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Abstract
Protein-ligand docking is an important task in
drug discovery and structure-based drug design.
Generative deep learning models have recently
emerged as a new approach to sampling protein-
ligand conformations and have shown state-of-the-
art results. However, these models are often solely
based on patterns observed in a given dataset and
are not based on the underlying physical process.
We propose FusionDock, a diffusion model for
protein-ligand docking which incorporates physi-
cal priors, such as classical mechanics principles,
known molecular interactions, and constraint sat-
isfaction. The aim of such a physics-informed
model is to reduce overfitting, improve general-
ization, and to generate physically-meaningful
structures. We demonstrate the performance of
our model across a large test set and show that it
outperforms existing deep learning methods.

1. Introduction
Protein-ligand docking is an important task in drug discov-
ery and design that aims to predict the binding mode of
a ligand to its protein receptor. Docking is widely-used
and can be utilized in many different workflows including
rational drug design, virtual screening, and toxicity predic-
tion (Sethi et al., 2019). It can be done with or without
knowledge of a specific protein binding site, termed focused
docking and blind docking respectively. While most dock-
ing programs are intended for focused docking, they can be
adapted for blind docking by pairing them with a pocket
prediction tool (Masters et al., 2023a).

This docking process is often divided into two main compo-
nents: searching and scoring. The search function is tasked
with sampling ligand poses within the binding site while the
scoring function is tasked with ranking these samples. Exist-
ing search functions are largely based on well-studied sam-
pling methods such as Monte Carlo and genetic algorithms
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paired with a physics-based energy potential (Altuntaş et al.,
2016). The same potential is often utilized by the scoring
function in order to estimate the energy of each pose and
rank low-energy poses towards the top.

A new generation of docking methods have begun to emerge
which utilize deep learning (DL) models to replace the
search and/or scoring functions. However, these models are
often solely based on patterns observed in a given dataset
and are not based on the underlying physics. Therefore, they
are subject to overfitting and do not obey known physical
laws. To address this shortcoming, we propose FusionDock,
a DL model for protein-ligand docking which incorporates
physical priors. By doing so, our model is able to learn
from a smaller set of training samples and generalize better
to new systems. We demonstrate the effectiveness of our
model on a large test set of protein-ligand complexes and
show that it outperforms existing state-of-the-art models.

2. Background and Related Work
2.1. Scoring Functions

The first applications of deep learning models to docking
aimed at replacing the scoring function. These methods
used an existing docking program to generate the poses but
improved the results by reranking them. Several different
networks have been applied in this way including convolu-
tional neural networks (Ragoza et al., 2017; Mahmoud et al.,
2020) and graph neural networks (Wang et al., 2021; Town-
shend et al., 2021). Additionally, many DL models have
been designed with the aim of predicting binding affinity
given a protein-ligand complex, which can also be utilized
for the purpose of re-ranking. While these approaches have
proven to be powerful in improving the scoring of poses,
they do not address the sampling problem.

2.2. Generative Models

More recently, deep learning models targeting the sampling
problem have begun to emerge. In McNutt et al. (2021), they
extended their DL scoring function to perform Monte Carlo
sampling in order to generate new ligand poses. In Ganea
and Huang et al. (2021), the authors proposed an SE(3)-
equivariant model for rigid protein-protein docking named
Equidock. The same group extended this methodology and
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Figure 1. Overview of the physics-informed diffusion model utilized by FusionDock. The interaction network takes input graphs of the
ligand and protein interaction sites and updates their hidden representation based on the local environment. These embeddings can be
used to generate a force on each atom, pushing the ligand to form specific interactions while avoiding clashes with the protein surface.
These atomic forces can then be used to calculate translation, rotation, and torsion updates to the ligand. When applied over several time
steps, this process can generate docked poses from arbitrary starting configurations.

developed Equibind, a model for blind protein-ligand dock-
ing (Stärk et al., 2022). Then Corso et al. (2022) released
another blind docking model using a novel diffusion net-
work called DiffDock. DiffDock presented state-of-the-art
results for the blind docking task, outperforming previous
methods by nearly double. However, since these models
aim to solve blind docking directly, they can not be applied
in a focused docking context and therefore cannot be com-
pared to most existing methods. Given that most targets
have known, well-defined binding sites, it may be preferable
to separate the binding site identification and docking tasks.
Finally, in Masters et al. (2023b) they proposed a graph
neural network which is trained to predict intermolecular
protein-ligand distance matrices. While this method shows
strong results for focused docking, it is not an end-to-end
solution and is only capable of generating a single pose.

2.2.1. DIFFUSION MODELS

Diffusion models are a powerful class of generative deep
learning model capable of producing high-fidelity molec-
ular structures. Several other molecular diffusion models
have been introduced, for example in the applications of
protein structure prediction (Anand & Achim, 2022), de
novo ligand generation (Peng et al., 2023), and learning
molecular force fields (Arts et al., 2023). Diffusion models
are built-on the theory of non-equilibrium thermodynamics
(Sohl-Dickstein et al., 2015) and generate samples using
Langevin dynamics, a popular integrator for simulations of
physical systems. Diffusion models define a Markov chain
process, termed the forward diffusion process, which incre-
mentally adds noise to true data samples x0 ∼ q(x) until

they become indistinguishable from a standard normal dis-
tribution xT ∼ N (0, I). The amount of noise added at each
step is controlled by a variance schedule with T time steps,
typically defined by a decaying cosine function. The DL net-
work is then tasked with reversing this process by predicting
the noise added to an intermediate sample xt. Therefore,
by sampling from a standard normal distribution, we are
able to model the reverse diffusion process and generate
realistic samples which follow the original data distribution
q(x). Although developed independently, diffusion models
are closely related to score-based models where a network
is trained to estimate the Stein score of a sample, defined as
∇x log q (x). In order to apply score-based models on high-
dimensional data with non-Euclidean manifolds, Song et al.
(2019) proposed to add a pre-defined noise to the data and to
predict the Stein score of these noised samples, mimicking
the diffusion model approach. Thus, while diffusion models
can theoretically be trained via maximum likelihood, or by
minimizing the evidence lower bound, a better approach
seems to be via score-matching, where the loss is simply
the mean squared error between the predicted and true Stein
scores (Ho et al., 2020).

3. Methodology
3.1. Physical Priors

3.1.1. INTERACTION SITE PROTEIN REPRESENTATION

Rather than using purely data-driven input features, such
as protein sequence embeddings, FusionDock uses a physi-
cally meaningful protein representation based on a molecu-
lar force field. This was accomplished by running molecular
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dynamics simulations of protein structures in explicit water
followed by hydration site analysis. This procedure gener-
ates interaction sites which occupy the solvent-exposed sur-
face and accessible binding pockets, akin to a whole-protein-
based pharmacophore. The interaction sites are encoded
with water occupancy and thermodynamic data following
the protocol of WATsite (Hu & Lill, 2014), pharmacophore
features (e.g. hydrogen-bonding, hydrophobicity, charge,
etc.) following the protocol of PyRod (Schaller et al., 2019),
and geometric features (e.g. curvature) following the pro-
tocol of CurPocket (Liu et al., 2020). Collectively these
features describe the chemical and physical profile of each
interaction site and are highly correlated with binding of spe-
cific chemical groups. While these features are expensive
to compute, they can be re-used each time a new ligand is
docked to an existing protein, as is often the case in virtual
screening workflows.

3.1.2. INTERNAL COORDINATE CONSTRAINTS

An issue that often arises in the generation of molecular con-
formers with deep neural networks is that there is no guar-
antee that the conformer is physically plausible and doesn’t
contain artifacts such as exaggerated bond lengths and an-
gles. In addition, we know empirically that bond lengths
and angles often have low variability and equilibrium values
are easily attainable. Therefore, a ligands conformation can
be approximated via it’s torsion angles, ensuring that bond
lengths and angles remain constrained. This approximation
has the added benefit of using a reduced set of degrees of
freedom needed to model the conformation (M << 3N
for molecules with N atoms and M torsions). This ap-
proach has already been introduced to diffusion models
(Jing et al., 2022) and applied in the context of molecular
docking with state-of-the-art results (Corso et al., 2022). We
adopt the score-matching framework established by Corso
et al. where the diffusion process is defined on the product
space P = T3 × SO(3) × SO(2)M where T(3) ∼= R3 is
the 3D translation group, SO(3) is the group defining 3D
rigid rotations, and SO(2) is the group defining 2D rotations
about each torsion.

3.1.3. PHYSICS-GUIDED DIFFUSION

By understanding the properties of the translation, rotation,
and torsion scores, we can make rational design decisions to
include physical priors in their prediction. A major insight
is that the scores are theoretically equivalent to a set of non-
equilibrium forces being applied to the ligand (Wu et al.,
2022; Arts et al., 2023). This enables us to 1) calculate the
predicted scores in the same way you would calculate the
force for the physical system, and 2) to enforce attractive
and repulsive constraints for the interaction sites and protein
surface respectively.

In the context of the translation of a rigid-body system, it
is well-established in classical mechanics that the resultant
force is the sum of individual forces acting on each par-
ticle in the system. Similarly, the rotational force can be
described by a torque about the center-of-mass and the tor-
sion force can be described as the difference between the
torques applied on each side of the rotatable bond. Using
this approach to calculate the scores establishes an explicit
connection to the known physics, and enables more accurate
prediction of these variables.

By using the protein interaction sites described earlier, a
useful property emerges for modelling the reverse diffusion
process. Since ligand atoms should directly overlap with
their paired interaction site, the diffusion model can be de-
signed to produce scores which attract ligand atoms towards
likely interaction sites. By enforcing this directional con-
straint, we can prevent repulsive scores between the ligand
and interaction sites which could lead to overfitting on train-
ing systems. Similarly, we utilize an explicit repulsive force
between the ligand and protein surface to ensure complexes
do not contain high-energy steric clashes. This is accom-
plished by detecting ligand atoms which overlap with the
protein and applying an additional force, pushing the ligand
away from the surface and towards the nearest interaction
site. Finally, since the ligand conformation is not only dic-
tated by interactions with the protein, but also the ligand
conformation itself, additional ligand-ligand information is
used to predict the torsion score.

3.2. Diffusion Model

The diffusion model takes a 3D graph of the interaction
sites, a 3D graph of the ligand (at time t), and the current
time step variance σt as input. The interaction network uses
graph message passing between protein and ligand nodes
to iteratively update their hidden representation. Since the
maximum displacement a ligand can have is dictated by σt,
the edges connecting the protein and ligand nodes must be
less than 3σt + 4 Ångstrom. The attractive force can then
be calculated by a multi-layer perceptron (MLP) network
which takes connected protein and ligand node embeddings
and predicts a non-negative magnitude which is multiplied
by the corresponding edge vector to obtain the force. These
forces are pooled by summation on each ligand node to
obtain the atomic force prior. This can be formalized by
Equation 1 where hi and hj are the embeddings for ligand
atom i and interaction site j respectively, ϕ is the MLP
network, and vij is the edge vector pointing from i to j.

fi =
∑
j

vij
∥vij∥

·max(0, ϕ(hi, hj , σt)) (1)

On the other hand, the repulsive force is disentangled from
the network and has no learnable weights. Calculating the
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repulsive force between the ligand and protein atoms di-
rectly can counter-act the action of the attractive force, neg-
atively impacting performance. Therefore, we reformulate
the repulsive force as an additional attractive force, pushing
overlapping ligand atoms towards their nearest interaction
site. This works because these sites approximate the solvent
exposed volume and do not clash with the protein. This
force can be formalized as f∗i = k · vij where vij is the
edge vector pointing from atom i to it’s closest interaction
site j, and k is the force constant hyperparameter (k = 0.5
here). Rather than combining the two atomic force priors
together, they are applied independently throughout the re-
verse diffusion process. While the attractive force is applied
once at each time step, the repulsive force can be applied
multiple times in order to ensure convergence.

3.3. Auxiliary Models

3.3.1. POCKET PREDICTION

Recent deep learning models targeting the blind docking
task attempt to solve the problem directly without any prior
knowledge of the binding pocket location (Stärk et al., 2022;
Corso et al., 2022). Assessment of these models has shown
that their performance largely arises from their ability to
predict the correct pocket, and not the docking task itself (Yu
et al., 2023; Masters et al., 2023a). Therefore, FusionDock
opts to separate the pocket prediction from the docking task.
Since we have already generated interaction sites which
occupy the protein pockets and contain features correlated
with ligand binding, we can leverage these same features
for the pocket prediction task. To this end, we trained a
classification model to predict interaction sites within 2Å of
any native pose atom. To cluster the output probabilities into
pocket predictions, a 10Å sphere is placed on each site and
the likelihood of sites within the sphere is summed together.
At each clustering step, the site with the highest sum is
selected as the next pocket center and all contributing sites
are removed from subsequent steps. This straightforward
method produces good results on the test set, outperforming
widely-used pocket predictions such as P2Rank (Krivák &
Hoksza, 2018) (See Appendix Section A.3).

3.3.2. SCORING MODEL

The aim of the scoring model is to rank the sampled poses
such that the top-ranked poses resemble the most likely bind-
ing modes. In this case, the score is a scalar value predicted
for each pose and should not be confused with the Stein
scores predicted by the diffusion model. Interaction sites
and sampled ligand poses are featurized in the same way as
the diffusion model and provided as input graphs. Edges
connect ligand atoms and interaction sites if they are within
2Å of each other. The scoring model feeds these edge fea-
tures through a MLP network to generate embeddings which

are pooled by summation on each node. This process is rea-
peated with another MLP to produce a single embedding
for each pose, which is provided to a final layer to predict
the score. The model is trained as a binary classifier, where
poses < 2.5Å RMSD are considered positive, > 5.0Å are
considered negative, and intermediates are excluded.

4. Results and Discussion

Figure 2. Results for blind docking task on the test set. Left:
RMSD (Å) distribution box plots (outliers not shown). Right:
Success rate (Fraction of poses < 2Å). All data reported in this
figure comes from the top-10 ranked poses. Additional results of
the top-1, top-3 and top-5 ranked poses are presented in Appendix
Section A.6. Note that EquiBind only produces a single pose, so
their results remain the same in each figure.

FusionDock attained a median RMSD of 3.1Å and success
rate of 39% among the top-10 ranked poses, outperforming
existing deep learning methods by several fold. DiffDock
attained a median RMSD of 5.0Å and success rate of 7%
while EquiBind faired the worse with a median RMSD of
7.7Å and success rate of just 1%. This ranking of methods
is consistent among the top-1, top-3, and top-5 results as
well. DiffDock likely underperforms on this test set due to
the sequence-similarity-based split. Since DiffDock relies
on sequence embeddings as the protein representation, it
performs poorly when there is a domain shift with novel
target sequences. On the other hand, the interaction sites
used by FusionDock is largely independent of a specific
protein system and allows the model to generalize under
this same domain shift. The dataset also featured a large
test:train ratio, which assesses the models’ ability to gener-
alize from less training data. The poor performance of deep
learning docking methods on this test set further highlights
the difficulty of generalization and the need to make physics-
informed models which incorporate priors and explainable
mechanisms rather than a black-box solution.
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5. Conclusion
We have presented a novel deep learning diffusion model
for protein-ligand docking that outperforms existing deep-
learning-based docking methods, and achieves state-of-the-
art results on a rigorous test set. We demonstrated that
incorporating physical priors into the model leads to more
accurate results, while reducing the need for large training
sets and decreasing model complexity. Our method gener-
ates realistic protein-ligand complexes that are stable, with
no clashes, stretched bonds or angles. Overall, our method
represents a significant advance in the field of protein-ligand
docking and provides a promising direction for future re-
search in this area.
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A. Appendix
A.1. Dataset and Data Preparation

PDBbind (v2020), which contains 19,443 protein-ligand complexes, was used as the dataset for training and evaluation
of docking methods. However, many of these complexes contain the same or closely related protein receptors leading
to redundancy for many targets. In addition, as mentioned in the main text, the generation of our protein input features
is expensive since it involved molecular dynamics simulations. Thus, we opted to select a set of representative protein
structures for which to run the simulations. This was done by grouping PDBs by their UniProt ID and randomly selecting a
representative structure from the group. In the case where no UniProt ID could be identified, the PDB was treated as its own
representative structure. Following this process, the dataset contained a total of 4,240 representative protein structures.

A.1.1. SIMILARITY SPLIT

In order to construct a test set that can evaluate a models ability to generalize to new targets, we opted for a sequence-
similarity-based splitting strategy. To this end, MMSeqs2 (Steinegger & Söding, 2017) was used to compute the pairwise
sequence similarity of all proteins. The alignment was performed using default parameters, except for coverage which
was set at 0.05, meaning at least 5% of query and target sequences are covered by the alignment. MMSeqs2 can produce
asymmetric sequence alignments for multiple reasons and therefore the similarities were symmetrized by taking the larger of
the two values. The split was created by selecting a PDB at random, recursively finding all related structures with similarity
above a given threshold, and adding them to the split. This creates disjoint training and test sets with a maximum sequence
similarity between them. In this work, a sequence similarity cutoff of 35% was used, and the splitting process continued
until the split reached roughly 75-25 train-test ratio. Setting the similarity cutoff any lower resulted in test sets much larger
than intended. The test split used in this work contains 1,087 systems, leaving 3,153 remaining for training and validation.

A.1.2. MOLECULAR DYNAMICS SIMULATIONS

As described in Section 3.1.1, molecular dynamics simulations were run in order to compute the protein input representation.
Proteins were prepared by removing co-crystallized small molecules, waters, and ions followed by Schrödinger’s Protein
Preparation Wizard (Madhavi Sastry et al., 2013). Schrödinger’s Desmond was used to perform the simulations following
it’s standard NPT relaxation protocol (Bowers et al., 2006). The production simulations were run at 300K for 20ns each,
with a large positional restraint of 50.0 kcal mol−1 Å−1 applied to all heavy atoms. Snapshots were taken every 20ps,
resulting in 1,000 frames per simulation to be used for analysis.

A.1.3. INTERACTION SITE GENERATION

The molecular dynamics simulations were aligned and re-centered using VMD (Humphrey et al., 1996). The method used to
generate the interaction sites builds upon previous hydration site analysis tools (WATsite and PyRod) which analyze explicit
water behavior during the trajectory to predict hydration sites. However, the protocols were modified in order to predict a
single set of sites which densely covers the whole protein surface. To this end, the position of water molecules were tracked
throughout the trajectory and a 3D grid with resolution of 0.25Å was used to accumulate their occupancy. The grid was then
clustered using the same hierarchical clustering algorithm implemented in WATsite with a cluster radius of 1.0Å. While
hydration site analysis tools typically only cluster the highest occupied sites, we extended the clustering process to include
all sites with at least 20% occupancy. This cutoff is slightly higher than the bulk occupancy, leading to the desired dense
surface coverage (See Figure 4.I). The clustering process also assigns water molecules throughout the trajectory to the site
they overlap with. This information can then be used to calculate thermodynamic quantities, pharmacophore features, and
other properties (Summarized in Table 1). Some of these features describe a specific microstate (e.g. presence of a hydrogen
bond) while others describe the ensemble of states (e.g. entropy). Since we need our input features to be in the latter form,
we apply several different functions in order to describe the distribution. For continuous values, mean µ and variance σ
statistics are used. For binary values, mean µ and average state time t̄ are used. Average state time is the average time spent
occupying the state before exiting the state again and is meant to differentiate between fast and slow transitions. Some
additional features were included which encode information about the sites’ environment and neighboring features. One
feature places a series of spheres around each interaction site and calculates the fraction of the spheres’ volume occupied by
the sites, referred to here as interaction site density. The other feature takes the same series of spheres and sums the WATsite
features (occupancy, enthalpy, entropy, and free energy) of the sites inside each sphere. These engineered features are more
correlated with ligand binding than the base features and demonstrate strong predictive power (See Figure 3).
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Methodology Feature Description Statistic Size

WATsite
(Hu & Lill, 2014)

Water Occupancy v 1
Water Enthalpy µ, σ 2
Water Configuration Entropy v 1
Water Free Energy v 1

PyRod
(Schaller et al., 2019)

Trapped Water (more than 2 H-bonds) µ, t̄ 2
Hydrogen-Bond Donor (single, double, either) µ, t̄ 6
Hydrogen-Bond Acceptor (single, double, either) µ, t̄ 6
Mixed Donor-Acceptor µ, t̄ 2
Charge (positive, negative) µ, σ 4
Uncharged Environment µ, t̄ 2
Cation-Pi Interaction µ, σ 2
Hydrophobicity (w/ and w/o scaling by burriedness) µ, σ 4

CurPocket
(Liu et al., 2020)

Histogram of protein curvature using
µ, σ 14different sphere radii r ∈ [4, 6, 8, 10, 12, 14, 16]

Additional

Histogram of interaction site density using
µ, σ 12different sphere radii r ∈ [2, 4, 6, ..., 20, 22, 24]

Histogram of cumulative WATsite features using
µ, σ 48different sphere radii r ∈ [2, 4, 6, ..., 20, 22, 24]

Total Features 107

Table 1. Overview of interaction site features derived from protocols of WATsite, PyRod, and CurPocket. As described in the methodology,
some pre-processed features describe individual states (MD frames) while others describe the collective ensemble of states. Therefore, the
statistic column is used to indicate what statistical functions were used to produce the interaction site feature. v indicates the value already
describes the ensemble and is used directly, µ indicates the mean, σ indicates the variance, and t̄ indicates the average state time.
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Figure 3. Normalized distributions of select interaction site features which are correlated with drug binding. Sites within 2Å of native
pose heavy atoms were used to separate features into positive (blue; n=61,709) and negative (red; n=4,329,334) sets. Features are also
normalized (i.e. z-score) by calculating the mean and variance across the full dataset.
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Figure 4. Example of generated interaction sites using PDB 4KS3. I) All interaction sites shown in teal with 40% opacity. II) Only sites
with score > 10 from the pocket prediction model shown, highlighting the ability to isolate druggable pockets. III) Selected interaction
sites overlapping with ligand atoms, and their associated pharmacophore features. Site A overlaps with an alkyl group and is characterized
by low polarity and high hydrophobicity. Site B overlaps with a carbonyl group and often acts as a hydrogen bond acceptor. Site C
overlaps with a triazole group and is characterized by high positive charge and a propensity to form hydrogen bonds. Site D overlaps with
a hydroxyl group and often acts as a hydrogen bond donor. Sites E and F overlap with the carboxylic acid oxygens and have high negative
charge and often acts as a hydrogen bond acceptor.

A.1.4. LIGAND FEATURIZATION

Feature Description Encoding Size
Element† One-Hot 12

Number of Bonds One-Hot 5
Number of Rings One-Hot 6

Ring Size One-Hot 6
Formal Charge One-Hot 3

Number of Hydrogens One-Hot 4
Hybridization Type One-Hot 5

Chirality Type One-Hot 4
Atomic Radius None 1

MMFF Partial Charge Z-score 1
MMFF Parameters Present Boolean 1
Hydrogen-Bond Acceptor Boolean 1

Hydrogen-Bond Donor Boolean 1
Hydrogen-Bond Donor and 1 Hydrogen Boolean 1
Hydrogen-Bond Donor and 2 Hydrogens Boolean 1

Hydrogen-Bond Acceptor and Donor Boolean 1
Hydrophobic Group Boolean 1

Positively Charged Group Boolean 1
Negatively Charged Group Boolean 1

Total Features 55
Table 2. Overview of ligand atom features used for the diffusion and scoring models. Positions are also encoded into the ligand graph and
are used to generate edge distance embeddings, but are not included here since they change throughout the diffusion process. Bonds are
included as edge features with a one-hot encoding of five types (single, double, triple, aromatic, other). † Limited to the 11 most common
elements in dataset, plus a miscellaneous class.
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A.1.5. DATA PROCESSING

In order to isolate the diffusion process to a given pocket, we define a sphere centered on the pocket center which is extended
to contain the full possible binding site. The radius of the sphere is determined by the largest radius of the ligand plus a
constant buffer of 10Å. The largest radius of the ligand is determined by taking the maximum value of the upper-bound
distance matrix computed using the ETKDG method (Riniker & Landrum, 2015). This ensures that the value does not
depend on a given molecular conformation. Then, protein atoms and interaction sites within the sphere are selected as input
to the model. The interaction sites include the features listed in Table 1, as well as the druggability score given by the pocket
prediction model. The protein atoms are not encoded with features, except for the position and empirical atomic radius of
each atom. These points are only included to detect overlapping atoms and guide the diffusion to prevent steric clashes.
Interaction sites are connected if they are within 10Å of each other, forming a locally connected graph. Since the position of
the interaction sites remains constant, the distance is pre-computed and used as an edge feature.

A.2. Model Details

A.2.1. DIFFUSION MODEL

Interaction Layers The first layers utilized by the diffusion model are the graph interaction layers. These layers take the
input graphs of the ligand and interaction sites and generate new node embeddings which are aware of their context. These
layers are message-passing neural networks based on the tensor product convolution layer introduced by Corso et al. (2022).
Messages are computed by taking the tensor products of node features with a spherical harmonic representation of the edge
vector. In each layer, messages are first passed from ligand nodes to other ligand nodes (determined by covalent bonding
plus any additional nodes within 5Å). Then messages are passed between interaction sites based on the locally connected
edges of sites within 10ÅḞinally, messages are passed from the ligand to the interaction sites and vice versa. This study uses
a stack of three interaction layers, with batch normalization, dropout of 0.5, and spherical harmonics up to a degree of 2.
This produces dense embeddings of length 32 which are used by subsequent networks to predict the scores.

Atomic Force Priors In order to generate the scores, we take advantage of the explicit connection between physical forces
and the Stein score. We know that the translation and rotation of a molecule does not arise from interactions between a
theoretical centroid and the environment directly. Rather, the translation arises from the coupled movement of covalently
bonded atoms. Therefore, rather than predict a force acting on the centroid directly, we chose to compute a force for each
ligand atom individually and use these to inform the score prediction. Additionally, we can enforce that these forces are
attractive and point towards the interaction sites accessible at a given time step. To this end, a network is provided the edges
linking the ligand and interaction sites, and predicts a non-negative scalar value. This output corresponds to the magnitude
of the attractive force and is multiplied by the edge vector in order to obtain the force vector. Then each of the force vectors
originating from a given atom are summed together to produce a single force for each ligand atom. This was formalized in
the main text as Equation 1.

In order to provide the model a physical prior which respects high-energy nature of steric clashes, we include another atomic
force prior designed to repell atoms overlapping with the protein. As described in the main text, the naive implementation
of this repulsion introduces issues with the sampling process. Therefore, we reformulate this repulsive force as another
attractive force pointing towards the nearest interaction site. Overlapping atoms are found by computing the nearest protein
atom to each ligand atom and determining if they are closer than 1.5-times their combined empirical atomic radii. Then the
nearest interaction site to each overlapping atom is identified and used to calculate the force f∗i = k · vij where vij is the
edge vector pointing from atom i to it’s closest interaction site j, and k is the force constant hyperparameter (k = 0.5 here).
This force is applied separately from the diffusion score in order to ensure convergence. The number of iterations rises from
0 to 10 throughout the reverse diffusion process according to Equation 2, rounded to the nearest integer.

n(t) = 5 · (cos(π(t+ 1)) + 1) (2)

Translation Score Head The translation score can be calculated by simply taking the sum of atomic forces generated
in the previous section, multiplied by a scaling factor. We can express the unscaled translation score as s̃tra =

∑N
i=1 fi

where N is the number of nodes in the ligand graph (number of heavy atoms) and fi is the force on node i. The scaled
translation score can then be expressed by Equation 3 where ∥.∥ is the l2 norm, σt is the diffusion process variance at time t,
ψ is a neural network layer which takes the current translation magnitude and scales it according to an embedding of the
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variance. This function maintains the same direction as the original force vector but rescales it according to the current
timestep in the diffusion process. The translation score stra can then be used directly for score matching (See Section A.2.1)
and outperforms purely data-based methods (See Figure 6).

stra =
s̃tra · ψ (∥s̃tra∥ , σt)

∥s̃tra∥ · σt
(3)

Rotation Score Head To generate a rotation force, also referred to as the torque, we can utilize the same atomic force
prior generated earlier. First, the torque of each atoms force is calculated about the center-of-mass by taking the cross
product τi = ri × fi where ri is the vector drawn from the center-of-mass to atom i and fi is the force being applied on
atom i. These torques can then be summed to obtain the unscaled rotation score s̃rot =

∑N
i=1 τi. Similar to what was done

in the translation score calculation, the rotation score is scaled using σt and a final neural network layer. This is formalized
in Equation 4 where srot is the scaled rotation score, ψ is another neural network layer, and σ̄t is the norm of SO3 scores
with variance σt.

srot =
s̃rot · ψ (∥s̃rot∥ , σt) · σ̄t

∥s̃rot∥
(4)

Torsion Score Head To compute the torsion score we use a combination of the atomic force prior and the pseudotorque
method introduced by (Jing et al., 2022). While the atomic force prior is adept at predicting the magnitude of a torsion
change, it struggles to predict the correct sign. Therefore, the prior is used to calculate the magnitude and the pseudotorque
method is used to calculate the sign, which are combined to produce the unscaled torsion score. In order to calculate the
physical torque of a particular torsion from the atomic force prior, we first align each torsion along the z-axis by removing
the torsion center and applying a rotation matrix. Then the atoms and forces are projected onto the xy-plane and torques
are calculated. This is formalized in Equation 5 where ri and fi are the position and force of atom i, Rm and cm are the
rotation matrix and center of torsion m which aligns along the z-axis, and pmi is a binary variable indicating which side of
torsion m atom i belongs to. The scaled torsion score can then be calculated using Equation 6 where the absolute value of
τm is multiplied by the pseudotorque ηm and scaled by the square root of the SO2 score norm with variance σt.

τm =
∑
i

pmi · (Rmri × (Rm(fi − cm))) (5)

storm = |τm| · ηm ·
√
σ̄t (6)

Training and Inference The diffusion model can be trained via score-matching, which is simply the mean squared error
between the predicted scores and the ground truth scores calculated from the pre-defined noise. While other paradigms for
training a diffusion model exist, they often underperform or are considerably more expensive to compute (Ho et al., 2020).
This is trivial for the translation score, since it can be easily calculated from a standard normal distribution as stra = −x

σ2
t

where x is the noise added from the pre-defined Gaussian with σt variance. However, since the rotations and torsions are
defined by the SO(3) and SO(2) groups respectively, it is more difficult to predict their score. To address this, Corso et
al. 2022 pre-computes the distributions’ PDF and scores at different σt and uses linear interpolation at runtime in order to
by-pass expensive computations.

For validation of changes to the model and optimization of hyperparameters, 5-fold cross-validation was used with random
splits. While this does not provide the same robustness and assessment of generalization as splitting by sequence, it was not
practical to split the training dataset using the same method used to split the test set. The diffusion model was trained for
500 epochs, with an initial learning rate of 0.001 decaying with a factor of 0.7 and patience of 30. The scoring was trained
for 50 epochs with the same learning rate schedule.

During inference, 128 poses were sampled per pocket using 30 time steps. The ligand is initialized with uniformly random
orientation and torsions and placed in the center of the pocket. Additional experiments showed no meaningful difference
when the ligand is initialized with a RDKit conformation or random translation.
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A.3. Pocket Prediction

The pocket prediction model utilizes the same protein interaction site features as the diffusion model. These features are
combined with 10 ligand descriptors and a 256-bit Circular molecular fingerprint calculated using RDKit (Rogers & Hahn,
2010). The complete list of features can be seen in Table A.3. The CatBoost model was trained using AutoGluon with the
best quality preset (Erickson et al., 2020). In Figure 5, the results are shown in comparison to another widely-used pocket
prediction tool, P2Rank. In this analysis, we define success as having a predicted pocket center within 12Å of the native
pose center. We also explored defining the cutoff as a function of molecule size but found no correlation between molecule
size and distance.

Feature Description Size
Interaction Sites 107(See Appendix Section A.1.3)
256-bit Circular 256Molecular Fingerprint

Molecular Weight 1
Radius of Gyration 1

Total Polar Surface Area 1
Computed LogP 1

Molecular Refractivity 1
Number of Rotatable Bonds 1

Number of H-Bond Acceptors 1
Number of H-Bond Donors 1

Number of Rings 1
Number of Amide Bonds 1

Total Features 373

Table 3. Overview of input features for the pocket
prediction model. Radius of gyration was com-
puted using one randomly generated molecu-
lar conformer. The rest of the descriptors are
conformation-independent.

Figure 5. Pocket prediction results of FusionDock (teal) compared
against a widely-used tool, P2Rank (red). Success rate is the
fraction of systems with a predicted pocket center within 12Å of
the native pose center.

A.4. Scoring Model

The scoring model evaluates each of the generated poses and gives it a score in order to be ranked. It aims to rank the
near-native poses towards the top of the list while ranking less likely poses towards the bottom. The scoring model is
provided graphs of the ligand pose and interaction sites, using the same featurization as the diffusion model. Interaction sites
within 2Å of each ligand atom are considered nearby and are linked by edges. The network does not use the same interaction
layers as the diffusion model to avoid overfitting and unnecessarily complexity. Instead, small MLP networks embed the
node features of the ligand and interaction sites independently. Then edge features are created between ligand atoms and
other nearby ligand atoms, accounting for internal molecular strain which may penalize the score, and between ligand atoms
and interaction sites, accounting for intermolecular interactions and the contributions of binding. These edge features are
fed thru another MLP network to produce an embedding with size 128. These embeddings are pooled by summation so that
each node is now described by a single embedding and passed through another MLP network. These node embeddings are
pooled by summation once more so that each pose is described by a single embedding. Finally, these molecular embeddings
are passed thru one last layer in order to produce a scalar score output. The output is passed through a sigmoid activation
function in order to assign a probability to each pose. The model was trained using the binary cross entropy loss where
positive samples were those with RMSD < 2.5Å and negative samples are those with RMSD > 5Å. Samples with RMSD
between 2.5 and 5Å were excluded since they are ambiguous and could be considered either a good or bad binding mode.
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A.5. Evaluation

A.5.1. BENCHMARK PROGRAMS

In order to draw a fair comparison between FusionDock and the two deep-learning-based docking methods, we retrained
each of the models with the training dataset constructed in Section A.1.1. The test set employed by these papers follows a
temporal split and therefore would be unfair to compare against our method since the representative protein features would
appear in both the training and test data. Although, since this dataset is considerably smaller (n=373) and does not take
receptor similarity into account, we believe our split offers the same if not better comparison among docking methods.
DiffDock was retrained following the same protocol described in the paper, except for batch size which was set to 8 (from
16) to prevent batches which don’t fit into memory. First, the small score model was trained for 300 epochs. Then, the
confidence model was trained for 100 epochs using samples from the small score model. Finally, the large score model was
trained for 850 epochs and used with the confidence model in order to generate samples. DiffDock training was distributed
over four GeForce RTX 3090, while EquiBind and FusionDock were trained using a single RTX 3090 GPU. EquiBind was
retrained for 574 epochs, due to the early stopping implemented in their training protocol. EquiBind only generates a single
pose and therefore all top-k results are the same for this method.

A.5.2. METRICS AND REPORTING

The models were assessed primarily on the RMSD (Å) of the top-ranked poses from each program, and the fraction of
top-ranked poses under 2.0Å, referred to as success rate. All RMSD values are reported in Ångstrom and calculated using
the symmetry-aware functionality of sPyRMSD (Meli & Biggin, 2020) which accounts for symmetric chemical groups.

A.6. Additional Results
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DiffDock

FusionDock

Figure 6. Correlation plots of true and predicted scores from DiffDock and FusionDock on the test set. 10 noised samples were evaluated
for each test set system to ensure convergence. It is important to note that the translation diffusion schedule differs between these two
methods. Since DiffDock attempts to solve blind docking directly by docking to the full protein structure, their maximum translation
sigma is 19Å while FusionDock uses just 6Å. The diffusion schedule for rotations and torsions is the same between both models. It is
clear that while translation and rotation scores can reach moderately good correlation (R=[0.53-0.65]), predicting torsion scores remains a
larger challenge (R=0.21). We speculate that this is due to the large penalty incurred when the wrong sign (direction) is predicted when
the sign is ambiguous (e.g. change in torsion near ±π or when there is molecular symmetry).
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Figure 7. Results for blind docking task on the test set. Top row: RMSD (Å) distribution box plots (outliers not shown). Bottom row:
Success rate (Fraction of poses < 2Å). Figure shows results for top-1, top-3, top-5, and top-10 ranked poses from each program. Note
that EquiBind only produces a single pose.
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