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Abstract
While RNA technologies hold immense thera-
peutic potential in a range of applications from
vaccination to gene editing, the broad implemen-
tation of these technologies is hindered by the
challenge of delivering these agents effectively.
Lipid nanoparticles have emerged as one of the
most widely used delivery agents, but their design
optimization relies on laborious and costly experi-
mental methods. We propose to in silico optimize
LNP design with machine learning models. On
a curated dataset of 572 LNPs from in vivo ani-
mal studies, we demonstrate the effectiveness of
our model in predicting the transfection efficiency
of unseen LNPs, with the multilayer perceptron
achieving a classification accuracy of 98% on the
test set. Our work represents a pioneering effort
in combining ML and LNP design, offering signif-
icant potential for improving screening efficiency
by computationally prioritizing LNP candidates
for experimental validation and accelerating the
development of effective mRNA delivery systems.

1. Introduction
RNA-based technologies have the potential to transform life
science research and medicine by enabling one’s own cells
to transiently synthesize therapeutics, mechanistic probes
and diagnostics. This science has created new opportuni-
ties for therapeutic vaccinations, protein replacement thera-
pies, immunotherapy, gene editing and gene reprogramming
(Kaczmarek et al., 2017; Sahin et al., 2014; Chakraborty
et al., 2017). However, the single most recognized obstacle
to the broad implementation of RNA-based technologies is
the delivery of the polar polyanionic RNA across non-polar
biological barriers (Dowdy, 2017; Stanton, 2018). Various
agents have been developed to encapsulate RNA, among
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which lipid nanoparticles (LNPs) are one of the most widely
investigated.

LNPs are often formulated with four components: (1) an ion-
izable or cationic lipid for complexing the polyanionic RNA,
(2) a helper phospholipid to stabilize the LNP, (3) sterols
for facilitating endosomal escape, and (4) lipid-anchored
poly(ethylene glycol) (PEG) lipids for increasing circulation
time (Eygeris et al., 2021). The functionalities of LNPs are
governed by the size, shape, charge, and ratio of each com-
ponent which can be optimized for specific targeting and
disease applications. Seminal studies have demonstrated
that the chemical structures of LNP components can in-
fluence transfection efficacy and organ selectivity through
structure-activity relationships (SAR) analysis. While the
previous LNP development is highly fruitful, it often re-
quires the combinatorial synthesis of individual lipids and
pooled or individual evaluation of formulated LNPs, the
process of which can be laborious and costly.

We hereby aim to expand the scope of traditional exper-
imental methods for designing LNP delivery systems by
leveraging the power of computational methods. We real-
ized that LNP design is a suitable application for exploiting
ML because it provides a set of modifiable characteristics.
As experimental data in this field continues to grow, and
ML techniques advance in modeling chemical structures,
we see great potential in using ML to optimize the design of
delivery agents. Specifically, we formulate the problem as a
classification task where we use supervised ML models to
predict the transfection efficiency of LNPs, i.e. the ability to
successfully deliver mRNA molecules into target cells and
facilitate their expression.

We propose to use molecular representation learning tech-
niques and classification models to predict the transfection
efficiency of multicomponent LNPs based on their chem-
ical structures. We first curated a dataset of 572 LNPs
along with their level of transfection efficiency, character-
ized by luciferase expression following treatment of the
LNP-encapsulated mRNA (Liu et al., 2021). When empiri-
cally evaluating different molecular representation learning
methods, we found that the representations generated based
on rules of chemical domain knowledge are sufficiently pre-
dictive, while those generated through large graph neural
networks do not necessarily offer superior performance. On
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the curated dataset, we showed that ML models effectively
predict the transfection efficiency of unseen LNPs, with the
multilayer perceptron achieving a classification accuracy of
98% on the test set. Such a model has the potential to sig-
nificantly improve the screening efficiency by prioritizing
LNP candidates for experimental validation.

To summarise, our main contributions in this paper include:
(1) we propose to aid the design process of LNPs with ML
by formulating it into a classification task where the input
is the chemical structure of an LNP and the output is its
transfection efficiency, and to our knowledge, our work
represents the first attempt in this direction; (2) we curate
a dataset of LNPs along with their corresponding levels
of transfection efficiency, and will make this dataset pub-
lic to facilitate collaborative efforts towards advancing the
state-of-the-art in the optimization of LNP delivery systems;
(3) through proof-of-concept studies, we demonstrate the
feasibility of in silico predicting the transfection efficiency
of LNP for delivering mRNA, a direction that holds great
promise for advancing the development of effective LNP-
based mRNA therapeutics.

2. Related Work
Machine learning for molecular representation A vari-
ety of ML models have been proposed for molecular prop-
erty prediction (such as absorption, distribution, metabolism,
excretion, and toxicity of small molecules), ranging from
support vector machine (SVM) (Zernov et al., 2003; Al-
varsson et al., 2016; Hou et al., 2007), random forest (RF)
(Zhang & Aires-de Sousa, 2007; Svetnik et al., 2003), to neu-
ral networks (Wu et al., 2018; Chen et al., 2018; Rifaioglu
et al., 2019; Zhang et al., 2017). Among them, graph neural
network (GNN) has recently attracted considerable attention
for its capability in learning representations directly from
the chemical information encoded by molecular graphs (Wu
et al., 2018; Sun et al., 2020; Xiong et al., 2019; Rong et al.,
2020). Specifically, molecular graphs are natural represen-
tations of chemical structures: while a graph G = (V,E)
describes the connectivity relations between a set of nodes
V and a set of edges E, a molecule can be considered as
a graph consisting of a set of atoms (nodes) and a set of
bonds (edges). GNN learns the representation of each atom
in the molecule by aggregating the information from its
neighboring atoms and connected bonds through message
passing across the graph in a recursive process. However,
despite the attraction GNNs have gained in the community,
it has also been shown that GNNs can be outperformed by
traditional descriptor-based methods with SVM and RF in
terms of prediction accuracy and computational efficiency,
especially in the low-data regimes (Jiang et al., 2021; Mayr
et al., 2018).

Machine learning for the design of biomolecule delivery
agents There has been previous work on leveraging ML to
guide the design of another important type of delivery agents
called adeno-associated virus (AAV) capsids (Ogden et al.,
2019). The paper characterizes single-codon substitutions,
insertions, and deletions of AAV capsids across functions
relevant to in vivo delivery of gene therapies. It shows that
the ML-guided design of AAV capsids outperforms random
mutagenesis. Though its goal is similar to ours as it aims to
optimize the delivery agents for gene or mRNA therapies
using ML, the data modality is very different: an AAV
capsid contains three structural Cap proteins while an LNP
often consists of lipids and cholesterol. In addition, LNPs as
delivery vehicles are superior to viral vectors such as AAVs
in the sense that LNPs have lower immunogenicity and are
capable of delivering larger payloads (Swingle et al., 2021).

3. Approach
3.1. Problem Formulation

We formulate the LNP design task as a classification task.
The input is a multicomponent LNP consisting of four
molecules, along with the corresponding ratios in the LNP.
The output is a label y ∈ (0, 1) indicating if the level of
transfection efficiency is satisfying.

3.2. Model Design

Our proposed model consists of two parts: (1) molecular
representation learning and (2) downstream classification
(Figure 1). Given an LNP with four components and their
corresponding ratios, we first use molecular representation
learning techniques to generate continuous low-dimensional
representations to capture high-level information about the
chemical structures and encode the ratio information with
one-hot embeddings. We then feed the concatenated rep-
resentations into a downstream classifier to predict the re-
sponse, i.e. transfection efficiency. The model performance
is affected by both (1) the quality of the generated molecu-
lar representations in encoding information of the chemical
structures; (2) the capability of the classifier in distinguish-
ing satisfying and unsatisfying designs. In this work, we
explore molecular representations generated based on an
expert-designed system and on GNNs, respectively, and
compare classifiers including SVM, RF, XGBoost (Chen &
Guestrin, 2016), and multi-layer perceptron (MLP).

3.2.1. MOLECULAR REPRESENTATION LEARNING

We propose to use two approaches to generate molecular
representations to encode the structural and semantic infor-
mation of chemical structures. The first approach utilizes
chemical knowledge by designing a set of rules through
specified functions to extract different properties of the
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Figure 1. Overview of our approach: (1) Molecular representation learning: we derive “expert fingerprints” and “neural fingerprints” for
each of the four molecular components of an LNP, and encode the mixture ratio with one-hot embeddings. (2) Downstream classification:
we feed the concatenated molecular representations into classifiers such as SVM or MLP to predict if the transfection efficiency of an
LNP design is satisfying. This figure is generated with BioRender.

molecules such as atom and bond types. The second ap-
proach treats each molecule as a heterogenous graph, where
each atom is represented as a node and bond as an edge,
and then leverages methods in graph representation learning
to generate the representations through graph convolutions.
While the first approach using domain expertise is more
interpretable, the second approach automates the learning
of representations and mitigates the labor involved in hand-
crafting features. Such representations are usually called
molecular fingerprints in the field of chemoinformatics. In
this work, we denote the representations generated through
the first approach as “expert fingerprints”, and through the
second approach as “neural fingerprints”.

Expert Fingerprint Based on chemical knowledge, one
can design a set of specified functions to extract important at-
tributes of molecules that could affect their properties, such
as atom types, bond types, chirality, functional groups, etc.
These functions are carefully crafted by domain experts and
have been made available in chemoinformatics softwares.
We use RDKit1, an open-source cheminformatics software,
to generate fingerprints. RDKit provides a number of gen-
eration functions, and here we use RDKit2DNormalized,
which is one of the most commonly used functions in previ-
ous works on molecular property prediction. The generated
“expert fingerprints” have 200 dimensions.

Neural Fingerprint Molecules can be viewed as heteroge-
nous graphs consisting of different types of nodes (atoms)
and edges (bonds). With graph representation learning, we
can learn representations through graph convolutions in
an automatic way. Specifically, we use Grover to gen-
erate neural fingerprints as it has achieved state-of-the-art
performance on various molecular prediction tasks (Rong
et al., 2020). Grover has its architecture based on one

1https://www.rdkit.org

of the most expressive GNN variants GTransformer.
It is pre-trained on a large collection of molecules with
self-supervised pre-training, which enables it to learn gen-
eral representations. We compared Grover-base and
Grover-large, which contain 48M and 100M param-
eters and output 3400- and 5000-dimension fingerprints,
respectively2.

Component Ratio Embedding The ratio of each molec-
ular component in an LNP can significantly affect its func-
tionality (Kauffman et al., 2015; Hassett et al., 2019). To
encode the ratio information, we normalize the ratio of each
component to (0, 1) and round it to the nearest number in
{0.05, 0.10, ..., 1.00}. We then use one-hot embeddings to
encode the ratio information of each component, each of
which has 20 dimensions.

3.2.2. CLASSIFICATION MODELS

With the generated vector representations of a multicom-
ponent LNP, we concatenate the representations of the dif-
ferent components and their ratios and feed the aggregated
representation into a downstream classifier of choice. We
experiment with classification models including SVM, RF,
XGBoost, and MLP. The classifier learns to differentiate
the representations through supervised learning and outputs
the likelihood of a molecule being capable of achieving
satisfying transfection efficiency.

3.2.3. EVALUATION METRIC

We use the area under the receiver operating characteristic
(AUROC) as our evaluation metric, which measures how
well a model ranks examples and distinguishes between
classes (i.e. satisfying versus unsatisfying designs of LNPs).

2We only used Grover to generate fingerprints and did not
fine-tune its parameters due to the limited amount of training data.
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4. Experiments and Discussion
4.1. Data Curation

We curated a dataset of 572 LNPs along with their level
of transfection efficiency based on a published paper on
membrane-destabilizing ionizable phospholipids for mRNA
delivery (Liu et al., 2021), as there were no publicly avail-
able data resources that can be readily used to develop ML
models for LNP design. We represent the chemical struc-
tures of the four components in an LNP with SMILES (Sim-
plified Molecular Input Line Entry System) codes, which
provide 2D representations of the atoms and the bonds in
molecules. To generate the SMILES codes, the chemical
structures were first drawn by domain chemists in a software
called ChemDraw. We then obtained the readouts on trans-
fection efficiency from the results presented in (Liu et al.,
2021), where the readouts are characterized with luciferase
expression following treatment of IGROV1 cells with iPhos-
delivered mRNA. We used a threshold of 10,000 relative
light units to distinguish between LNP designs with satisfy-
ing and unsatisfying transfection efficiency, comprising 91
and 481 LNPs, respectively.

The availability of large-scale, high-quality data is often a
bottleneck for biomedical applications, including for the
optimization of LNP delivery systems. In this study, we
address the challenge by curating this new dataset, and by
making this dataset publicly available, we aim to contribute
to the scientific community and enable more efficient LNP
optimization with ML techniques.

4.2. Experiment Setup

We split the dataset into training, validation, and test sets,
with 497, 62, 63 data points in each set, respectively
(roughly corresponding to a ratio of 8/1/1). For SVM, we
experiment with different kernels, including the linear ker-
nel, the radial basis function kernel, and the polynomial
kernel, and different regularization strengths. For RF, we
experiment with different numbers of trees in the forest and
different values for the max depth of each tree. For XG-
Boost, we experiment with different number of estimators
and regularization strengths. For MLP, we use one hidden
layer with 128 neurons and train the model with the Adam
optimizer. We use the validation set to select the optimal
hyperparameters for each model.

4.3. Results

Experimental results of different classifiers trained with dif-
ferent molecular fingerprints (FP) are shown in Table 1.
Our methods achieve overall satisfying performances on
the LNP transfection efficiency prediction task, with the
MLP trained with “expert fingerprints” achieving the high-
est predictive accuracy of 98% on the test set. Specifically,
“expert fingerprints” generated based on domain knowledge

Classifier Expert FP Neural FP Val AUC Test AUC

SVM

✓ ✗ 0.9092 0.9614
✗ ✓ 0.9333 0.9627
✓ ✓ 0.9518 0.9654
✓ ✓(Large) 0.9219 0.9481

✓ ✗ 0.9326 0.9521
Random ✗ ✓ 0.9361 0.9208
Forest ✓ ✓ 0.9255 0.9215

✓ ✓(Large) 0.9355 0.9375

XGBoost

✓ ✗ 0.9660 0.9468
✗ ✓ 0.9489 0.9348
✓ ✓ 0.9560 0.9402
✓ ✓(Large) 0.9390 0.9282

MLP

✓ ✗ 0.9617 0.9815
✗ ✓ 0.9300 0.8892
✓ ✓ 0.9383 0.9169
✓ ✓(Large) 0.9533 0.9508

Table 1. Experiment results. Transfection efficiency can be accu-
rately predicted by ML approaches using “expert fingerprints” on
our curated dataset.

are sufficiently predictive by capturing the structural and
semantic information of the molecules, while “neural finger-
prints” generated with GNN (Grover) do not necessarily
offer superior performance. This finding is consistent with
those presented in Jiang et al. (2021). It may also be caused
by the fact that the molecules in LNPs are generally larger
than those used to train Grover. Since ML often does
not perform well on out-of-distribution data, such distribu-
tion differences in the size of the molecules could be the
reason for GNNs not generating better molecular represen-
tations. Overall, our proof-of-concept studies demonstrate
the feasibility of using ML to model the chemical structure
of multicomponent LNPs in predicting their functionality
and show promise in ML-guided LNP design.

5. Conclusion
In this work, we proposed to use ML models to predict the
transfection efficiency of LNPs for mRNA delivery. We
curated a dataset from scratch and empirically evaluated
various molecular representation learning techniques and
classification models on the task. Our methods achieved
overall satisfying performance, demonstrating the feasibility
of leveraging ML to model the chemical structures of LNPs
in predicting their functionality. Our work shows promise
in the direction of ML-guided LNP design, where ML mod-
els are used to prioritize LNP candidates for experimental
validation and improve screening efficiency. As for future
directions, we will leverage the developed ML model to
predict and prioritize new LNP designs based on their prob-
ability of achieving high transfection efficiency and conduct
wet-lab experiments to further validate the effectiveness of
our model. We aspire for this prototype to evolve into a
powerful tool for assisting researchers in the systematic in
silico selection of promising LNP designs.



Machine Learning-guided Lipid Nanoparticle Design for mRNA Delivery

Reproducibility Statement
We provide all the code and data in https:
//anonymous.4open.science/r/Lipid_
Nanoparticle_Design/. This will help researchers
reproduce the results while enabling further exploration of
other methods and directions on the curated dataset.
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V., and Doğan, T. Recent applications of deep learning and
machine intelligence on in silico drug discovery: methods, tools
and databases. Briefings in bioinformatics, 20(5):1878–1912,
2019.

Rong, Y., Bian, Y., Xu, T., Xie, W., Wei, Y., Huang, W., and Huang,
J. Self-supervised graph transformer on large-scale molecular
data. Advances in Neural Information Processing Systems, 33,
2020.
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