assume that the noise levels o and ¢’ are known and
focus on estimating the four-parameter matrices.

The (Lz-regularized) normalized negative log-likelihood of observing triples (y;,x;,x}) for i = 1,...,n is given as
L, :=F(A B,~v)+ ﬁ | Xaux — C||% + ¢, where c is a constant and F is as in (9) or (10) depending on the activation

type with tuning parameter £ = 2%2 The Lo regularizer in F' can be understood as Gaussian prior for the parameters and

interpreting the right-hand side above as the negative logarithm of the posterior distribution function (up to a constant) in a
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Bayesian framework. Note that the problem of estimating A and B are coupled due to the low-rank model assumption in
(20), while the problem of estimating C is standard and separable, so it is not of our interest. The joint estimation problem
for [A, B,~] is equivalent to the corresponding SDL problem (2) with tuning parameter ¢ = (202)~*. This and Theorem
2.1 motivate us to estimate the true parameters A*, B*, and v* by the output of Algorithm 1 with £ = (202)~* for O(log n)
iterations.

Now we give the second main result. Roughly speaking, it states that the estimated parameter Z; is within the true parameter
Z* = [A*,B*,~*] within O(1/y/n) with high probability, provided that the noise variance o2 is small enough and the SDL
objective (9)-(10) is well-conditioned.

Theorem C.5. (Statistical estimation for SDL) Assume the model (20) with fixed p. Suppose Assumptions C.1, C.2, and
C.3 hold. Let i, L be as in (16), p := 2(1 — 1) and ¢ = O(1) if Z* — 7V zL,(Z*) € © and ¢ = O(y/min(p,n))
otherwise. Let Z denote the iterates of Algorithm I with the tuning parameter ¢ = (20%) ™%, Lo-regularization parameter
A > 0, and stepsize T € (ﬁ, %) The following holds with probability at least 1 — % Forallt > 1andn > 1,
|Z: — Z* || — p* ||Zo — Z*||F < c@, provided L]y < 3. In particular, the upper bound c(‘/iiﬂ) is O(1//n) if
=2 =0(1/n).

We remark that Theorem C.5 implies that SDL-H is statistically more robust than SDL-W in the absence of auxiliary
covariates. Namely, in order to have an arbitrary accurate estimate with high probability, one needs to have 1/ = o(y/n).
Combining with the expression in (16) and the well-balancing condition L/p < 3, one needs to require small noise variance
02 = O(1/n) for SDL-W. However, for SDL-H, this is guaranteed whenever o = o(1/,/n), in case there is no auxiliary
covariate (i.e., At = 0) and moderate regularization A = o(1/u).

C.3. Work related to our theoretical contribution

The SDL training problem (2) is a nonconvex and possibly constrained optimization problem, generally with non-unique
minimizers. Since it is difficult to solve exactly, approximate procedures such as Block Coordinate Descent (BCD) (see,
e.g., (Wright, 2015)) are often used. Such methods utilize the fact that the objective function in (2) is convex in each
of the four (matrix) variables. Such an algorithm proceeds by iteratively optimizing for only one block while fixing the
others (see (Mairal et al., 2008; Austin et al., 2018; Leuschner et al., 2019; Ritchie et al., 2020)). However, convergence
analysis or statistical estimation bounds of such algorithms are quite limited. Appealing to general convergence results for
BCD methods (e.g., (Grippo & Sciandrone, 2000; Xu & Yin, 2013)), one can at most guarantee asymptotic convergence
to the stationary points or polynomial convergence to Nash equilibria or of the objective (2), modulo carefully verifying
the assumptions of these general results. We also remark that (Mairal et al., 2011) provided a rigorous justification of the
differentiability of a feature-based SDL model.

The main finding of our work is that the non-convexity of the SDL problem (2) is ‘benign’, in the sense that there exists an
algorithm globally convergent to a global optimum at an exponential rate. We use a ‘double-lifting’ technique that converts
the non-convex SDL problem (2) into a low-rank factored estimation with a convex objective. This is reminiscent of the
tight relation between a low-rank matrix estimation and a nonconvex factored estimation problem, which has been actively
employed in a body of works in statistics and optimization (Agarwal et al., 2010; Ravikumar et al., 2011; Negahban &
Wainwright, 2011; Zheng & Lafferty, 2015; Tu et al., 2016; Wang et al., 2017; Park et al., 2017; 2018; Tong et al., 2021).
Our exponentially convergent SDL algorithms are versions of low-rank projected gradient descent in the algorithm (43) that
operates in the double-lifted space.

D. Generalized multinomial logistic Regression

In this section, we provide some background on a generalized multinomial logistic regression and record some useful
computations. (See (Bohning, 1992) for backgrounds on multinomial logistic regression.) Without loss of generality, we can

assume that the x classes are the integers in {1, 2, ..., k}. Say we have training examples (¢(x1),y1), - - -, (¢(XN), YN )s
where

® Xx1,...,xy: Input data (e.g., collection of all medical records of each patient)

o ¢, :=h(x1),...,0y5 = d(xn) € RP : Features (e.g., some useful information for each patient)

e yi,...,yn €{0,1,...,K}: k class labels (e.g., digits from 0 to 9).



Interpretable Feature Extraction by Supervised Dictionary Learning for Identification of Cancer-Associated Gene Clusters

The basic idea of multinomial logistic regression is to model the output y as a discrete random variable Y with probability

mass function p = [po, p1, - . -, P that depends on the observed feature ¢»(x), link function ~ : R — R, and a parameter
W = [wy,...,w,] € RP** through the following relation:
1 h i .
: (), ws)) forj=1,..., 1)

P TS (g we) P T T h((é(x), we))

That is, given the feature vector ¢(x), the probability p; of x having label i is proportional to h evaluated at the ‘linear
activation’ (¢(x), w;). Note that using h(z) = exp(z), the above multiclass classification model reduces to the classical
multinomial logistic regression. In this case, the corresponding predictive probability distribution p is called the softmax
distribution with activation a = [aq, ..., a,] with a; = (¢(x), w;) fori = 1,..., k. Notice that this model has parameter
vectors wi, ..., w, € RP, one for each of the x nonzero class labels.

Next, we derive the maximum log likelihood formulation for finding optimal parameter W for the given training set
(¢, Yi)i=1,..n. Foreach1 < i < Nand 1 < j < k, denote p;; := h((¢;, w;))/ > n_, h((¢;, w)), the predictive
probability of the y; given ¢; being j. We introduce the following matrix notations

—l(yl = 1) l(yl :H) P11 Pik
Yi=| | P :
€ {0, 1}V € {0, 1}~
[ 1 ) ) )
D= |p(x1) - OdxN)| W:i=|wp - wgl.
L) U \ I (23)
c RPXN c RpXxr

Note that the sth row of Y is a one-hot encoding of the lable y5 and the corresponding row of Q is its predictive probability
distribution. Then the joint likelihood function of observing labels (y1, ..., yn) given input data (X1, . ..,xx) under the
above probabilistic model is

N &k
Liyi,...,yn i W) =PV =y1,.... Yy =yn: W) = [ [ (0e))*¥=7. (24)
s=1j=1
We can derive the negative log likelihood function ¢{(®, W) := — Z]gV:1 2;21 1(ys = j)logps; in a matrix form as
follows:
N K N &k
(&, W)= log <Z h<<¢<xs>,wc>>> =D > 1(ys = ) logh ((p(xs), ;) (25)
s=1 c=1 s=1j=1

N K
- (Z log (Z h((qb(xs),vvq)))) _ (YTh(éTW)). (26)

Then the maximum likelihood estimate W is defined as the minimizer of the above loss function in W while fixing the
feature matrix ®.

Both the maps W — £(®, W) and ® +— ¢(®, W) are convex and we can compute their gradients as well as the Hessian
explicitly as follows. For each y € {0,1,...k}, ¢ € RP, and W € RP**, define vector and matrix functions

W (¢, w;)) W (&, w;))

ST o) YT e W) @7

H(y, ¢, W) := (HJ) 0 (28)

,]

h(y7¢7w) = (hlv"'7hR)T € RHXl? h] :

. 7 W i U W / W . 3 7 W h’ ,W 2
[, = 2UwI=) | W UGw W (owa)) gy ) (h (pwy)) _ (I Ubw,)) > 29)

i Ty, h({Pwe)) (1+r, h((d),wc))) h{ow;)) — (h((,w;)))?
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Foreach W = [wy,...,w,] € RPXF let W** := [wT ... wl]T € RP* denote its vectorization. Then a straightforward
computation shows

N
Vieow) (2, W) = " h(ys, ¢, W) @ ¢, (30)
s=1
N ..
H:= vvec(VV)vvec(W)Tg(q)7 W) = Z H(y87 ¢)37 W) ® ¢s¢),£v (3D
s=1

where ® above denotes the Kronecker product. Recall that the eigenvalues of A x B, where A and B are two square
matrices, are given by A;;, where A\; and p; run over all eigenvalues of A and B, respectively. Hence we can deduce

Noio (@97) it N (F(w, &0 W) ) < A (H) (32)

< () < A (@27) | max A (E(0: 6, W)) (33)

There are some particular cases worth noting. First, suppose binary classification case, x = 1. Then the Hessian H above
reduces to

N
H= Zﬂll(ysv(bsﬂw)(bs(pZ‘ (34)

s=1

Second, let h(x) = exp(x) and consider the multinomial logistic regression case. Then h = b’ = h”’ so the above yields
the following concise matrix expression

Vwl(® W) =3P —Y) eR*"  Vgl(® W)=W(P-Y)" € RPN, (35)
Ps1 (1 - psl) —Ps1Ps2 .. —Ps1Psk
N —ps2pst ps2(l—ps2) ... —Ps2Psk .
H=)" : . . : ® PP, - (36)
s=1 . : .
—PskPs1 —PskPs2 .. psm(l - psfi)

It follows that eigenvalues of H are bounded above by 1/4. The lower bound on the eigenvalues depend on the range of
linear activation (¢,, w;) may take. For instance, if we restrict the norms of the input feature vector ¢; and parameter w,
then we can find a suitable positive uniform lower bound on the eigenvalues of H.

Lemma D.1. Supose h(-) = exp(-). Then

] : eXp(<¢svwi>)
Mo (H(@,, W)) 2 min S el W) (37)

Amax (H(¢., W) ) < max exp({¢s, wi)) (1 2 Y ex o We ) (38)
( (&, ))_1§i§n (1+Zleexp(<¢s,wc>))2 - Cz:; p({9. )

Proof. For the lower bound on the minimum eigenvalue, we note that

oo . aau . . exp(<¢sa Wz))
Amin (H(¢sa W)) = 121£5j=1 Hz] 121£ﬁpszpso 1I§nil£n 1+ Ele eXp(<¢s,WC>)

(39)

where the first inequality was shown in (Amani & Thrampoulidis, 2021) using the fact that I:I(qbs, W) is a diagonally
dominant M -matrix (see (Tian & Huang, 2010)). The following equalities can be verified easily.

For the upper bound on the maximum eigenvalue, we use the Gershgorin circle theorem (see, e.g., (Horn & Johnson, 2012))
to bound

>\max (H(¢)37 W)) S 11,;1%}(5 (psz(]- - psz) + Zpsipsc> S 1??%% Psi (2 — Pso — 2ps7,) . (40)

c=2

Then simplifying the last expression gives the assertion. O
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E. Exponential convergence of Low-rank PGD

In Section B, we sketched our key idea of solving the SDL problem (2), which was to ‘lift’ the nonconvex problem two
steps to a low-rank matrix estimation problem. In this section, we make this approach precise by considering abstract forms
of optimization problems that specializes to the SDL problem (2).

Fix a function f : R4 %42 x R4xds 5 R which takes the input of a d; x dy matrix and an augmented variable in R% *?4,
Consider the following constrained and augmented low-rank estimation (CALE) problem

min f(Z), subjectto Z € © and rank(X) < r, 41)

Z=[X,I']eCR% xd2 x Rd3 X dq

where © is a convex subset of R%1 X492 x R>ds_ Here, we seek to find a global minimizer Z* = [X*, I'*] of the objective
function f over the convex set ©, consisting of a low-rank matrix component X* € R%*% and an auxiliary variable
I'* € R9*d4_1n a statistical inference setting, the loss function f = f,, may be based on n noisy observations according to
a probabilistic model, and the true parameter Z* to be estimated may approximately minimize f over the constraint set
©®, with some statistical error €(n) depending on the sample size n. In this case, a global minimizer Z* € argming f
serves as an estimate of the true parameter Z*. The matrix completion and low-rank matrix estimation problem (Meka et al.,
2009; Recht et al., 2010) can be considered as special cases of (41) without constraint ® and the auxiliary variable I". This
problem setting has been one of the most important research topics in the machine learning and statistics literature for the
past few decades. More importantly for our purpose, we have seen in (9) and (10) in the main manuscript that both the
feature- and filter-based SDL problems can be cast as the form of (41) after some lifting and change of variables.

One can reformulate (41) as the following nonconvex problem, where one parameterizes the low-rank matrix variable X
with product UV of two matrices, which we call the constrained and augmented factored estimation (CAFE) problem:
min f(UVT,T),  subjectto [UVT,T] € @©. (42)
UeRd1 X r’VeRdg Xr ,FERdS Xdg
Note that a solution to (42) gives a solution to (41). Conversely, for (41) without constraint on the first matrix component,
singular value decomposition of the first matrix component easily shows that a solution to (41) is also a solution to (42).
Recently, there has been a surge of progress in global guarantees of solving the factored problem (42) using various
nonconvex optimization methods (Jain et al., 2010; 2013; Zhao et al., 2015b; Zheng & Lafferty, 2015; Tu et al., 2016; Park
et al., 2017; Wang et al., 2017; Park et al., 2016; 2018). Most of the work considers (42) without the auxiliary variable and
constraints, some with a particular type of constraints (e.g., matrix norm bound), but not general convex constraints.

It is common that the nonconvex factored problem (42) is introduced as a more efficient formulation of the convex problem
(41). Interestingly, in the present work, we will reformulate the four-factor nonconvex problem of SDL in (2) as a three-factor
nonconvex CAFE problem in (42) and then realize it as a single-factor convex CALE problem in (41). We illustrated this
connection briefly in Section B.1.

In order to solve the CALE problem (41), consider the following Low-rank Projected Gradient Descent (LPGD) algorithm:
Ziy < 1, (Ue (Zi—1 — 7V f(Zi-1))), (43)

where T is a stepsize parameter, Ilg denotes projection onto the convex constraint set @ C R% *d2 x RdsXda and TI,.
denotes the projection of the first matrix component onto matrices of rank at most  in R% %92 More precisely, let
Z = [X,T]. ThenII,(Z) := [IL,(X), IT']. It is well-known that the rank-r projection above can be explicitly computed by
the singular value decomposition (SVD). Namely, IT,.(X) = UX VT, where X is the  x 7 diagonal matrix of the top r
singular values of X and U € R% %" 'V € R%*" are semi-orthonormal matrices (i.e., UTU = VTV = I,). Note that
algorithm (43) resembles the standard projected gradient descent (PGD) in the optimization literature, as a gradient descent
step is followed first by projecting onto the convex constraint set @ and then by the rank-r projection. It is also worth noting
the similarity of (43) to the ‘lift-and-project’ algorithm in (Chu et al., 2003) for structured low-rank approximation problem,
which proceeds by alternatively applying the projections Ilg and II, to a given matrix until convergence.

In Theorem E.2, we show that the iterate Z; of algorithm (43) converges exponentially to a low-rank approximation of the
global minimizer of the objective f over ®, given that the objective f satisfies the following restricted strong convexity
(RSC) and restricted smoothness (RSM) properties in Definition E.1. These properties were first used in (Agarwal et al.,
2010; Ravikumar et al., 2011; Negahban & Wainwright, 2011) for a class of matrix estimation problems and have found a
number of applications in optimization and machine learning literature (Wang et al., 2017; Park et al., 2018; Tong et al.,
2021).
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Definition E.1. (Restricted Strong Convexity and Smoothness) A function f : R4>d2 x Rdsxds 5 R is r-restricted
strongly convex and smooth with parameters ju, L > 0 if for all Z, Z’ € R%1 %% x R% 91 whose matrix coordinates are of
rank < r,

Y vec(z) —vecZ)I3 'S F(Z) ~ f(2)~ (V(2), 2 ~2) < 5 lvec(Z) —vec(Z)3  44)

Recall that the CALE problem (41) is a constrained optimization problem, where the global minimizer of the objective
function f over the constraint set ® need not be a critical point of f, but only a stationary point when it is at the boundary of
©. In order to measure the rate of convergence of an algorithm to a stationary point, we use gradient mapping (Nesterov,
2013; Beck, 2017) as a measure of the degree at which a point Z* in © fails to be a stationary point, which is particularly
well-suited for projected gradient descent type algorithms. Namely, for the CALE problem in (41), we define a map
G :0 x (0,00) — Rby

G(Z,7) = %(z eo(Z — TV (Z)). 45)

We call G the gradient mapping associated with problem (41). In order to motivate the definition, fix Z € ® and decompose
it as

Z=1le(Z—-7V[f(Z))+(Z-1le(Z -1V [(Z))) (46)
=le(Z—1Vf(Z)) +1G(Z,T). 47

Namely, the first term above is a one-step update of a projected gradient descent at Z over ® with stepsize 7, and the second
term above is the error term. If Z is a stationary point of f over ©, then —V f(Z) lies in the normal cone of © at Z, so Z is
invariant under the projected gradient descent and the error term above is zero. If Z is only approximately stationary, then
the error above is nonzero. In fact, G(Z,7) = 0 if and only if Z is a stationary point of f over ® (see Theorem 10.7 in
(Beck, 2017)). Therefore, we may use the size of G(Z, 7) (measured using an appropriate norm) as a measure of first-order
optimality of Z for the problem (41). In the special cases when @ is the whole space or when Z is in the interior of ©, if 7 is
sufficiently small (so that Z — 7V f(Z) € ©), then ||G(Z,7)||r = |V f(Z)||r, which is the standard measure of first-order
optimality of Z for minimizing the objective f. In general, it holds that ||G(Z, 7)||r < ||V f(Z)| r (see Lemma H.1).

Now we state our result concerning exponential convergence of the LPGD algorithm (43) for CALE (41).

Theorem E.2. (Exponential convergence of LPGD) Let f : R4 *d2 x Rdxds 4 R pe r-restricted strongly convex and
smooth with parameters (v and L, respectively, with L/pn < 3. Let (Z,);>0 be the iterates generated by algorithm (43).
Suppose @ C R4*d2  RdsXd4 js q convex subset and fix a stepsize T € (2%, 2). Then p :=2max(|1 —7pl|, |1 —7L|) €
(0,1) and the followings hold:

(i) (Correctly specified case) Suppose Z* = [X*,T*] is a stationary point of f over © such that rank(X*) < r. Then Z* is
the unique global minimizer of (41), lim;_, o Z; = Z*, and fort > 1,

1Z — Z* || < p" || Zo — Z" || (48)

(ii) (Possibly misspecified case) Let Z* = [X*,T'*] be an arbitrary point in the interior of © with rank(X*) < r. Then for
t>1,

120 = 217 < 0" 120 = Z* e+ T (VFIVxS () + VS (2 ) (49)

In general, if Z* is an arbitrary point of ©, then denoting the gradient mapping [AX*, AT*]| := 1(Z* — llg(Z* —
TV f(Z*))) at Z*, then fort > 1,

* * T *
12~ 25 < 0" 20~ 2"l + 1 (VFIAX [+ AL ). (50)

Theorem E.2 (i) assers that the LPGD algorithm (43) converges at a linear rate to the unique global minimizer Z*, provided
that there exists a stationry point Z* of f over the convex constraint set @ with the first matrix factor X having rank at most
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r. In a statistical estimation setting where one seeks to estimate a ‘ground-truth’ parameter Z* with low-rank matrix factor
from noisy observations. In this case the objective f represents the empirical error. Hence in this case, is reasonable to
assume that the gradient V f(Z*) is small or at least Z* is near-stationary. In fact, Wang et al. (Wang et al., 2017) makes
such an assumption.

In contrast, Theorem E.2 does not require such an assumption of near-optimality of the parameter Z* to be estimated. In
practical situations, the rank of the ground-truth parameter is often unknown, and one attempts to explain observed data
by using a low-rank model, in which case the assumed rank r could be much lower than the true rank. For such generic
situations, Theorem E.2 (ii) shows that the LPGD algorithm (43) converges linearly to a low-rank parameter that comes
closest to being first-order optimal for f within the convex constraint ®. This general result will also be used in the proof of
Theorems 2.1 and C.5, the computational and the statistical estimation guarantee of SDL.

In order to establish Theorem E.2, which shows exponential convergence of the low-rank projected gradient descent
(algorithm (43)) for the CALE problem 41. The proof is similar to the standard argument that shows exponential convergence
projected gradient descent with fixed step size for constrained strongly convex problems (see, e.g., Theorem 10.29 in (Beck,
2017)). However, when we minimize a strongly convex objective with a rank-constrained matrix parameter, the constraint
set of low-rank matrices is not convex, so one cannot use non-expansiveness of convex projection operator. Indeed, the
rank-r projection II,. by truncated SVD is not guaranteed to be non-expansive.

In order to circumvent the above issue, we use the idea of comparing the iterates Z; from (43) with an auxiliary iterates 7,
which is obtained by using a suitable linear projection in place of the rank-r projection. This will allow us to show that the
rank-r projection is essentially 2-Lipschitz. So if the contraction constant in standard analysis of projected gradient descent
for strongly convex objectives is small enough (< 1/2), then overall one still retains exponential convergence. (See Lemma
E.3.) We emphasize that our analysis sketched above applies to the original LPGD algorithm (43): We do NOT analyze an
easier algorithm that replaces the low-rank projection with a linear projection.

Lemma E.3. (Linear projection factoring through rank-r projection) Fix Y € R%1*42 R > r € N, and denote X = 11,.(Y)
and X =11 4 (Y),ﬁwhere A C R4*4 s g linear subspace. Let X = UXVT denote the SVD of X. Suppose there exists
U € RY*E and V € RE2*E such that

A={A e R"*% |col(AT) C col(V), col(A) C col(U)}, (51)
col(U) C col(U), col(V) C col(V). (52)

Then X = II.(X).

Proof. Write Y — X = UXVT forits SVD. Let d := rank(Y)_apd. let oy > -+ > 04 > 0 denote the nonzero singular
values of Y. Since X = II,,(Y) = USVT and Y = USVT + UXV”, we must have that 3 consists of the top 7 singular
values of Y and the rest of d — r singular values are contained in 3. Furthermore, col(U) L col(U).

Now, since X € A and I1 4 is linear, we get
X =TI4(X + (Y = X)) = UDVT +11,4(UDVT). (53)

Let Z := I4(USVT) and write its SVD as Z = UXV7T. Then note that (UTﬁUT)T = UU U = U since
UU' R4 - R% is the orthogonal projection onto col(U) D col(U). Hence uTUU = U7, so we get

U’z = (UTﬁﬁT) UsvVIvVIV = (UTU) SVIVTV = 0. (54)
It follows that UTU = O, since UTU = UTZV(X)~! = O. Therefore, rewriting (53) gives the SVD of X as

x=[v U E g] m (55)

Furthermore, [[ITL4(UXVT)|ly, < [|X]2 = of 41> S0 X consists of the top 7 singular values of X. It follows that

X = UXVT7 is the best rank-r approximation of X, as desired. O
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Proof of Theorem E.2. We first derive (i) assuming (ii). Suppose Z* = [X*,I'*] is a stationary point of f over © such that
rank(X*) < r. Let Z = [X, I'] be arbitrary in © with rank(X) < r. By stationarity of Z* we have (V f(Z*), Z —Z*) > 0,
so by RSC (44),

Elivee(Z) - vee(Z")|* < f(Z) - F(2"). (56)
Hence f(Z*) > f(Z). Thus Z* is the unique global minimizer of (41). Also, since Z* is a stationary point of f over ©, the

gradient mapping 1(Z* — Ilg(Z* — 7V f(Z*))) is zero. Thus the rest of (i) follows from (ii).

Next, we prove (i). Let Z* = [X*,~4*] € © be arbitrary with rank(X*) < r. Fix an iteration counter ¢ > 1. Our proof
consists of several steps.

Step 1: Constructing an approximating linear subspace A

Let X* = U*X*(V*)T denote the SVD of X*. For each iteration ¢, denote Z; = [X;,~,] and let X; = U;X; V! denote
the SVD of X;. Since X; and X* have rank at most r, all of both U*, U;, V*, and V, have at most r columns. Define a
matrix Us, so that its columns form a basis for the subspace spanned by the columns of [U*, U;_1, Uy]. Then Us, has at
most 3r columns. Similarly, let Us,. be a matrix so that its columns form a basis for the subspace spanned by the columns of
[V*,V;_1, V,]. Then V3, has at most 3r columns. Now, define the subspace

A= {A e R%"*% | span(AT) C span(V3,), span(A) C span(Us,)} . (57)

Note that A is a convex subset of R% %92 Also note that, by definition, X*, X;, X,_; € A. Let I 4 denote the projection
operator onto .A. More precisely, for each X € R%*%2 we have

M4 (X) = U3, UL XV3, VI (58)

Step 2: Constructing auxiliary iterates 7

Let A denote the linear subspace of R% %92 in (57). Denote the projection operator

H/ = HAXRd3Xd4' (59)
Define the following auxiliary iterates
7y = [Xo, Ty] =11 (e (Zi—1 — TV f(Zy))). (60)
By Lemma E.3 and the choice of A, we have
X, =11.(X;) € argmin ||X; —X||p and Z; Z, ;,Z* € A x R%>xd, (61)
X, rank(X)<r
It follows that
|1Ze = Z*||F < |2t — Zillr + 1 Ze — Z¥| ¢ (62)
= |1Xs = Xellp + |1 Ze — 27| (63)
<|X* = Xillp + 120 — 24| ¢ < 21|20 — Z¥]| - (64)

Hence if we can show || Z; — Z*|| is small, then ||Z; — Z*||  is also small.
Step 3. Showing | Z, — Z*|| - is small

Denote the gradient mapping AZ* := Z* — Ilg (Z* — 7V f(Z*))) (Recall that this equals zero if Z* were a stationary
point of f over ®, but we do not make such assumption in this proof). We claim that

1Ze = Z* || < l|Zo—1 — Z*||p + I (AZ*)| (65)

where 1 := max(|1 — 7L|, |1 — Tul|).



Interpretable Feature Extraction by Supervised Dictionary Learning for Identification of Cancer-Associated Gene Clusters

Below we show (65). Using Z* € A x R *94 and linearity of the linear projection IT’, write

Z* =11'(Z*) (66)
=1I'(lle(Z* — 7V f(Z¥))) + ' (Z* — e (Z* — TV f(Z*))) (67)
=II' e (Z* — 7V f(Z*))) + II' (AZ"). (68)

Using the non-expansiveness and linearity of the linear projection IT',

1Z: — 2*|| (69)
H/ H@ Zt 1 — TVf(Zt 1))) (70)
—II' (lg (Z* — TV f(Z*))) + II' (AZ*) .
<NZt—1 =7V f(Zi—1) = Z* + 7V F(Z7)| p + T (AZ")| (71)
<N 1Zi—1 = Z*||F + |1V (AZ*) | F. (72)
Hence in order to derive (72), it is enough to show that
|Z —7Vf(Z) - Z' +7VF(Z)|F <nl|Zi-r — Z%| . (73)

The above follows from the fact that Z; and Z* have rank < r and the restricted strong convexity and smoothness properties
(Definition E.1). Indeed, fix Z,Z' € R%*% x R xds whose first matrix components have rank < r. Since V[ is
continuous,

Z—-71Vf(Z)—Z +7Vf(Z)=(Z-Z)—7(Vf(Z)-V[f(Z)) (74)

= /1 (I-7V*(Z+s(Z' - 2)))(Z—-127")ds. (75)
0

Using the inequality [|AB||r < ||A]l2||Bll»

1Z—7Vf(Z)~Z' +7Vf(Z)|r<  sup 11— 7V2F(Z)||2 [1X = Y| - (76)
Z=[Z1,Z>]: rank(Z,)<r

Since the eigenvalues of V2 f(Z) are contained in [u, L], the eigenvalues of I — 7V? f(Z) are between min(1 — 7L, 1 —7)
and max(1 — 7L, 1 — 7). Hence the right hand side above is at most

nlz -7, (717)
verifying (74). This shows (72).
Step 4: Bounding the error term
From (64) and (65), we deduce
1Ze = Z*||p < 20|Z¢—1 — Z%||p + |TT' (AZ) || (78)

Note that 0 < n < 1/2 if and only if 7 € (2 )5 L) and this interval is non-empty if and only if L/u < 3. Hence for such
choice of 7,0 < 27 < 1, so by a recursive apphcatlon of the above inequality, we obtain

1 *
12~ 2l < @) 20— 2] ¢ + =g | (AZ) . (79)

Note that IT'(AX*, Ay*) = [IT4(AX*), Ay*] and rank(.A) < 3r. Thus by triangle inequality,

[T (AX*, Av*)||p < [T (AX)|[F + |[AY" |7 (80)
< V3P| AX |2 + | Ay . (81)

This completes the proof of (ii). O
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Remark E.4. Note that in (80), we could have used the following crude bound

T (AX*, Ay*) |l < I[AX, Ayl < [AXP[F + |AY* || (82)
< V/rank(AX*)[|AX[|g + [[AY r, (83)

which is also the bound we would have obtained if we choosed the trivial linear subspace A = R%*% in the proof of
Theorem E.2 above. While we know rank(X*) < r, we do not have an a priori bound on rank(AX*), which could be much
larger then /3. A smarter choice of the subspace .A as we used in the proof of Theorem E.2 ensures that we only need the
factor 1/3r in place of the unknown factor +/rank(AX*) as in (80).

Remark E.5. Suppose f is not only rank-restricted smooth, but also L’-smooth on © for some L' > 0. Then we have

f(Zy) = f(Z7) < (IVF(Z)) + Lp') p' | Zo — Z*|| ¢ (84)
for ¢ > 1. Indeed, note that
1
‘f(zn) - f(Z*)| = ‘A <Vf (Zn + S(Z* - Zn))v Zn - Z*> ds (85)
1
< / IS (Z + $(Z° — Z)|| |20 — 2| ds (86)
1
< / (I F@Z) + L | Zon — Z41)) | Zon — 2] ds 87)
<(IVF(Z| + L' Z,, — Z*|)) |Z,, — Z*]|. (88)

Then (84) follows from Theorem E.2 (ii).

Remark E.6. A similar approach as in our proof of Theorem E.2 was used in (Wang et al., 2017) for analyzing a similar
problem without auxiliary covariates and under a stronger assumption that the gradient V f(Z*) is small. Our analysis is
for a more general setting but is a bit simpler and gives a weaker requirement L/u < 3 for the well-conditioning of the
objective f instead of L/u < 4/3 in (Wang et al., 2017).

F. Proof of Theorems 2.1 and C.5

In this section, we prove the main results for SDL, Theorems 2.1 and C.5. In the main text, we explained that our algorithm
for SDL (Alg. 1) is exactly an LPGD for the reformulated problems (9) (for SDL-H) and 10 (for SDL-H). Therefore, our
proofs of Theorems 2.1 and C.5 are essentially verifying the well-conditioning hypothesis L/x < 3 of the general result for
the LPGD algorithm (Theorem E.2).

F.1. Proof of Theorem 2.1 and its generalization

We begin with some preliminary computations. Let a, denote the activation corresponding to the sth sample (see (1)). More
precisely, a, = ATx, +~vTx/, for the filter-based model with A € RP**, and a, = A[:, s] + 7%, with A € R"*". In
both cases, B € RP*™ and v € R?*"., Then the objective function f in (2) can be written as

FABy) == | =) 1y = j)loggi(as) | + &l Xaua — BlF + A (|AIF + IV]1F) (89)
s=1 j=0
=y log<1+Zh(as[c])>—Zl(yi:j)logh(as[j]) - (90)
s=1 c=1 7j=1
&l Xaaa = BlIE + A (|AIE + 1V]7) . ©n

where a,[i] € R denotes the ith component of a; € R”. In the proofs we provided below, we compute the Hessian of f
above explicitly for the filter- and the feature-based SDL models and use Theorem E.2 to derive the result.

For each label y € {0, ..., k} and activation a € R", recall the negative log likelihood

Uy, a) =log Yy h(ac) = Y 1iy— logh(ac) (92)
c=1

c=1
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of observing label y from the probability distribution g(a) defined in (5). An easy computation shows

vag(ya a) = h(y’a) = (hlv ey hn) € Rﬁv vavaTg(yaa) = H(y’a) = (h”) € RHXHa (93)
where
o=t = (i~ =95 ) o
o [ W'(ey)l(i=4)  R(ai)h'(ay) L (May)  (W(ay)?
i = (1 S TR BT SC h<ac>>2> Homi=a) ( Way)  (a)? ) | &)

Proof of Theorem C.4 for SDL-W. Let f = F denote the loss function for the filter-based SDL model in (2). Fix
Z1,Zy € ©® C RU1xdz x Rdsxds Gince the constraint set @ is convex (see Algorithm 1), tZ; + (1 — t)Zy € © for all
t € [0,1]. Then by the mean value theorem, there exists t* € [0, 1] such that for Z* = t*Z; + (1 — t*)Z,,

[(Z2) = f(Z1) = (V[(Z1), Z3 — Zn) (96)
= (vec(Zy) — vec(Zy))" Viee(z)Vvec(z)r f(Z7) (vec(Zz) — vec(Zy)) . 7
Hence, according to Theorem E.2, it suffices to verify that for some p, L > 0 such that L/u < 3,
7 oo L
51 j vvcc(Z)vvec(Z)Tf(Z ) j 51 (98)

for all Z* = [X, ] with rank(X*) < r.

To this end, let a, denote the activation corresponding to the sth sample (see (2)). More precisely, a, = ATx, +~7x/, for
the filter-based model we consider here. We discussed that the objective function f in (2) can be written as (89). Denote

_ T
a, = ATx, +77x, = {<[A[:’j-]} [Xf}>; J= ]-7~"7"{:| € R, (99)

Y17 [
——
=ty =,
where we have introduced the notations u; € RP+OX1 for j = 1,...,k and ¢, € R®P+0*1 for s = 1,...,n. Denote
U := [ug,...,u,] = [A || 4] € RPT*9D*% which is a matrix parameter that combines A and v. Also denote ® =
(@1,...,0,) € RPTOX™ that combined feature matrix of n observations. Then we can compute the gradient and the
Hessian of f above as follows:
Vyee(w) (U, B) = (Z h(y,, UT¢,) @ ¢s> +2Avec(U), Vaf(U,B)=26(B ~Xgu)  (100)
s=1
Vyee(0) Vyee(w)r £(U, B) = (Z H(y,, UTo,) @ ¢S¢Z> + 2\ (i gns (101)
s=1
vvec(B)vvec(B)Tf(IJa B) = 2€Ipn7 vvec(B)vvec(U)Tf(Ija B) =0, (102)

where ® above denotes the Kronecker product and the functions h and H are defined in (94).

Recall that the eigenvalues of A ® B, where A and B are two square matrices, are given by A;u;, where A; and 4 run over
all eigenvalues of A and B, respectively. Hence denoting Hy := Zivzl H(y,,UT¢,,) ® ¢,¢" and using C.1-C.2, we
can deduce

. . -1 T ] . ] v *
Muin(HU) = i (7 @27) | i A (H(ys, 6, U)) 2 nba™ 2 np* >0, (103)
—1 T . - + + *
Amax(Hu) < Mhmax (n >d )K?S%UAM (H(ys,d)s,U)) < nétat <nL*. (104)

This holds for all A, B,~ such that rank([A, B]) < r and under the convex constraint (also recall that U is the vertical
stack of A and -y). Hence we conclude that the objective function F' in (2) verifies RSC and RSM properties (Def. E.1) with
parameters p = min(2£, 2\ + nu*) and L = max(2¢, 2\ + nL*). This verifies (98) for the chosen parameters y and L.
Then the rest follows from Theorem E.2. O
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Next, we prove Theorem C.4 for SDL-H, the exponential convergence of Algorithm 1 for the feature-based SDL.

Proof of Theorem C.4 for SDL-H. We will use the same setup as in the Proof of Theorem C.4 for SDL-W. The main part
of the argument is the computation of the Hessian of loss function f := F for SDL-H in (9), which is straightforward but
substantially more involved than the corresponding computation for the filter-based case in the proof of Theorem C.4. Let
a; := A[:, s] +~vTx], denote the activation corresponding to the sth sample, where in this case A € R**" (see (2)). Denote

T
L., 5]l [A[, 8] ;
a, = I Al s] + Tx;::{ [“" , , s j=1,...,k| €R" 105
sl + YT L X ’ (10>
7 7
Note that in the above representation we have concatenated A [:, s] with the auxiliary covariate x/,, whereas previously for
SDL-W (see (99)), we concatenated A[:, j] with classificaiton parameter ~[:, 5] for the auxiliary covarate for the jth class’.

A straightforward computation shows the following gradient formulas:

vvec( )f A B?’Y (Zh y57as ;) + 2)\V€C(7)a (106)
h(yla ap)

Viee(a)f(A,B,7y) = <Zh Ys,as) @ L[, ]) + 2\ vec(A) = + 2Avec(A), (107)
h(y'm an)

Vef(A,B,vy) =2¢6(B — Xya) (108)

vvec('y)vvec Tf(A B,"Y (ZH ysvas) ®x ( ) > + 2)\Iqm (109)

s=1

vvec(A)vvec(A)Tf(‘Aa Bv '7) = dlag (H(ylv al)a cey H(yna an)) +2X1.n (110

vvec(‘y)vveC(A)Tf(Av B, 7) = [I:I(yla al) ® Xlla CE I:I(yla an) ® X/n:| € Rraxnn (111)

vvcc(B)vvec(B)Tf(*A7 B7 ’7) = 2§Ipn> vvcc(B)vvec(V)Tf(‘A> B7 7) =0. (112)

From this we will compute the eigenvalues of the Hessian Hy, of the loss function f. In order to illustrate our computation
in a simple setting, we first assume x = 1 = ¢, which corresponds to binary classification x = 1 with one-dimensional
auxiliary covariates ¢ = 1. In this case, we have

Hieoe := Vvec(A,‘y,B) vvec(A,'y,B)Tf(‘Av B, 7) (113)
_H(yl, a1) + 2)\ . O . O ?:L(yl, al)x'l O 1
0 h(yz, 32) +2\ ... 0 h(yz, ag)xé @)
_ . . . . . B . . , (114)
0 e 0 h(yn,an) + 2 h(yn,an)z), o
h(y1,a1)z) h(yz,a2)xhy ... h(yn,an)z), (% " h(ys, as)(:r's)z) +2\x O
i @) @) . @) o 261 pn |
where we denoted & = h;; € R and zl, = x, € Rfors =1,...,n. In order to compute the eigenvalues of the above

matrix, we will use the following formula for determinant of 3 x 3 block matrix: (O representing matrices of zero entries
with appropriate sizes)

A B O
det [ | BT C O] | =det(C—BT"A™'B)det(A)det(D). (115)
O O D
2This is because for the feature-based model, the column Al:,s] € R" for s = 1,...,n represent a feature of the sth sample, whereas

for the filter-based model, A[:, j] for j = 1, ..., x represents the jth filter that is applied to the feature x, of the sth sample.
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This yields the following simple formula for the characteristic polynomial of Hie,:

det(Heey — AI) (116)
n . ys7 as ( ’ )2 n .
h s, s)( —+2)\—)\ 26— ) h(ys,as) +2X— A (117)
(Z y g TR (26 >H(<y ) )
2)‘h(ys as)(x’,) T (s
_ MY 8 NTS)” L oy 0 ) (26 — AP (h s,as—|—2)\—)\). (118)
(Z; Fo) + 22 (26— ) 1;[1 (¥s,2s)
By Assumption C.3, we know that ﬁ(ys, ag) > Oforall s = 1,...,n, so the first term in the parenthesis in the above display
is lower bounded by 2\ — A. It follows that
)\min(erat) 2 mln(2§7 a + 2>\)7 (1 19)
Amax (Hreat) < max (2A +at Y (@)% 2, ot + 2A> : (120)
s=1

Now we generalize the above computation for general «, ¢ > 1 case. First note the general form of the Hessian as below:

Hreat := Vyee(a,~,B) Vvec(a,~,B)7 [ (A, B,7) (121)
[H(y1,a1) 4 221, ) 0 o 0 (I:-:I(y1, a;)@xi)T O ]
0 H(y2,a2) + 2L, ... 0 (H(yz,a2) @ x5)7 O
= 0 » 0 E(yn,an) + 221 (F(yn, an) © x,)7 o |- (2
Hyna)ox  Hipa)ox .. Hega)ex, e HEme)oxi)t o
i %) o) o) 0" 2%, |

Note that for any square symmetric matrix B and a column vector x of matching size,

Bexx" — (Bex)"(B+Al) '(Be®x)= (B—B(B+) 'B)® (xx") (123)
— (B—l-)\l)*lB@xxT (124)
<IT®xx’, (125)

where the last diagonal dominace is due to the Woodbury identity for matrix inverse (e.g., see (Horn & Johnson, 2012)).
Hence by a similar computation as before, we obtain

det(nHgey — AI) (126)
= det (Z 2\ ( (ys,as) + 2AI ) ' H(y,,a,) @ x,(x0)T + (21 — )\)an> (26n — \)P" (127)
X H det ( (¥s,a5) + (21 — )\)IK) . (128)

It follows that

Amin (Hpear) > min(2€, ™ + 2X), (129)

Amax(Heea) < max (2 + a ndmax (n~ XXy, 26, ot + 2)) . (130)
Then the rest follows from Theorem E.2. O
F.2. Proof of Theorem C.5

In this section, we prove the statistica estimation guarantee for SDL in Theorem C.5. Recall the generative model for SDL
in (20). Our proof is based in Theorem 2.1 we have established previously and standard matrix concentration bounds, which
we provide below:
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Lemma F.1 (Generalized Hoeffding’s inequality for sub-gaussian variables). Let X1, ..., X,, denote i.i.d. random vectors
in R such that E[X[i]?/K?] < 2 for some constant K > 0 forall 1 < k < nand 1 < i < d. Fix a vector
a=(ay,...,an)" € R™ Then foreacht > 0,

P Xg|| >t|] <2d —— 131

(Z“’“ ‘ >— o szzrars) (30
k=1 1

Proof. Follows from Theorem 2.6.2 in (Vershynin, 2018) and using a union bound over d coordinates. O

Lemma F.2. (2-norm of matrices with independent sub-gaussian entries) Let A be an m X n random matrix with
independent subgaussian entries A;; of mean zero. Denote K to be the maximum subgaussian norm of A;, that is, K > 0
is the smallest number such that E[exp(A;;)?/K?] < 2. Then for each t > 0,

P (|All2 > 3K (vVm +vn+1)) < 2exp(—t?). (132)
Proof. See Theorem 4.4.5 in (Vershynin, 2018). O

Now we prove Theorem C.5 for SDL-W.

Recall that the (L2-regularized) normalized negative log-likelihood of observing triples (y;, x;,x}) fori = 1,...,n is given
as
1
L= F(ABY) + 555 [ X = Cllr + 0, (133)

where c is a constant and F' is as in (9) or (10) depending on the activation type with tuning parameter £ = Tiz

Proof of Theorem C.5 for SDL-W. Let L,, denote the Ly-regularized negative joint negative log likelihood function in
(133) without the last three terms, and define the expected loss function £,,(Z) := Ee, e/ 1<i<n [£n(Z)]. We omit the
constant terms in these functions. Define the following gradient mappings of Z* with respect to the empirical f,, and the
expected f,, loss functions:

1 - 1 _
GZr,7)=—-(Z" —Nle (Z" —7VL,(Z))), G(Z*,7):=- (Z* —1Ile (Z* — TV,C,L(Z*))) . (134)
T T
It is elementary to show that the true parameter Z* is a stationary point of £—A([|A[|%+||7[|%) over ©® C RP* (rtn) y RIXK,
Hence we have G(Z*,7) = 2\[A*, 0, ~*], so we may write
G(Z*,7) = G(Z*,7) — G(Z*,7) + 2\[A*,0,v*] (135)
1 _
== e (Z* — 7VL,(Z")) — He (Z* — 7VL,L(Z"))] + 2A[A*, 0, ] (136)

First, suppose Z* — 7V L,,(Z*) € © (In particular, this is the case whe @ equals the whole space). Then we can disregard
the projection Ilg in the above display so we get

G(Z*,7) — 2M[A*,0,~7*] = VL, (Z*) — VL(Z*) =: [AX*, Av*]. (137)

According to Theorem 2.1, it now suffices show that G(Z*, 7) above is small with high probability. We use the notation
U =[AT AT, U* = [(AN)T, (v, @ = [py,. .., 0, = XL, XL ] (see also the proof of Theorem 2.1). Denote
a, = UT¢, and a* = (U*)T ¢, for s = 1,...,n and introduce the following random quantities

Q1 ::Zh(ysaa;) ER", Q ::ZES eRP, Q3 ::Zels ERY, Qu:=l[e1,...,&,] RV (138)
s=1 s=1

s=1
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Recall that
Viee(u)£n(U, B) <;h (ys, as) @ @, ) +2Avec(U), VBL,(U,B)= 202 (B — Xata),
VVec(U <ZE |: yS7 as & ¢ :|> + 2>‘ VeC(U)a vBﬁ_n (U7 ) 20_2 (B B*)

where h is defined in (94). Note that

- @) oWGEDY
2 0.2 | = | (552" fay ~ o ”h(am))a_a;‘? 1]
(T T )
T+ > h@ld) T+ 5 Al Aal) ), T )

so the above vanishes when a; = a¥. Hence

E [h(ys, a) ® d)s} =E {E [h(ys, a}) ® ¢,

Hence we can compute the following gradients

vvec(A) (['n - En)(Av B, 7) =

vvec('y) (Ln — Zn)(Ay B,v) =

s=1
_ . 2
VB(En—Ln)(A,B,’Y):Fz)(B _Xdata): ﬁ[El,...,En
_ 2 —
VA(Ly = £2)(AB.y) = 55 2_26

It follows that (recall the definition of Y,.xin C.3)

n

> (B[] +eo)h(ys,al)”

s=1 2

n
ZB* h(ys,a})" |+ eh(ys,a))”
2 s=1

< IIB*IIoo 1Qul5 + Yanax [[Q2ll; -

IVA(Ln = L0) (A", B, 77|l =

IN

2

Similarly, we have
1Ay P = V5 (Ln = L) (A B[P = [[Viec) (Ln — Ln) (A", B, 77)]l2
< qA loo 1@ ll2 + grmax [1Qs]l,

Using the fact that ||[A, B]||2 < ||A]|2 + || B]|2 for two matrices A, B with the same number of rows, we have

IAX* [y = [[VA(Ln = Ln) (A" B* )|, + |V (L — Ln) (A", B*, )|,

N 2
< 1B oo 1Qull + 7 Ymax Q215 + 55 1Qalls -

Thus, combining the above bounds, we obtain

4
S = V3P| AXF o + 1A < cillQull,

i=1

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)
(152)

(153)

(154)

(155)
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where the constants ¢y, ..., cq4 > 0 are given by

_ 2v/3r

= (156)

o1 = (VBrIB oo + X 1)« 02 = Yo (44 VEF) . 3 = @ e

Next, we will use concentration inequalities to argue that the right hand side in (155) is small with high probability and
obtain the following tail bound on S:

P (S > cyv/nlogn +3Co(/p+ vn+ c\/logn)) < %, (157)

where C' > 0 is an absolute constant and ¢ > 0 can be written explicitly in terms of the constants we use in this proof.
Recall that for a random variable Z, its sub-Gaussian norm, denoted as || Z|| 5, , is the smalleset number X > 0 such that
Elexp(Z?/K?)] < 2. The constant C' > above is the sub-gaussian norm of the standard normal variable, which can be
taken as C' < 36e/ log 2. Using union bound with Lemmas F.1 and F.2, for each ¢, ¢ > 0, we get

P (S > (c1+c2+c3+ca)t +3Co(\/p+vn+t)) (158)
3
< (Zﬂm(minz > t)) + P (Jnull2 > 3Co(yB+ v+ 1) (159)
= _t2 _ 42 _t2 o
< 2k exp (C’lsz2n> + 2pexp ((CU)2p2n> + 2qexp (WL) + exp(—(t')). (160)

Indeed, for bounding P(Q; > t), we used Lemma F.1 with sub-Gaussian norm C; = K = yax/+/l0g 2 for the bounded
random vector h(ys, a;) (see Ex. 2.5.8 in (Vershynin, 2018)); for P(Q2 > t) and P(Qs > t), we used Lemma F.1 with
K = Co and K = Co’, respectively; for the last term involving Q4, we used Lemma F.2 with K = C'/o. Observe that
in order to make the last expression in (158) small, we will chose ¢t = c5+/nlogn and t' = c5+/logn, where c5 > 0 is a
constant to be determined. This yields

IP’(S > cy/nlogn + 3Co(\/p+ \/ﬁ—i-c\/logn)) <n°, (161)

where ¢ = c5 Z?zl ¢; and ¢g > 0 is an explicit constant that grows in c5. We assume c5; > 0 is such that ¢ > 1. This
shows (157).

To finish, we use Theorem 2.1 to deduce that with probability at least 1/n,

.

12 — Z*||r < p"|Zo — Z"||F + T, (c\/ﬁlogn +3Co(vp+Vn+ C\/logn)) (162)
2\T N N

+ 1_p(IIA ll2 + [Iv*1IF) (163)

Note that 7 < 5 with L = max(2¢, 2\ +nL*) > nL*, s0 7 < 5~ So this yields the desired result.

Second, suppose Z* — TV F(Z*) ¢ ©. Then we cannot direcly simplify the expression (135). In this case, we take the
Frobenius norm and use non-expansiveness of the projection operator (onto convex set ®):

1 _
|G(Z*, 7)||F = - |[Me (Z* = 7VL,(Z*) — e (Z* — 7VLL(Z))]]| (164)
<||VLL(Z*) = VLL(Z¥)| F (165)
< [AX* |7 + [[AY* | F- (166)

According to Remark E.4, we also have Theorem E.2 (and hence Theorem 2.1) with v/3r||AX*||2 replaced with || AX*|| .
Then an identical argument shows

S = [|AX ||r + [AY]lF < cllQull2 + c2l|Qzll2 + 3]1Qs]l2 + callQallF, (167)
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where the constants cq, ..., cq4 > 0 are the same as in (156). So we have

i
120~ 2l < 9" 20 — 217 + (5 + 20(JA" 2 + A7) (168)

Then an identical argument with the inequality ||Q4||r < /min(p, n)||Q4||2 shows

P (S' > (c1+ 2+ ¢+ ca)t +3Ca(y/p+ v +t')y/min(p, n)) (169)
3
Cly/p++n+t
< <ZP(||QZ»|2 > t)) +P(|Q4||2 SO AR )> , (170)
i=1 g
and the assertion follows similarly as before. [

It remains to show Theorem C.5 for SDL-H.

Proof of Theorem C.5 for SDL-H. The argument is entirely similar to the proof of Theorem C.5 for SDL-W. Indeed,

denoting a, = A[;, s] + 7%/, for s = 1,...,n and keeping the other notations the same as in the proof of Theorem C.5,
we can compute the following gradients
Va(ln —L:)(A,B,v) = [h(y1,a1), ..., h(yn, a,)] (171)
Vvec(’y)(‘c -L ) A B,"}’ <Zh ysyas s> (172)
. 2 . 2
VB(‘Cn — En)(A7 B,’Y) = @(B — Xdala) = @[81, . 761’7,] (173)
VA(Ln = Ln)(A,B,7) = 5 Ze (174)

Hence repeating the same argument as before, using concentration inequalities for the following random quantities

Q = [h(y1.a1),... ., h(yn,a,)] €RP?, Qi=) e, €R?, (175)
Q3= €, €RY, Qyi=[e1,...,e,] € RV, (176)
one can bound the size of G(Z*, 7) with high probability. The rest of the details are omitted. O

G. Auxiliary computations
Remark G.1. Denoting £ = {'n and A = X'n, the condition L/ in Theorem 2.1 for SDL-W with A = 0 reduces to

L L 3" R .3t 26 —3u* ., 66 —L*
o <
H*<3:(6 5 0N < 5 )u(§> 5 5 <A < 5 177)
* *_ * *_ * *_ * /_ *
g (Lon <§’<3(L LN i TPV Sk (178)
- 4 4 4 2
*7 * /7 * /7 *
u<§’>3(L2“),2§ 63“ <A’<6§2L>. (179)

H. Auxiliary lemmas

Lemma H.1. Fix a differentiable function f : RP x R and a convex set @ C RP. Fix 7 > 0 and
1
G(Z,7) = ;(Z—H@(@-TV}C(O))). (180)

Then for each 8 € ©, ||G(0,7)| < |IVf(0)]-
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Proof. The assertion is clear if [|G(0, 7)| = 0, so we may assume ||G(6,7)|| > 0. Denote 8 := Il (6 — 7V f(8))). Note
that

6 = argmin||0 — 7V f(0) — 0’|, (181)
9/

so by the first-order optimality condition,
O—0+7Vf(0),0 —0)>0 Vo cO. (182)
Plugging in @ = @ and using Cauchy-Schwarz inequality,
T2|G(0,7)|* = 10 - 8]> < 7(Vf(6), 6 —0) < 7|V f(8)|7|G(6.7)]. (183)

Hence the assertion follows by dividing both sides by 72||G(0, )| > 0. O

I. Simulation and Numerical Validation

We numerically verify Theorem 2.1 on a semi-synthetic dataset generated by using MNIST image dataset (LeCun & Cortes,
2010) and a text dataset named ‘Real / Fake Job Posting Prediction’ (fak). All procedures were performed on a 2021
Macbook Air with M1 chip and 16 GB of RAM. For MNIST dataset, we generate low-rank image data by taking a random
linear combination of randomly selected images of digits ‘2’ and ‘5’ and adding some noise.

-+ (£=0.1)
-+ E=1
= (=5
(£=10)
—+— (§=20)

Training loss

Training loss

)| |
0.0 02 04 06 08 1.0 1.2 14 0.0 02 04 06 08 1.0 1.2 14 0 5 10 15 20 25 0 5 10 15 20 25
Elapsed time (s) Elapsed time (s) Elapsed time (s) Elapsed time (s)

(a) MNIST data (b) Job posting data

Figure 3. Training loss vs. elapsed CPU time for Algorithm 1 (with binary logistic classifier) on the semi-synthetic MNIST dataset
(p = 282 =784, ¢ = 0, n = 500, x = 1) for several values of ¢ in log scale. We used L»-regularization coefficient A = 2 and fixed
stepsize 7 = 0.01. Average training loss over ten runs and the shades representing the standard deviation shown.

We validate our theoretical exponential convergence results of Algorithm 1 using Figures 3. Note that the convexity
and smoothness parameters p and L in Theorem 2.1 are difficult to compute exactly. In practice, cross-validation of
hyperparameters is usually employed. For £ € {0.1,1, 5,10, 20} in Figures 3, we indeed observe exponential decay of
training loss as dictated by our theoretical results for Algorithm 1. We also observe that the exponential rate of decay
in training loss increases as £ increases. According to Theorem 2.1, the contraction coefficient is p = (1 — 7u), which
decreases in & since y increases in & (see (16)). The decay for large £ € {10, 20} seems even superexponential.

Here we give more details on the semi-synthetic MNIST data we used in the experiment in Figure 3. Denote p = 282 = 784,
n = 500, ¥ = 20, r = 2, and x = 1. First, we randomly select 10 images each from digits "2’ and ’5’. Vectorizing each
image as a column in p = 784 dimension, we obtain a true dictionary matrix for features Wy x € RPX7 Similarly, we
randomly sample 10 images of each from digits 4" and *7 and obtain the true dictionary matrix of labels Wiy v € RP*".
Next, we sample a code matrix Hy,e € R™*™ whose entries are i.i.d. with the uniform distribution U([0, 1]). Then
the ‘pre-feature’ matrix X, € RP*™ of vectorized synthetic images is generated by W e, x Hie. The feature matrix
Xgata € RP*™ is then generated by adding an independent Gaussian noise ¢; ~ N (0, 021, to the jth column of X, for
j=1,...,n, with 0 = 0.5. We generate the binary label matrix Y = [y1,...,y,] € {0, 1}1*" (recall x = 1) as follows:

Each entry y; is an independent Bernoulli variable with probability p; = (1 +exp (— ﬁgue’YWEUCVYde[g z])) , where
/Btrue,Y = [17 *1]'



