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Abstract
While single-cell RNA sequencing provides an
understanding of the transcriptome of individual
cells, its high sparsity, often termed dropout, ham-
pers the capture of significant cell-cell relation-
ships. Here, we propose scFP (single-cell Feature
Propagation), which directly propagates features,
i.e., gene expression, especially in raw feature
space, via cell-cell graph. Specifically, it first ob-
tains a warmed-up cell-gene matrix via Hard Fea-
ture Propagation which fully utilizes known gene
transcripts. Then, we refine the k-Nearest Neigh-
bor (kNN) of the cell-cell graph with a warmed-
up cell-gene matrix, followed by Soft Feature
Propagation which now allows known gene tran-
scripts to be further denoised through their neigh-
bors. Through extensive experiments on impu-
tation with cell clustering tasks, we demonstrate
our proposed model, scFP, outperforms various
recent imputation and clustering methods. The
source code of scFP can be found at https:
//github.com/Junseok0207/scFP.

1. Introduction
Single-cell RNA-sequencing (scRNA-seq) analysis has at-
tracted significant attention due to its property to profile
transcriptome-wide gene expression at single-cell resolution.
It allows researchers to perform various analyses, including
identifying cell types (Tian et al., 2019; Lee et al., 2023), and
inferring cell trajectories (Trapnell et al., 2014; Zhang et al.,
2023). However, analyzing scRNA-seq data is challenging
due to the noisy nature of the gene expression. Specifically,
scRNA-seq data often suffer from low transcript capture, re-
ferred to as dropout phenomena (Hicks et al., 2018), which
causes the occurrence of false zero values. Furthermore, the
observed non-zero expression values also suffer from bio-
logically irrelevant signals, such as batch effects (Shaham
et al., 2017) and transcriptional noise (Wagner et al., 2016).
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Many works have been proposed to denoise the scRNA-
seq data by imputing the dropout values. Among them,
smoothing-based methods assume cells with similar expres-
sion profiles will likely share similar underlying biological
characteristics. By leveraging this assumption, these meth-
ods impute gene expression values by forcing the expression
values of neighboring cells to be more similar. Specifically,
DrImpute (Gong et al., 2018) averages the expression values
based on a pre-calculated cluster, and MAGIC (van Dijk
et al., 2018) performs a diffusing process on the calculated
Markov affinity-based graph. Despite its effectiveness in
reducing noise from various factors, there are some limita-
tions to be considered: 1) it can decrease the meaningful cell
variability by smoothing expression values across incorrect
cell groups when neighboring cells are misdefined, and 2)
noise expression values could be spread during smoothing
when the observed expression values are noisy, which can
be severe if it contains many false zero values due to the
dropout phenomena.

Recently, most researchers are focused on the imputation
methods that utilize deep neural networks (DNNs) to re-
construct gene expressions. These lines of methods uti-
lize an autoencoder architecture, where the cell representa-
tion is learned through an encoder, and then impute values
by passing them through the decoder layer. Specifically,
DCA (Eraslan et al., 2019) reconstructs the gene expres-
sion by assuming zero-inflated negative binomial (ZINB)
distribution and AutoClass (Li et al., 2022) further learns
the classifier by providing pseudo-labels generated by pre-
clustering. Furthermore, scGCL (Xiong et al., 2023), in-
spired by AFGRL (Lee et al., 2022), leverages relation-
ship information between cells using graph neural networks
(GNNs) on a cell-cell graph and learns cell representations
in a self-supervised manner. However, despite their complex
modeling, the output of these methods often shows poor per-
formance on the subsequent downstream tasks compared to
that of raw expression values. We argue that this is because
effectively optimizing complex DNN models on a given
dataset requires appropriate hyper-parameter choices, which
can be challenging in the context of imputation tasks due to
the unsupervised nature.

In this paper, we propose scFP, a simple yet effective im-
putation method for scRNA-seq data with a bi-level feature
propagation scheme. Specifically, we first impute the zero
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values using the feature propagation on the initially defined
kNN graph while preserving the non-zero values that con-
tain relatively lower noise to prevent the contamination of
biological signals from prevalent false zero values. Using
this warmed-up data, the kNN graph is further refined to
capture the correct neighbors of each cell. We then apply
another feature propagation module to denoise the bias or
noise on non-zero values. Through experiments on both
real and simulated scRNA-seq datasets, we demonstrate the
effectiveness of scFP.

2. Methods
Notation. Given a cell-gene feature matrix X ∈ RN×M ,
where N and M are the number of cells and genes, let
G = (V, E) denote a cell-cell graph. V = {v1, ..., vN} and
E ⊆ V×V are the set of nodes and edges, respectively. A ∈
RN×N is the adjacency matrix with Aij = 1 iff (vi, vj) ∈ E
and Aij = 0 otherwise. We denote Ã = D−1A as a row-
stochastic adjacency matrix, and the graph Laplacian matrix
as ∆ = I− Ã, where I is the identity matrix.

2.1. Preliminary: Feature Propagation

Recently, Feature Propagation (FP) (Rossi et al., 2022) has
been introduced to mitigate missing features in the graph
domain. The core idea of FP is to diffuse the features that
we know, i.e., provided, to the features that we do not know,
i.e., missing, while maintaining the initial state of known
features. Formally, given a node feature matrix consisting
of k known features and u unknown features in each feature
dimension f , the gradient flow of Dirichlet energy, i.e.,
ℓ(X·,f ,G) = 1

2X
⊤
·,f∆X·,f , at time step t can be expressed

as the heat diffusion equation:

Ẋ(t) = −∇ℓ(X(t)) = −∆X(t),

(IC)X·,f (0) =

[
Xk,f

Xu,f (0)

]
, (BC)Xk,f (t) = Xk,f ,

∀k ∈ Vk,f ,∀u ∈ Vu,f ,∀f ≤ F

(1)

where X·,f ∈ RN denotes feature vector at dimension f
bounded by F , (IC) and (BC) denotes initial and bound-
ary conditions, respectively. Vk,f and Vu,f denotes a set of
known nodes and unknown nodes at feature dimension, f , re-
spectively. Here, solving Equation 1 by linear equation, we
obtain closed-from solution, Xu = −∆−1

uu∆
⊤
kuXk. How-

ever, during calculation, it induces complexity of O(|Vu|3),
which is not desirable in large graphs. Thus, we resort to an
iterative Euler scheme and derive a formula as follows:

X(i+1) =

[
I 0

−∆uk I−∆uu

]
X(i)

=

[
I 0

Ãuk Ãuu

]
X(i)

(2)

where X(i) represents imputed feature matrix at i step. It
is important to note that this formula is basically equiva-
lent to multiplying the feature matrix with normalized adja-
cency while maintaining known feature values as its initial
state. It shows the robust performance in the graph domain
even when the data contains more than 90% missing fea-
tures (Rossi et al., 2022). However, it cannot be naively
applied to scRNA-seq data due to its following inherent
nature: 1) The information regarding which features are
missing or noisy is not provided. 2) As the graph struc-
ture is not provided, it is crucial to construct a graph that
connects biologically relevant cells.

2.2. Proposed Methodology: scFP

Here, we propose the bi-level feature propagation method
that extends FP in a manner that is well-suited to the scRNA-
seq domain. Our overall architecture can be found in Fig-
ure 1. We first define a cell-cell graph using initial scRNA-
seq data and perform a diffusion process using a Hard Fea-
ture Propagation scheme (Sec 2.2.1) that primarily pays
attention to imputing zero values in the cell-gene count ma-
trix while preserving non-zero values. After that, we refine
the cell-cell graph by calculating k-nearest neighbors for
each cell (Sec 2.2.2) using the previously smoothed outputs
(i.e., warmed-up data). Then, we pass through Soft Feature
Propagation (Sec 2.2.3) which allows the denoising of ob-
served gene transcripts. Detail about each component can
be found in the following sections.

2.2.1. HARD FEATURE PROPAGATION

We start with imputing zero values, i.e., dropouts in gene
expression with the aid of similar cells. To do so, we first
need to define an adjacency matrix which first brings us
a challenge compared to the graph domain, where adja-
cency information is provided. Here, the intuitive and cheap
way that facilitates message-passing between similar cells
is to introduce a kNN graph by calculating cosine similari-
ties. However, considering the sparsity of cell-gene matrix
(van Dijk et al., 2018; Yang et al., 2018), which is a direct
resource for building kNN graph, we argue that obtained
kNN graph should merely serve as an initialized graph for
warming-up sparse and noisy gene transcripts. In this regard,
as our primal goal is to impute zero-valued gene expressions
(indexed by z) via non-zero-valued gene expressions (in-
dexed by n), we apply Hard Feature Propagation as follows:

X(i+1) =

[
I 0

Ãinitial
zn Ãinitial

zz

]
X(i) (3)

where X(i) ∈ RN×M represents imputed cell-gene feature
matrix at step i. After that, we obtain a converged warm-
up matrix, X(K), which is now denser and smoothed via
neighbors. Note that in this step, we employ a hard clamping
strategy where the non-zero values, which correspond to
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Figure 1. The overall architecture of scFP.

the observed expression values, are retained at their original
values. This is because, in this step, more emphasis is placed
on the imputation of zero-values, which are more prevalent
in the cell-gene count matrix, compared to denoising non-
zero transcript values. This is because non-zero values
generally contain less noise than zero-values, i.e., dropouts.

2.2.2. REFINING CELL-CELL GRAPH

With a warmed-up cell-gene matrix, X(K) originating from
Hard Feature Propagation, we make use of this matrix to
refine an initial cell-cell graph which was built when cell
representation was sparse. More precisely, a warmed-up
cell-gene matrix is used as input for kNN graph as follows:

Ãrefined = kNN(X(K)) (4)

where Ãrefined ∈ RN×N is refined normalized adjacency
for a cell-cell graph which is built considering the denoised
zero-values, which was not feasible to capture in the initial
stage of kNN graph generation. In other words, this process
could potentially reveal hidden or implicit graph structures
that were not initially detectable due to sparse and noisy
gene expression. We argue that this refined adjacency matrix
may provide more accurate or robust graph representations,
which could enhance subsequent analyses or learning tasks.

2.2.3. SOFT FEATURE PROPAGATION

Now, equipped with warmed-up cell-gene matrix, X(K) and
refined adjacency matrix for cell-cell graph, Ãrefined, we
hereby run Soft Feature Propagation. Specifically, com-
pared to Hard Feature Propagation which is based on hard
clamping (Zhu, 2005; Zhang & Lee, 2006; Raghavan et al.,
2007), at this moment, we rather adopt soft clamping (Zhou
et al., 2003; Wang & Zhang, 2006), which basically leaves
room for updating the originally transcripted gene value of
its neighbors endowed with implicit graph structures thanks
to the warmed-up procedure. This aligns with our motiva-
tion to take into account noise from not only low transcript
capture but also from the observed non-zero expression val-
ues that might possess biologically irrelevant signals, e.g.,
batch effects and transcriptional noise (Shaham et al., 2017;
Wagner et al., 2016). Formally, Soft Feature Propagation is
applied as follows:

X(K+j+1) = αÃrefinedX(K+j) + (1− α)X(K) (5)

where X(K+j) is the updated cell-gene matrix at step j, 0 <
α < 1 is the constant1 that controls amount of information
that X(K+j) receives from its neighbors. After another K
iteration, we finally obtain a converged and denoised cell-
gene matrix X̃ = X(2K). This denoised matrix considers
both the noise from zero-values (dropouts) and the noise
from non-zero-values (transcriptional noise), and it will
serve as the main resource for subsequent downstream tasks.
Detailed algorithm for scFP can be found in Appendix C.

3. Experiments
Experimental Settings. To evaluate the effectiveness
of scFP, we evaluated scFP with 5 widely used real-world
scRNA-seq data, Baron Mouse, Mouse ES, Mouse Bladder,
Zeisel, and Baron Human. The detailed statistics of these
datasets can be found in Appendix A.

Performance on Imputation. Table 1 shows the overall
performance in imputation tasks with dropout rates ranging
from the low case, e.g., 20%, to the severe case, e.g., 80%.
We observe scFP shows robust performance regardless of
dropout rates outperforming other baselines designed for
denoising cell-gene matrix. Among baselines, it is worth
noting that more complex models, e.g., AutoClass, and
scGCL, exhibit lower performance than DCA. This tells us
that the complexity of the model does not always guarantee
imputation performance in the scRNA-seq domain. In this
regard, the proposed method, scFP, does not require any
learnable parameters and demonstrates its effectiveness by
simply propagating features on the raw feature space. This
highlights the importance of carefully handling observed
values in order to obtain a well-imputed cell-gene matrix.

Performance on Cell Clustering. With obtained de-
noised cell-gene matrix, we further evaluate whether the
denoised matrix performs well on the representative down-
stream task, cell clustering. As shown in Table 2, we ob-
serve scFP achieve promising results in terms of Adjusted
Rand Index (ARI), Normalized Mutual Information (NMI),
and Clustering Accuracy (CA). Interestingly, while DCA
performed well on imputation tasks compared to other base-
lines, its robustness could not be maintained in clustering
tasks. It is also worth noting that scFP consistently out-
performs the performance of MAGIC, demonstrating that

1As we aim to denoise known values, i.e., not to maintain its
original state, we fixed α as 0.99 and used as constant.
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Table 1. Overall performance in imputation task measured by RMSE.
Baron Mouse Mouse ES Mouse Bladder Zeisel Baron Human
Dropout Rates Dropout Rates Dropout Rates Dropout Rates Dropout Rates

20% 40% 80% 20% 40% 80% 20% 40% 80% 20% 40% 80% 20% 40% 80%
MAGIC 0.61 0.73 0.99 0.53 0.73 1.21 0.50 0.60 0.82 0.60 0.82 1.31 0.58 0.74 1.06

DCA 0.42 0.43 0.49 0.35 0.35 0.36 0.37 0.38 0.41 0.39 0.42 0.44 0.41 0.43 0.47
AutoClass 0.63 0.76 0.98 0.53 0.75 1.23 0.52 0.64 0.82 0.60 0.84 1.32 0.59 0.76 1.08

scGCL 0.64 0.74 0.97 0.59 0.75 1.16 0.51 0.62 0.81 0.66 0.82 1.29 0.63 0.77 1.08
scFP (Ours) 0.36 0.37 0.43 0.32 0.32 0.36 0.26 0.26 0.31 0.39 0.40 0.44 0.33 0.34 0.39

Table 2. Overall performance of cell clustering task measured by ARI, NMI, CA.
Baron Mouse Mouse ES Mouse Bladder Zeisel Baron Human

ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA
Raw 0.44 0.71 0.56 0.74 0.75 0.79 0.59 0.75 0.68 0.70 0.75 0.77 0.44 0.71 0.56

MAGIC 0.42 0.72 0.57 0.80 0.85 0.83 0.55 0.75 0.64 0.70 0.75 0.76 0.56 0.78 0.59
DCA 0.46 0.69 0.59 0.76 0.78 0.81 0.39 0.59 0.54 0.67 0.72 0.75 0.53 0.74 0.55

AutoClass 0.44 0.71 0.52 0.74 0.75 0.81 0.51 0.75 0.64 0.71 0.75 0.77 0.44 0.71 0.52
scGCL 0.43 0.72 0.54 0.73 0.75 0.79 0.53 0.75 0.64 0.65 0.70 0.73 0.50 0.78 0.62

kNN-smoothing 0.43 0.72 0.55 0.72 0.74 0.79 0.59 0.76 0.68 0.68 0.73 0.76 0.56 0.78 0.56
scFP (Ours) 0.61 0.82 0.76 0.82 0.83 0.85 0.65 0.77 0.73 0.85 0.81 0.89 0.68 0.83 0.73

the bi-level feature propagation and structure refinement
are important to effectively denoise the scRNA-seq data.
Furthermore, scFP demonstrates its robustness by consis-
tently exhibiting superior performance compared to raw data
across all five datasets.

Ablation studies. Figure 2 shows the ablation studies from
two perspectives. First, by incremental ablation on each
module, we observe scFP fully benefits when feature propa-
gation has been made in both Hard and Soft ways. Here, it is
important to note that utilizing a refined kNN graph, where
a graph is reconstructed by a warmed-up matrix, is crucial
before processing Soft Feature Propagation. Also, with ab-
lation on the sequence of Feature Propagation, we verify
the usage of Hard Feature Propagation, which maintains
the observed value with its initial state at the early stage
of imputation is significant. However, solely resorting to
Hard Feature Propagation outputs sub-optimal results since
it does not leave room for the observed values, which also
possess noise, to be denoised via their neighbors.

(a) Ablation on each module (b) Ablation on sequence of Feature Propagation

Figure 2. Ablation studies of scFP. (a) ”Hard+Soft+Refine kNN”
corresponds to scFP. (b) ”Hard→Soft” corresponds to scFP.
Zeisel dataset is used.

Simulation studies. To demonstrate our claim that the
diffusion of noise from false zeros can have a negative ef-
fect, we conducted experiments using a simulation dataset
generated by Splatter Package (Zappia et al., 2017), where
we can control the dropout rate, indicating the proportion of
false zeros. In Figure 3, MAGIC, which diffuses both zero
and non-zero values, successfully separates cell types by
preserving biologically relevant signals when the dropout
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Figure 3. t-SNE visualization result on simulated dataset over vari-
ous dropout rates. The rates at the top represent the dropout rate,
which equals to the proportion of false zero values.

rate is relatively low (i.e., 22.13%). However, in cases with
a high dropout rate (i.e., 56.65%), where a significant num-
ber of false zeros are present, it fails to separate cell types
due to the contamination from false zeros. On the other
hand, scFP effectively separates cell types even in situations
with a high dropout rate, thanks to the careful diffusion pro-
cess of the Hard FP step, which preserves non-zero values.

4. Conclusion
In this paper, we proposed scFP which imputes and denoises
the observed scRNA-seq data that is inherently sparse and
noisy. Specifically, we first aimed to impute zero-values of
transcripts in Hard Feature Propagation with hard clamping
of observed values. With a warmed-up matrix, we then
refined the kNN graph and proceeded with Soft Feature
Propagation in order to denoise known values with its neigh-
bors, taking into account the potential of transcriptional
noise. With a simple and lightweight design, its imputa-
tion and cell clustering performance under various datasets
verifies the effectiveness of scFP.
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A. Data statistics

Table 3. Statistics for real datasets used for experiments.

Data # of Cells # of Genes # of Subgroups
Baron Mouse 1,886 14,861 13

Mouse ES cells 2,717 24,047 4
Mouse Bladder cells 2,746 19,771 16

Zeisel 3,005 19,972 7
Baron Human 8,569 20,125 14

Shekhar Mouse Retina cells 27,499 13,166 19

B. Extension to large dataset

Table 4. Performance of cell clustering in Shekhar Mouse
Retina dataset.

Shekhar Mouse Retina
ARI NMI CA

Raw 0.54 0.76 0.61
MAGIC 0.64 0.82 0.73

DCA 0.34 0.37 0.42
AutoClass 0.74 0.75 0.81

scGCL 0.54 0.74 0.58
kNN-smoothing 0.47 0.75 0.55

scFP (Ours) 0.91 0.83 0.82 Figure 4. Ablation of each module in scFP in Shekhar Mouse Retina
dataset. ”Hard+Soft+Refine kNN” denotes scFP.

Here, we further extended our experiment on a relatively large dataset, Shekhar mouse retina cells, and compared the
performance of cell clustering in Table 4 with its ablation study (Figure 4) on each module on scFP. Despite the absence
of trainable parameters, our proposed method still demonstrates promising clustering performance on a large dataset.
This suggests that, sometimes, rather than focusing on the complexity of the model in a trainable sense, giving careful
consideration to the raw feature space and leveraging given resources, e.g., observed transcripts can be crucial.

C. Pseudocode of the proposed method

Algorithm 1 single-cell Feature Propagation (scFP)
1: Input: Cell-Gene Matrix X, Initial kNN Ãinitial

2: Output: Denoised Cell-Gene Matrix X̃
3: Y ← X
4: while X has not converged do
5: X← ÃinitialX
6: Xk,d ← Yk,d∀k ∈ Vk,d,∀d ≤M ▷ Hard Clamping
7: end while
8: Ãrefined = kNN(X(K)) ▷ Refine kNN
9: while X(K) has not converged do

10: X(K) ← αÃrefinedX(K) + (1− α)X(K) ▷ Soft Clamping
11: end while

Observing that Equation 3 in Hard Feature Propagation essentially propagates features (i.e., gene expressions) via neighbors
and resets the originally expressed gene values, we formulate the whole process in Algorithm 1. For the iteration until
convergence, we used 40, which is enough to converge, as mentioned in FP (Rossi et al., 2022). It is important to note that
we did not use any trainable parameters during the whole process and obtained a denoised matrix solely by raw feature
space. Overall, in this work, we aim to emphasize simple and straightforward ways to enhance performance in imputation
on subsequent downstream tasks, e.g., cell clustering.


