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Abstract
Inferring gene regulatory networks (GRNs) from
single-cell gene expression datasets is challeng-
ing, as current methods are often designed heuris-
tically for specific datasets and lack the flexibility
to incorporate additional information or compare
against other algorithms. To overcome these chal-
lenges, we introduce Probabilistic Matrix Factor-
ization for Gene Regulatory Network Inference
(PMF-GRN), to learn scalable GRNs from single-
cell expression data. PMF-GRN allows the in-
troduction of additional experimental evidence
into prior distributions and uses variational in-
ference to facilitate hyperparameter search for
principled model selection and direct compari-
son to other generative models. We evaluate our
method against state-of-the-art GRN inference al-
gorithms using the model organism S. cerevisiae,
benchmarking against database-derived gold stan-
dard interactions. On average, PMF-GRN infers
GRNs more accurately than current state-of-the-
art single-cell GRN inference methods and offers
well-calibrated uncertainty estimates, as it per-
forms GRN inference in a probabilistic setting.

1. Introduction
An essential problem in systems biology is to extract infor-
mation from genome wide sequencing data to unravel the
mechanisms controlling cellular processes within heteroge-
neous populations (Hecker et al., 2009). Gene regulatory
networks (GRNs) that annotate regulatory relationships be-
tween transcription factors (TFs) and their target genes (Chai
et al., 2014) have proven to be useful models for stratifying
functional differences between cells (Nachman et al., 2004;
Karlebach & Shamir, 2008; Äijö & Lähdesmäki, 2009; Bur-
dziak et al., 2019) that can arise during normal development
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(Allaway et al., 2021), responses to environmental signals
(Jackson et al., 2020) and dysregulation in the context of
disease (Ciofani et al., 2012; Ji et al., 2019; Yosef et al.,
2013).

GRNs cannot be directly measured with current sequencing
technology. Instead, methods must be developed to piece
together snapshots of transcriptional processes in order to
reconstruct a cell’s regulatory landscape (Mercatelli et al.,
2020). Modern GRN inference methods exploit single-cell
RNA-seq, a technique which has enabled the characteriza-
tion of gene expression profiles within heterogeneous popu-
lations (Saliba et al., 2014), vastly increasing the potential
for GRN inference algorithms (Lähnemann et al., 2020; Ak-
ers & Murali, 2021). Several regression-based methods have
been proposed to learn GRNs from single-cell RNA-seq and
single-cell ATAC-seq to capture regulatory relationships at
single-cell resolution (Hu et al., 2020). So far, these integra-
tive approaches to GRN inference have been successfully
implemented using regularized regression (Skok Gibbs et al.,
2022), self-organizing maps (Jansen et al., 2019), tree-based
regression (Van de Sande et al., 2020), and Bayesian Ridge
regression (Kamimoto et al., 2023).

Although regression-based methods for inferring GRNs
from single-cell data are available, they still suffer from sig-
nificant limitations (Äijö & Bonneau, 2016). Firstly, these
methods heavily rely on the input data used to learn the
GRN, causing issues when new data becomes available or
new assumptions are required in the model. This can result
in inaccurate predictions if the new data or assumptions are
not well integrated into the existing model, leading to the
need for a complete re-design of the algorithm, which can
be costly and time-consuming. Additionally, these methods
typically focus on inferring a single GRN that explains the
available data, without performing hyperparameter search
to determine the optimal model. This can lead to heuristic
model selection, with no justification for the approach taken
or evidence that the best possible model has been selected.
Regression-based GRN inference algorithms that do not
perform hyperparameter search may miss important data
features or overemphasize irrelevant ones, leading to inaccu-
rate or incomplete models. Moreover, these methods do not
provide an indication of their uncertainty about the predic-



A Variational Inference Approach to Single-Cell Gene Regulatory Network Inference using Probabilistic Matrix Factorization

tions that they make. Finally, several regression-based GRN
inference algorithms struggle to scale optimally to the size
of typical single-cell datasets, limiting inference to small
subsets of data or requiring large amounts of computational
time.

In this study, we introduce PMF-GRN, a novel approach that
uses probabilistic matrix factorization (Mnih & Salakhutdi-
nov, 2007) to infer gene regulatory networks from single-
cell gene expression and chromatin accessibility informa-
tion. This approach extends previous methods that applied
matrix factorization for GRN inference with Microarray
data, to address the current limitations in regression-based
single-cell GRN inference. We implement our approach in
a probabilistic setting with variational inference, which pro-
vides a flexible framework to incorporate new assumptions
or biological data as required, without changing the way
the GRN is inferred. We use a principled hyperparameter
selection process with the Evidence Lower Bound (ELBO)
objective function, which optimizes the parameters of our
probabilistic model for automatic model selection. In this
way, we replace heuristic model selection by comparing a
variety of generative models and hyperparameter configu-
rations before selecting the optimal parameters with which
to infer a final GRN. Our probabilistic approach provides
uncertainty estimates for each predicted regulatory interac-
tion, serving as a proxy for the model confidence in each
predicted interaction, which can be useful in the situation
where there are limited validated interactions or a gold stan-
dard is incomplete. We perform inference on a GPU, by
using stochastic gradient descent (SGD), allowing us to
easily scale to a large number of observations in a typical
single-cell gene expression dataset. Unlike many existing
methods, PMF-GRN is not limited by pre-defined organism
restrictions, making it widely applicable for GRN inference.

To demonstrate the novelty and advantages of PMF-GRN,
we apply our method to two single-cell gene expression
datasets for the model organism S. cerevisiae. We evaluate
our model’s performance in a normal inference setting, as
well as with cross-validation and noisy data. To assess the
accuracy of predicted regulatory interactions, we evaluate
all regulatory predictions using Area Under the Precision
Recall Curve (AUPRC) against database derived gold stan-
dards. Our findings show that the uncertainty estimates are
well-calibrated for inferred TF-target gene interactions, as
the accuracy of predictions increases when the associated
uncertainty decreases. In comparison to three state-of-the-
art regression-based methods for inferring single-cell GRNs,
namely the Inferelator (Skok Gibbs et al., 2022), Scenic
(Van de Sande et al., 2020), and Cell Oracle (Kamimoto
et al., 2023), our method demonstrates an overall improved
performance in recovering the true underlying GRN.

2. Methods
The goal of our PMF approach is to decompose observed
gene expression into latent factors, representing TF activity
(TFA) and regulatory interactions between TFs and their
target genes. These latent factors, which represent the un-
derlying GRN, cannot be measured experimentally, unlike
gene expression. We model an observed gene expression
matrix W ∈ RN×M using a TFA matrix U ∈ RN×K

>0 , a
TF-target gene interaction matrix V ∈ RM×K , observation
noise σobs ∈ (0,∞) and sequencing depth d ∈ (0, 1)N ,
with N the number of cells, M the number of genes and K
the number of TFs. We further decompose V as the prod-
uct of a matrix A ∈ (0, 1)M×K , representing the degree
of existence of an interaction, and a matrix B ∈ RM×K

representing the interaction strength and its direction:

V = A⊙B,
where ⊙ denotes element-wise multiplication. An overview
of the graphical model is shown in Figure 1.

We assume that these latent variables are mutu-
ally independent a priori, i.e., p(U,A,B, σobs, d) =
p(U)p(A)p(B)p(σobs)p(d). For the matrix A, prior hy-
perparameters represent an initial guess of the interaction
between each TF and target gene which need to be provided
by a user. These can be derived from genomic databases or
obtained by analyzing other data types, such as the measure-
ment of chromosomal accessibility, TF motif databases, and
direct measurement of TF-binding along the chromosome.

Figure 1. PMF-GRN graphical model overview. Input single-cell
gene expression W is decomposed into latent factors U and V ,
representing TF activity and TF-gene interactions respectively.
V is further decomposed into A and B, representing the degree
of existence of interaction, and the strength and direction of an
interaction, respectively. Information obtained from chromatin
accessibility data or genomics databases is incorporated into the
prior distribution for A. Additional latent variables are included to
model observation noise σobs and sequencing depth d, in order to
better model our observed single-cell gene expression input data.
The observations, W , result from a matrix product UV ⊤.
We assume noisy observations by defining a likelihood
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over the observations with the level of noise σobs, i.e.,
p(W |U, V = A⊙B, σobs, d).

Given this generative model, we perform posterior infer-
ence over all the unobserved latent variables; U , A, B, d
and σobs. We then use the posterior over A to investigate
TF-gene interactions. Exact posterior inference with an
arbitrary choice of prior and observation probability distri-
butions is, however, intractable. We address this issue by
using variational inference (Ranganath et al., 2014; Blei
et al., 2017), where we approximate the true posterior distri-
butions with tractable, approximate (variational) posterior
distributions.

We minimize the KL-divergence DKL(q∥p) between the
two distributions with respect to the parameters of the vari-
ational distribution q, where p is the true posterior distri-
bution. This allows us to find an approximate posterior
distribution q that closely resembles p. This is equivalent to
maximizing the evidence lower bound (ELBO) i.e. a lower
bound to the marginal log likelihood of the observations W :

log p(W ) ≥EU,A,B,σobs,d∼q(U,A,B,σobs,d)

[log p(W |U, V = A⊙B, σobs, d)

+ log p(U,A,B, σobs, d)

− log q(U,A,B, σobs, d)].

The mean and variance of the approximate posterior over
each entry of A, obtained from maximizing the ELBO, are
then used as the degree of existence of an interaction be-
tween a TF and a target gene and its uncertainty, respectively.
For more details about the PMF-GRN model, see Appendix
A.

3. Results
3.1. PMF-GRN Inference in Eukaryotes
To demonstrate PMF-GRNs ability to infer informative and
robust GRNs, we use two single-cell RNA-seq datasets
from the model organism S. cerevisiae. We perform three
experiments using two independently collected single-cell
RNA-seq datasets in S. cerevisiae (Jackson et al., 2020;
Jariani et al., 2020) to test PMF-GRN and compare our per-
formance against three state-of-the-art GRN inference meth-
ods, the Inferelator (AMuSR, BBSR, StARS) (Skok Gibbs
et al., 2022), Scenic (Van de Sande et al., 2020), and Cel-
lOracle (Kamimoto et al., 2023). In the first experiment,
we infer a GRN for each of the two single-cell datasets and
average the posterior means of A to simulate a ”multi-task”
GRN inference approach for building the final combined net-
work. Using AUPRC, we show that PMF-GRN outperforms
AMuSR, StARS, and Scenic, while performing competi-
tively with BBSR and CellOracle (Figure 2). To provide a
baseline for each method in the scenario where data cannot
be cleanly separated into tasks, we combine the two expres-
sion datasets into one observation before inferring a GRN.
This baseline demonstrates a large performance decrease

for BBSR, indicating that the method may be limited to
gene expression data that is organized into tasks. This could
present challenges when attempting to infer GRNs in more
complicated organisms where cell-types or conditions are
less easily defined.

Figure 2. GRN inference in S. cerevisiae. Consensus network
AUPR using gold standard network. Performance of each al-
gorithm denoted by colored dot. The baseline for each method
(dashed line), demonstrates the performance when the expression
data is combined into one task. Two negative controls, no prior
information (black) and shuffled prior information (gray), are in-
ferred to ensure reliable results.
In the second experiment, we implement a 5 fold cross-
validation approach to establish a baseline for each model.
In the context of GRN inference, cross-validation is particu-
larly important because it helps us assess the performance of
PMF-GRN in predicting TF-target gene interactions based
on limited data, which is often the case in experimental
settings. We first combine the two S. cerevisiae single-cell
RNA-seq datasets into one observation matrix for simplicity.
To perform cross-validation, the gold standard is divided
into an 80%− 20% split, where a network is inferred using
80% of the gold standard as prior-known information, and
evaluated using the remaining 20%. We repeat this cross-
validation process five times using different random splits of
the gold standard to obtain meaningful results. We observe
that PMF-GRN outperforms Scenic and CellOracle, while
achieving competitive performance to BBSR and StARS
(Fig. 3A in A). We note that for this experiment, we are
unable to implement the AMuSR algorithm as it is a multi-
task inference approach that requires more than one task
(dataset).

Finally, in the third experiment, we demonstrate the robust-
ness of each GRN inference method against noisy prior
information. To do so, we infer GRNs where increasing
amounts of noise have been added to the input prior-known
information. Here, we show that as noise increases, PMF-
GRN’s AUPRC decreases similarly to CellOracle, while
on average, performing better than BBSR, StARS and Cel-
lOracle, demonstrating that it is one of the most robust
approaches to inferring accurate GRNs from noisy priors
(Fig. 3B in A).

3.2. Advantages of PMF-GRN
Existing methods almost always couple the description of
the data generating process with the inference procedure
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used to obtain the final estimated GRN (Skok Gibbs et al.,
2022; Kamimoto et al., 2023; Van de Sande et al., 2020).
This ad hoc nature of model construction and inference algo-
rithm design often leads to the lack of a coherent objective
function that can be used for proper hyperparameter search,
as well as model selection and comparison, presenting the
challenge of determining and selecting the optimal model
in a given setting.

The proposed PMF-GRN framework decouples the genera-
tive model from the inference procedure, enabling a single
inference procedure through (stochastic) gradient descent
with the ELBO objective function above, across a diverse
set of generative models. Inference can easily be performed
in the same way for each model. Through this framework,
it is possible to define the prior and likelihood distributions
as desired with the following mild restrictions: we must be
able to evaluate the joint distribution of the observations
and the latent variables, the variational distribution and the
gradient of the log of the variational distribution. The use
of SGD in variational inference facilitates significant com-
putational advantage when performing GRN inference on
very large single-cell datasets without any constraint on the
number of observations. This approach is further sped up
by using modern hardware, such as GPUs.

Under this probabilistic framework, we perform model selec-
tion, such as choosing distributions and their corresponding
hyperparameters, in a principled and unified way. Hyperpa-
rameters can be tuned with regard to a predefined objective,
such as the marginal likelihood of the data or the posterior
predictive probability of held out parts of the observations.
We can further compare and choose the best generative
model using the same procedure. This framework allows us
to encode any prior knowledge via the prior distributions of
latent variables. For instance, we incorporate prior domain
knowledge about TF-gene interactions as hyperparameters
that govern the prior distribution over the matrix A. If prior
knowledge about TFA is available, this can be similarly
incorporated into the model via the hyperparameters of the
prior distribution over U .

As our approach is probabilistic by construction, inference
also estimates uncertainty without any separate external
mechanism. These uncertainty estimates can be used to
assess the reliability of the predictions, i.e., more trust can
be placed in interactions that are associated with less un-
certainty. We verify this correlation between the degree of
uncertainty and the accuracy of interactions in the experi-
ments. Overall, the proposed approach of PMF for GRN
inference is scalable, generalizable and aware of uncertainty,
which makes its use much more advantageous compared to
most existing methods.

4. Discussion
In this paper, we present a framework for probabilistic ma-
trix factorization, optimized using automatic variational
inference, for inferring GRNs from single-cell expression
data. In contrast with previous methods, our framework
decouples the model that defines the data generation process
from the inference procedure. This flexibility facilitates
incorporating various sequencing datasets and modeling as-
sumptions into the model without defining a new inference
prodecure, which has previously been the case. Further-
more, PMF-GRN provides a principled approach to model
selection and hyperparameter configuration by using the
same objective function and inference procedure across all
models.

We demonstrate sucessful GRN inference in S. cerevisiae
and compare our results to GRNs inferred by the Inferelator,
Scenic and CellOracle, with respect to a gold standard. We
find that PMF-GRN recovers consistent and competitive
GRNs when learning a single-task or multi-task network,
performing cross-validation, and inferring GRNs from noisy
priors. In contrast to existing GRN inference methods, our
model provides well-defined uncertainty estimation in addi-
tion to point estimation of GRNs. We evaluate these uncer-
tainty estimates as provided by our model, by computing the
AUPRC for inferred TF-target gene interactions correspond-
ing to different levels of posterior uncertainty. We find that
the AUPRC increases as the posterior variance decreases,
demonstrating that when our model is more certain about
its estimates, it produces better rankings of TF-target gene
interactions compared to when it is uncertain, indicating that
our model is well-calibrated. For downstream experimental
validation, biologists could therefore place more trust in
model estimates that have a lower posterior variance. Fi-
nally, we also note that the computational cost of our model
scales linearly with the number of cells in the dataset. This
enables application of our method to single-cell RNA-seq
datasets of any size.

Ultimately, the study of GRN inference is far from complete
and has required new computational models to keep up with
relevant sequencing technologies. It is thus essential to de-
velop an adaptable and scalable approach to GRN inference
that can be easily modified as new biological datasets be-
come available. We have thus proposed PMF-GRN as a
modular, principled and probabilistic approach that can be
easily adapted to both new biological data without redesign-
ing a new GRN inference method.

Software and Data
The datasets used in this work are publicly available and
are referenced in Section 3 and are available at https:
//github.com/nyu-dl/pmf-grn. Code, inferred
GRNs, inference and evaluation scripts can be found at
https://github.com/nyu-dl/pmf-grn.

https://github.com/nyu-dl/pmf-grn
https://github.com/nyu-dl/pmf-grn
https://github.com/nyu-dl/pmf-grn
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A. Appendix
A.1. Model Details

We index cells, genes and TFs using n ∈ {1, · · · , N}, m ∈ {1, · · · ,M} and k ∈ {1, · · · ,K}, respectively. We treat each
cell’s expression profile Wn as a random variable, with local latent variables Un and dn, and global latent variables (that are
shared among all cells) σobs and V = A⊙B. We use the following likelihood for each of our observations:

p(Wn|U, V, σobs, d) = N (dn ∗ UnV
⊤, σ2

obs).

We assume that U , V , σobs and d are independent i.e. p(U, V, σobs, d) = p(U)p(V )p(σobs)p(d). In addition to our iid
assumption over the rows of U and d, We also assume that the entries of Un are mutually independent, and that all entries
of A and B are mutually independent. We choose a lognormal distribution for our prior over U and a logistic Normal
distribution for our prior over d:

p(log(Unk)) = N (µu, σ
2
u),

p(logit(dn)) = N (0, 9)

where µu ∈ R and σu ∈ R+.

We use a logistic Normal distribution for our prior over A, a Normal distribution for our prior over B and a logistic Normal
distribution for our prior over σobs:

p(logit(Amk)) = N (logit(clip(Āmk, amax, amin)), σ
2
a),

p(Bmk) = N (0, σ2
b ).

p(log(σobs)) = N (0, 1),

where Āmk ∈ {0, 1}, amax ∈ (0, 1), amin ∈ (0, 1), σa ∈ R>0, clip(Āmk, amax, amin) = max(min(Āmk, amax), amin)
and σb ∈ R>0. Āmk is given by a pipeline that is used by other methods such as the Inferelator. The pipeline leverages ATAC-
seq and TF binding motif data to provide binary initial guesses of gene-TF interactions. amax and amin are hyperparameters
that determine how we clip these binary values before transforming them to the logit space.

For our approximate posterior distribution, we enforce independence as follows:

q(U,A,B, σobs, d) = q(U)q(A)q(B)q(σobs)q(d).

We impose the same independence assumptions on each approximate posterior as we do for its corresponding prior.
Specifically, we use the following distributions:

q(log(Unk)) = N (Ũnk, σ̃
2
Unk

)

q(logit(dn)) = N (d̃n, σ̃
2
dn
)

q(logit(Amk)) = N (Ãmk, σ̃
2
Amk

)

q(Bmk) = N (B̃mk, σ̃
2
Bmk

)

q(log(σobs)) = N (õ, σ̃2
o),

where the parameters on the right hand sides of the equations are called variational parameters; Ũnk, d̃n, Ãmk, B̃mk, õ ∈ R
and σ̃Unk

, σ̃dn , σ̃Amk
, σ̃Bmk

, σ̃o ∈ R+. To avoid numerical issues during optimization, we place constraints on several of
these variational parameters.
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A.2. Identifiability

It is important to note that matrix factorization based GRN inference is only identifiable up to a latent factor (column)
permutation. In the absence of prior information, the probability that the user assigns TF names to the columns of U and
V in the same order as the order in which the inference algorithm implicitly assigns TFs to these columns is 1

K! , which is
essentially 0 for any reasonable value of K. Incorporating prior-knowledge of TF-target gene interactions into the prior
distribution over A is therefore essential to give the inference algorithm information about which column corresponds to
which TF.

With this identifiability issue in mind, we design an inference procedure that can be used on any dataset.The first step is
to randomly hold out prior information for some percentage of the genes in p(A) (we choose 20%) by leaving the rows
corresponding to these genes in A but setting the prior logistic normal means for all entries in these rows to be the same low
number.

The second step is to carry out a hyperparameter search using this modified prior-knowledge matrix. The early stopping and
model selection criteria are both the ‘validation’ AUPRC of the posterior point estimates of A corresponding to the held out
genes against the entries for these genes in the full prior hyperparameter matrix. This step is motivated by the idea that
inference using the selected hyperparameter configuration should yield a GRN whose columns correspond to the TF names
that the user has assigned to these columns.

The third step is to choose the hyperparameter configuration corresponding to the highest validation AUPRC and perform
inference using this configuration with the full prior. An importance weighted estimate of the marginal log likelihood is used
as the early stopping criterion for this step. The resulting approximate posterior provides the final posterior estimate of A.

A.3. Inference

We perform inference on our model by optimizing the variational parameters to maximize the ELBo. In doing so, we
minimise the KL-divergence between the true posterior and the variational posterior. In practice, to help with addressing the
latent factor identifiability issue, we use a modified version of the ELBo where the prior and posterior terms are weighted by
a constant β ≥ 1 (Higgins et al., 2017):

EU,A,B,σobs,d∼q(U,A,B,σobs,d)[ log p(W |U, V = A⊙B, σobs, d)

+ β(log p(U,A,B, σobs, d)− log q(U,A,B, σobs, d))]

Inference is carried out using the Adam optimizer with learning rate 0.1 and beta values of 0.9 and 0.99. We clip gradient
norms at a value of 0.0001. We set amin = 0.005, amax = 0.995, σ2

b = 1 and µu = 0. We vary σa and σu as
hyperparameters that control the strengths of the priors over A and U , respectively. We also vary β as a hyperparameter.

We choose a hyperparameter configuration using validation AUPRC as the objective function as well as the early stopping
metric. We hold out hyperparameters for p(A) for a fraction of the genes. We do this by setting Āmk = 0 for m
corresponding to these genes for all k. During inference we regularly obtain posterior point estimates for these entries and
measure the AUPRC against the original values of these entries as given in the full prior. This quantity is known as the
validation AUPRC.

Once we have picked the hyperparameter configuration corresponding to the best validation AUPRC, we perform inference
with this model using the full prior without holding out any information. We use an importance weighted estimate of the
marginal log likelihood as our early stopping criterion:

log p(W ) = log

(
EU,A,B,σobs,d∼q(U,A,B,σobs,d)

[
p(W |U,A,B, σobs, d)p(U,A,B, σobs, d)

q(U,A,B, σobs, d)

])
,

where the expectation is computed using simple Monte Carlo and the log-
∑

-exp trick is used to avoid numerical issues.
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A.4. Computing Summary Statistics for the Posterior

After training the model, we use Ã and σ̃A, the variational parameters of q(A), to obtain a mean and a variance for each
entry of A. Since q(A) is logistic normal, it admits no closed form solution for the mean and variance. We therefore use
Simple Monte Carlo i.e. we sample each entry of A several times from its posterior distribution and then compute the
sample mean and sample variance from these samples. We use each mean as a posterior point estimate of the probability of
interaction between a TF and a gene, and its associated variance as a proxy for the uncertainty associated with this estimate.

Figure 3. (A) 5 fold cross-validation establishes a baseline for each model. Low-opacity dots represent each of the five cross-validation
experiments. The mean AUPR ± standard deviation for each GRN inference method is depicted by colored dot and line. (B) GRNs
inferred with increasing amounts of noise added to the prior. (C) Calibration results on the S.cerevisiae (GSE144820 only) dataset.
Posterior means are cumulatively placed in bins based on their posterior variances. The x-coordinate x of each point in the plot represents
all posterior means that correspond to the bottom x% of posterior variances. The y-coordinate is the ‘overlap’ AUPRC (see section 2 for
details) calculated on these posterior means against the gold standard.

A.5. Calculating AUPRC

The gold standards for the datasets used in this paper do not necessarily perfectly overlap with the genes and TFs that make
up the rows and columns of A as defined by the prior hyperparameters i.e. there may be genes and TFs in the gold standard
with a recorded interaction or lack of interaction, that do not appear in our model at all because they are not present in
the prior. The reverse is also true: the prior may contain genes and TFs that are not in the gold standard. For this reason,
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we compute the AUPRC using one of two methods: ‘keep all gold standard’ or ‘overlap’, which correspond to evaluating
only interactions that are present in the gold standard or only interactions that are present in both the gold standard and the
prior/posterior. We present results with ‘keep all gold standard’ AUPRC as the evaluation metric when comparing our model
to the Inferelator in Figures 2 and 3. For our evaluation of uncertainty calibration (Figure 3 C), we use the overlap AUPRC
so that bins containing a lower number of posterior means do not have artificially deflated AUPRCs.

A.6. Evaluating Calibration of Posterior Uncertainty

We create 10 bins, corresponding to the lowest 10%, 20%, 30% and so on of posterior variances. We place the posterior point
estimates of TF-gene interactions associated with these variances into these bins and then calculate the ‘overlap AUPRC’ for
each bin using the corresponding gold standard. The AUPRC for each bin is calculated using those interactions that are in
the gold standard and also in the bin. We use such a cumulative binning scheme because using a non-cumulative scheme
could result in some bins having very small numbers of posterior interactions that are present in the gold standard, which
would lead to noisier estimates of the AUPRC.

A.7. Inference and Evaluation on Multiple Observations of W

The Inferelator method applies two scRNA-seq experiments separately on S. cerevisiae, with each resulting in a distinct
model. These models are used to infer TF-gene interaction matrices, which are then sparsified. The final matrix is obtained
by taking the intersection of the two matrices and retaining only the entries that are non-zero in both matrices. In our
approach, we also train a separate model on each expression matrix, and obtain a posterior mean matrix for A for each of
them. To obtain the final posterior mean matrix for A, we average the posterior mean matrices from each model. While this
approach works well, future research could focus on explicitly modeling separate expression matrices within the model.

A.8. Measuring the Impact of Prior Hyperparameters

We evaluate the utility of each of the prior hyperparameter matrices used in our experiments. In Figure 2, we present with
grey dots the AUPRCs achieved when performing inference using shuffled prior hyperparameters for A. This corresponds to
randomly assigning to each row (gene) of A, the prior hyperparameters that correspond to a different row of A. Shuffling
the hyperparameters should lead to worse performance, as the posterior estimates should then also be shuffled, whereas
the row/column labels for the posterior will remain unshuffled. For the ‘no prior’ setting, shown with black dots in the
figures, we set Āmk = 0 ∀m, k. The difference in AUPRC achieved using the unshuffled vs shuffled or no hyperparameters
measures the usefulness of the provided hyperparameters for the inference task on the dataset in question.

A.9. Cross-Validation

For S. cerevisiae, we perform a five-fold cross validation experiment. Cross-validation is performed by partitioning the
gold standard into an 80% - 20% split, where 80% of the data represents prior-known information to be used as a prior for
p(A), and the remaining 20% is treated as the gold standard for evaluation. This process is repeated five times to generate
five random splits of the data in order to robustly evaluate GRN inference. It is important to note that PMF-GRN performs
hyperparameter search before inferring a final GRN within each cross-validation split. For each of the five partitioned
cross-validation folds the 80%, or prior portion, is further split into 80% train and 20% test for hyperparameter search and
evaluation. Once the optimal hyperparameters have been determined, the initial 80% split is treated as the training data,
while the remaining 20%, which was not seen during hyperparameter selection, is used for evaluation.

A.10. Datasets and Preprocessing

We inferred each GRN using a single-cell RNA-seq expression matrix, a TF-target gene connectivity matrix, and a gold
standard for bench-marking purposes. We modeled the single-cell expression matrices based on the raw UMI counts
obtained from sequencing for the S. cerevisiae datasets, which were therefore not normalized for the purpose of this work.
We further obtained binary TF-gene matrices representing prior-known interactions, which served as prior hyperparameters
over A, and were derived from the YEASTRACT database. We acquired a gold standard for S. cerevisiae our datasets from
independent work which is detailed below.
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S. CEREVISIAE

We used two raw UMI count expression matrices for the organism S. cerevisiae obtained from NCBI GEO (GSE125162
(Jackson et al., 2020) and GSE144820 (Jariani et al., 2020)). For this well studied organism, we employed the YEASTRACT
(Monteiro et al., 2020; Teixeira et al., 2018) literature derived network of TF-target gene interactions to be used as a prior
over A in both S. cerevisiae networks. A gold standard for S. cerevisiae was additionally obtained from a previously defined
network (Tchourine et al., 2018) and used for bench-marking our posterior network predictions. We note that the gold
standard is roughly a reliable subset of the YEASTRACT prior. Additional interactions in the prior can still be considered to
be true but have less supportive evidence than those in the gold standard.


