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Abstract
Cryogenic electron microscopy (cryo-EM) has
transformed structural biology by allowing to re-
construct 3D biomolecular structures up to near-
atomic resolution. However, the 3D reconstruc-
tion process remains challenging, as the 3D struc-
tures may exhibit substantial shape variations,
while the 2D image acquisition suffers from a low
signal-to-noise ratio, requiring to acquire very
large datasets that are time-consuming to pro-
cess. Current reconstruction methods are precise
but computationally expensive, or faster but lack
a physically-plausible model of large molecular
shape variations. To fill this gap, we propose
CryoChains that encodes large deformations of
biomolecules via rigid body transformation of
their chains, while representing their finer shape
variations with the normal mode analysis frame-
work of biophysics. Our synthetic data experi-
ments on the human GABAB and heat shock pro-
tein show that CryoChains gives a biophysically-
grounded quantification of the heterogeneous con-
formations of biomolecules, while reconstruct-
ing their 3D molecular structures at an improved
resolution compared to the current fastest, inter-
pretable deep learning method.

1. Introduction
Cryogenic electron microscopy (cryo-EM) allows to recon-
struct 3D biomolecular structures at near-atomic resolution.
For this, estimation techniques process large datasets of 2D
images obtained from many copies of the same biomolecule
in different shapes, called conformations. The reconstruc-
tion task is challenging due to the intrinsic variability in a
biomolecule conformations (conformation heterogeneity),

1Dept. of Electrical & Computer Engineering, UC Santa
Barbara, CA, USA 2Stanford University, CA, USA 3LCLS,
SLAC, Menlo Park, CA, USA. Correspondence to: Bongjin Koo
<bongjinkoo@ucsb.edu>.

The 2023 ICML Workshop on Computational Biology. Honolulu,
Hawai’i, USA, 2023. Copyright 2023 by the author(s).

the high number of unknown, nuisance variables (e.g., the
biomolecule’s position/orientation in 3D), and extremely
low signal-to-noise ratios (SNRs). Thus, reconstruction
algorithms require large amounts of data, posing major com-
putational challenges (Kimanius et al., 2016).

Related works Recent efforts have turned to deep learn-
ing (DL) for cryo-EM reconstruction, reaching significant
speed-ups through gradient methods and GPU accelera-
tion (Donnat et al., 2022). However, these approaches have
been limited in their parameterization of the biomolecular
volumes’ variability. On the one hand, homogeneous recon-
struction methods disregard the conformation heterogeneity
entirely, as they estimate the average 3D biomolecular vol-
ume from the images (Nashed et al., 2021; Miolane et al.,
2019; Gupta et al., 2021), which limits the accuracy of
the 3D reconstruction as an average biomolecule appears
“blurry”. On the other hand, heterogeneous reconstruction
methods explicitly model structural variability (Zhong et al.,
2021; 2020; Gupta et al., 2020; Ullrich et al., 2020; Chen &
Ludtke, 2021; Rosenbaum et al., 2021; Punjani & Fleet,
2022) but rarely leverage domain knowledge to encode
biophysically-plausible molecular deformations, which lim-
its the interpretation of the conformations.

In biophysics, normal mode analysis (NMA) is a dimension-
ality reduction method, describing the vibrational modes of
a biomolecular structure, i.e., the principal directions of its
conformational variations (Levitt et al., 1985). Thus, NMA
has naturally emerged as the first biophysically-grounded ap-
proach to efficiently parameterize the biomolecular volumes
and their variability for cryo-EM reconstruction. HEM-
NMA (Jin et al., 2014) uses normal modes to deform a
reference volume V(0) that is fit to cryo-EM images by
an iterative 3D-to-2D alignment. DeepHEMNMA (Hami-
touche & Jonic, 2022) extends HEMNMA by adopting a
residual network that predicts NMA weights (the contribu-
tion of each normal mode) and biomolecular poses given
by HEMNMA in a supervised learning setting. By contrast,
(Nashed et al., 2022) performs unsupervised heterogeneous
reconstruction, inferring NMA weights as the latent vari-
ables of an autoencoder. However, NMA can only represent
small conformation changes around a reference conforma-
tion. This poses a fundamental limit as biomolecular vari-
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Figure 1: CryoChains autoencoder illustrated on the GABAB protein with two chains in red and blue. The encoder E
embeds the input image into a latent space with two sets of variables: (i) α(c), the normal mode weights per chain, which
deform each chain; and (ii) R(c)|t(c), the rigid body transformation that poses each (deformed) chain within the global
atomic structure X of the protein. The dynamics model of the decoder D applies the NMA deformations and rigid body
transformations to each chain of a biomolecule, which is fed into the image formation model composed of a global rotation
R (“pose”), projection to 2D space (Π), camera parameters (C) and a global 2D translation t, to reconstruct the input
image. CryoChains is trained using a reconstruction loss, which is the pixel-wise mean squared error between the input and
reconstructed images.

ability exhibits larger scale deformations. For example, the
rotations of a biomolecule’s chains w.r.t. one another are
typically larger deformations that are not captured by NMA.

Contributions We propose a new modular, biophysically-
grounded method to parameterize the molecular volumes’
variability for accurate, interpretable heterogeneous recon-
struction in cryo-EM. We decompose molecules into their
chains and represent large scale molecular deformations by
the rotation and translation of chains w.r.t. another. Then,
we represent the smaller scale deformations per chain by
NMA. Building on (Nashed et al., 2022), we propose a new
unsupervised DL architecture CryoChains, which extracts
the rotation and translation, with the normal mode weights,
of each chain in the latent space of an autoencoder (Fig. 1).
CryoChains achieves higher reconstruction accuracy on syn-
thetic cryo-EM images with realistic noise levels, compared
to the existing method using NMA only. We also show
that CryoChains provides a biophysical interpretation of the
conformation heterogeneity via the exploration of its latent
space.

2. CryoChains Methods
CryoChains adopts an autoencoder architecture shown in
Fig. 1. The encoder E is a convolutional network that
embeds a given image in a latent space composed of sev-
eral conformation latent variables. The decoder D imple-
ments the generative model of cryo-EM images composed
of the dynamics and image formation. This section and
Appendix C detail E and D. The pixel-wise mean squared

error (MSE) between the input and the reconstructed images
is minimized during training. Only the encoder is trained,
i.e., the decoder is pre-specified and fixed.

2.1. Encoder and Latent Space

The encoder E first extracts the small, elastic conformational
variations of the biomolecule via a latent variable α(c) for
each chain c—see Fig. 1. The variable α(c) ∈ RK(c)

repre-
sents the chain’s deformation along its normal modes:

X(c)(α) = X(c,0) +
K(c)∑
k=1

α
(c)
k U(c)

k . (1)

Here, X(c)(α) ∈ R3nc is the atomic structure of chain c
as the 3D coordinates of its nc constitutive atoms. NMA
defines this atomic structure as the deformation of a refer-
ence structure X(c,0) ∈ R3nc through K(c) normal modes
U(c)

1 , . . . ,U(c)

K(c) which are computed beforehand.

Importantly, the weights α(c) along the normal modes have
a natural biophysical interpretation. As normal modes are
the eigenvectors of the Hessian matrix of the atoms’ poten-
tial energy, obtained from a second order Taylor approxi-
mation around a conformation at equilibrium, the weights
encode in which direction and how far each atom moves
w.r.t. its position in the reference conformation—see (Levitt
et al., 1985; Goldstein et al., 2008) and Appendix A for de-
tails. The normal modes are sorted by the eigenvalues of the
Hessian matrix in an increasing order, where the square-root
of each eigenvalue is the frequency that deforms the refer-
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Figure 2: Comparison of 3D reconstruction accuracy between CryoChains, its ablation models (cN50, cR, cRT), and
the baseline N100 (Nashed et al., 2022). Reconstruction error is measured as the root-mean-square deviation (RMSD)
in Angstroms, between the ground truth (GT) and predicted atom coordinates on GABAB and Hsp90, for 3 noise levels
{32, 0,−20} in dB shown in 3 colors. The models differ in their representation of conformation heterogeneity in the
latent space: N100 uses whole protein NMA with 100 normal modes, cN50: per-chain NMA with 50 normal modes, cR:
per-chain rotation, cRT: per-chain rigid body transformation, CryoChains: ours, i.e., per-chain rigid body transformation
and per-chain NMA with 50 normal modes.

ence conformation X(0) along each normal mode Uk. Thus,
the first few normal modes describe low-frequency (large)
conformation changes, in which we are mainly interested.
The number of normal modes K(c) per chain is chosen to be
the minimal number of normal modes that could account for
the majority of the deformations. We highlight that we use
NMA on each chain independently, as opposed to NMA on
the whole biomolecule as proposed in (Nashed et al., 2022).

E also extracts the larger, rigid body transformations that
arise when chains of a biomolecule rotate and translate w.r.t.
each other. We parameterize the orientation of each chain
as a rotation around its center-of-mass (CoM) to which
we add a translation. E extracts two 3D vectors that are
orthonormalized into w1 and w2, from which the rotation
matrix R(c) is built per chain. Translation t(c) is a 3D vector
per chain. We highlight that these per-chain rotation R(c)

and translation t(c) differ from the global rotation R and
translation t of the whole biomolecule within the decoder.

2.2. Decoder

The dynamics component of the decoder D takes the confor-
mation latent variables {α(c),R(c), t(c)}NC

c=1 to output the
3D atomic structure X of the biomolecule in the input 2D
image—see Fig. 1. The structure X(c) of each chain c is
given by Eq. (1) and X is given by X = [R(c)(X(c)(α(c)))+
t(c)]NC

c=1, where [ ] means concatenation.

The image formation component of the decoder D gener-
ates cryo-EM images using the atomic model X given by
the dynamics. It is a feed-forward differentiable simulator
without learnable components that successively creates a
electrostatic potential V from X, orients it in 3D space us-

ing a global rotation R, then acquires a 2D image through
a camera model with parameter C, and finally adds a 2D
translation t. See Appendix B for details.

3. Experiments and Results
We show that CryoChains improves 3D reconstruction ac-
curacy while providing an interpretable parameterization of
the conformation changes in its latent space.

3.1. Reconstruction Accuracy

Experiment We consider a protein with two conforma-
tions X(0,GT) and X(0), loaded from RCSB PDB (Berman
et al., 2000). X(0,GT) ∈ R3N is a ground truth (GT)
reference conformation with total number of atoms N .
X(0) ∈ R3N is a source reference conformation used by
CryoChains to be fit to the images generated with X(0,GT).
We generate a realistic distribution of heterogeneous confor-
mations of this protein using the reference conformations
X(c,0,GT) of its chains, Eq. (1) and the following approach
simulating normal mode weights per chain. Each weight

is computed as α
(c)
k =

√
N
K d where d is sampled from

the Gaussian mixture model: d ∼
∑1

m=0 ϕmN (µm, σ2
m)

such that
∑

m ϕm = 1 and m ∼ Bernoulli(0.5). After each
X(c,GT) is obtained via Eq. (1), each chain c is rotated ran-
domly along each axis in 3D around the chain’s CoM. The
final images are rendered using the image formation model
of the decoder.

In practice, we use the human GABAB receptor membrane
protein and the Hsp90 (heat shock protein of 90 kDa) PDB
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Figure 3: Interpretability of CryoChains’s biophysically-grounded latent space for chains 1 (A) and 2 (B) of the heat shock
protein Hsp90. Left columns in (A) and (B) show the latent space of cryo-EM images projected on the first two principal
components (PCs) of PCA, for normal mode weights (α) and rigid transformation (R|t) per chain. Color represents density
(yellow: high density) and explained variance per PC in %. Right columns show the reconstruction of 3 conformations in 3
shades of red in (A) and blue in (B), sampled along the first PC shown in the corresponding PCA plots. CryoChains’s latent
space provides an interpretable representation of conformation heterogeneity, e.g., between open ↔ closed conformations
through the rigid transformation.

files. Both proteins have two chains. Fig. 2 shows exam-
ples of images generated for each protein. The PDB files
of each protein contains two conformations, closed and
open, 6UO8/6UOA for GABAB and 2CG9/2CGE for Hsp90,
which play the roles of X(0,GT) and X(0) respectively. Con-
cretely, X(0,GT) =6UO8/2CG9 is used to generate synthetic
images using 15 normal modes where d is sampled from
a GMM with means {0, 2.5} and std 0.25. The rotation
angles are 5◦ per axis for 6UO8 and 2.5◦ for 2CG9. During
training, we deform X(0) =6UOA/2CGE to fit 6UO8/2CG9
in the images, i.e., fit the open conformation to the closed
one. This setup simulates a real case scenario where we
obtain new cryo-EM images, without the GT conformation,
and want to reconstruct the 3D structure using an existing
PDB file. Finally, three different levels of noise (SNRs)
are added to the images: {32 dB (no noise), 0 dB, −20 dB
(close to experimental data)} following (Levy et al., 2022).
For each noise level, 50, 000 images are generated for the
training set, and 5, 000 images for validation and test sets.

Results We compare the reconstruction accuracy of
CryoChains with (Nashed et al., 2022), the fast, yet
biophysically-grounded DL-powered unsupervised hetero-
geneous reconstruction method in cryo-EM. We also com-
pare CryoChains with its ablation models. We report the
root-mean-square deviation (RMSD) between the predicted
and the GT atom coordinates on GABAB and Hsp90 datasets
for each model in Fig. 2. We highlight that N100 refers to
(Nashed et al., 2022) using 100 normal modes computed on
the whole protein. For both proteins, CryoChains achieves
the lowest RMSD, which demonstrates better reconstruction
capability. Our ablation study reveals that CryoChains out-
performs N100, even when it only relies on per-chain rigid
body transformation (cRT). This suggests that introducing

rigid transformation of chains is crucial to unlock higher
reconstruction accuracy in cryo-EM—which is precisely
the purpose of this paper. We also show the resulting high-
quality 3D reconstructions of our model in Appendix D. We
note that the RMSDs of N100 and CryoChains on GABAB
in Fig. 2(A) are comparable because GABAB’s conforma-
tional changes existing in the dataset do not involve large
rigid body transformation of the chains and thus can be
explained well by whole protein NMA only. By contrast,
CryoChains significantly improves the RMSDs on Hsp90,
because the conformational changes of this protein involve
large scale rigid body transformations that can only be cap-
tured by our proposed method. CryoChains will indeed
provide researchers with maximum benefits in this specific
experimental context.

3.2. Conformational Heterogeneity

Experiment We perform principal component analysis
(PCA) on the latent space of CryoChains trained on im-
ages of Hsp90. We demonstrate that CryoChains yields
interpretable representations of the protein’s conformational
heterogeneity. We generate 50 Hsp90 conformations by
morphing atom coordinates between Hsp90’s two confor-
mations (open and closed) using ChimeraX (Pettersen et al.,
2021). Then, 50, 000 training and 5, 000 test images are
generated with the noise −20 dB. We train CryoChains us-
ing the open conformation as its source reference X(0). We
extract the latent variables corresponding to the test images.
PCA is performed on the latent space of NMA weights (α)
and rigid transformation (R|t) per chain.

Results In Fig. 3, the left columns of (A) and (B) show
the first two principal components of the latent space for
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NMA weights (top) and rigid transformation (bottom). The
right column depicts 3 conformations, reconstructed from
3 latent points sampled along the first principal component
(PC1). As expected, we observe that the reconstructions
from the rigid transformations’ principal component vary be-
tween the open and closed conformation. This demonstrates
CryoChains’s ability to encode the protein’s conformation
changes into an interpretable latent space.

4. Discussions and Conclusion
We introduced CryoChains to address outstanding chal-
lenges in cryo-EM reconstruction. Our experiments on
synthetic datasets show that CryoChains is a deep-learning
powered approach that improves the 3D reconstruction accu-
racy of biomolecular structures, while being biophysically
interpretable. We hope to open new avenues of research for
high-resolution reconstruction of proteins in solution.
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A. Normal Mode Analysis
Normal mode analysis (NMA) assumes that a set of N atoms are an oscillating system and represents them with an elastic
network model (ENM). Noting X = {rj}j=1,...,N the atomic Cartesian coordinates of the chain, the potential energy E of

the ENM is approximated with a second-order Taylor approximation around a reference conformation X(0):

E(X) =
1

2

(
X − X(0)

)⊤
H
(

X − X(0)
)
, (2)

with Hjk ∝
(
r
(0)
j − r

(0)
k

)(
r
(0)
j − r

(0)
k

)⊤
, where H is the Hessian matrix of E in X(0). Then, eigendecomposition of H is

performed to obtain the eigenvectors U ∈ R3N×3N which are also referred to as the normal modes.

B. Image Formation Model
The process of image formation in cryo-EM involves several physical phenomena, including pairwise interactions between
atoms, interactions between the electron beam and the molecule’s electrostatic potential, or microscope effects. In
CryoChains, the image formation model (Fig. 1) is placed in the decoder, taking in the deformed and rigidly transformed
atom coordinates computed from the dynamics model. The image formation model is usually written in its “weak-phase
approximation” where each image Ii in a dataset of n images of n biomolecules is sampled according to:

Ii = PSFi ∗ (ti +Π2DRi)(Vi) + ϵi,with i = {1, . . . n}. (3)

Here, Ri ∈ SO(3) is a 3D rotation matrix representing the 3D orientation of the volume Vi w.r.t. the direction of the
electron beam. Note that Ri represents a “global” orientation of the whole biomolecule, as opposed to R(c) inferred in our
model. Ri is obtained using other methods and assumed that it is given. This applies to the global translation ti explained
below as well. The oriented volume is subsequently “pierced through” by the electron beam and projected onto the detector,
which is an operation represented in Eq. (3) by the 2D projection operator Π2D. The variable ti ∈ R2 represents the 2D
translation of the projected volume w.r.t. the center of the image. The effect of the microscope’s lens is modeled through
the convolution ∗ of the 2D projection with an image-dependent operator PSFi called the point spread function of the
microscope whose parameters can depend on the image. Finally, additional noise ϵi is introduced in the generated image,
and typically assumed to be Gaussian with zero mean and variance σ2

i .

C. Autoencoder Architecture
The encoder Eθ comprises 4 DoubleConvBlocks where each of them has 2 blocks of {convolution - max pooling
- ReLU} layers. The 4 DoubleConvBlocks have {32, 128, 256, 512} filters each and kernels of size 3× 3. E embeds
the input images into the latent variables, which branch out to a group of three multilayer perceptrons (MLPs) per chain,
inferring (i) per-chain NMA weights αk; (ii) two 3D vectors for the per-chain rotation; and (iii) a 3D vector for the per-chain
translation. Each of the MLPs consists of two fully connected layers of sizes {512, 256} with a ReLU as an activation
function in the first layer. For the second layer, the per-chain rotation MLPs have a tanh and the per-chain translation MLPs
do not have an activation function.

D. Additional Experiments
D.1. Qualitative Evaluation

Let us visually assess the reconstruction quality of CryoChains in Fig. 4. We compute the mean conformation of the
GT’s atom coordinates as well as that of the predicted atom coordinates, over the test set. Then, the Euclidean distances
between the vertices of the mean GT and predicted surface meshes are computed. We opted to do the above because the
reconstruction from our model is in fact the atom coordinates, not voxels or surfaces. We can observe that the reconstruction
of CryoChains is visually better than that of N100, and the RMSDs are mainly very small except for some extremities of
the proteins for both cases (see also the histograms next to the colorbars). We can clearly see the merit of CryoChains in the
reconstruction of Hsp90, compared to the existing approach.
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Figure 4: Reconstruction RMSD maps for (A) GABAB and (B) Hsp90, using CryoChains (ours) and N100 (Nashed
et al., 2022) (whole protein NMA with 100 normal modes). RMSD is computed between the mean conformation of all
GT conformations in the dataset and that of all reconstructed conformations. The reconstructed conformation is shown.
Next to the colorbar is the histogram for the number of mesh vertices against the errors. The significant improvement
in reconstruction for Hsp90 is clearly shown, i.e., the reconstruction using CryoChains correctly matches the closed
conformation while that of N100 remains open.


