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Abstract
Facial expression and identity recognition are es-
sential cognitive processes underpinning daily life
and social relationships. Despite their importance,
the biological neural mechanisms and brain re-
gions associated with these processes are yet to be
fully understood. Convolutional Neural Networks
(CNNs), a reasonable model of the biological vi-
sual system, are commonly employed in facial
recognition tasks. This research investigates how
CNNs develop functional differentiation when si-
multaneously trained on tasks of facial identity
and expression. Our results indicate that a special-
ized model exclusively trained on a single task
underperforms on the other task, while a joint
model trained simultaneously on both tasks per-
forms at least as well as the specialized model for
each task. For interpretation, we used class acti-
vation maps. These helped illustrate how the joint
model distinguishes different facial attributes for
recognizing expression and identity, revealing a
functional segregation within the network. This
differentiation becomes particularly apparent in
the final stages of the convolutional filter process-
ing hierarchy, where task-specific features emerge.
In sum, our study presents an interpretable arti-
ficial neural network-based framework for facial
processing, delivering valuable insights for devel-
oping effective neurobiological support systems
for individuals with related facial recognition im-
pairments. Code is accessible on Github.

1. Introduction and related work
Faces convey important information about identity, emo-
tional expressions, and social traits, and the human visual
system can process this information quickly (Mckone et al.,
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2009; Susskind et al., 2008; Frith, 2009; Adolphs, 2006;
Zadra & Clore, 2011; Plutchik, 2001; Katana et al., 2019;
Bar et al., 2006; Willis & Todorov, 2006). Among these
skills, recognition of facial identity and facial expression are
crucial for social communication as they allow us to identify
people, understand their emotional state, and respond ac-
cordingly. Facial expression recognition involves decoding
a person’s emotional state based on the expression of the
face, while facial identity recognition identifies individuals
by their unique facial features.
Yet, the biological processing mechanisms for these abilities
in the brain are still debated. Majority of research advocates
the parallel processing of facial expression and identity,
each supported by unique neural and cognitive mechanisms
(Bruce & Young, 1986; Sergent et al., 1994; Haxby JV,
2000; Winston et al., 2004). Facial expression recognition
is supported by brain regions such as the amygdala and
the insula, while facial identity recognition is supported by
brain regions such as the fusiform gyrus and the superior
temporal sulcus. This theory is supported by studies on pa-
tients with facial impairments, with impairment in one task
not affecting the other (Tranel, 1998; Andrew W. Young
& Hay, 1993; Hornak, 1996). However, recent research
has suggested some overlap between these two biological
processes, with some identity and expression information
found in shared brain regions (Dobs, 2018), and in separable
face patches of the same region (Yang & Freiwald, 2021).
CNNs are popular as a model of the visual system due to
their similarities with how the brain processes visual infor-
mation (Yamins & DiCarlo, 2016). While CNNs have been
widely used for facial expression and facial identity recog-
nition, these tasks have traditionally been studied separately
(Mellouk & Handouzi, 2020; Tazi et al., 2022).
The conventional approach is to train each task separately,
however the brain processes visual information from mul-
tiple tasks at once. Recently, researchers have started to
investigate to which extent neural networks exhibit a de-
gree of specialization. Schwartz et al. 2023 found that
two separate networks, one trained on identity and one on
expression resulted in more orthogonal features in deeper
layers, suggesting subspace disentanglement. Dobs et al.
2022 demonstrated that a convnet trained jointly on identity
recognition and object detection segregated into two com-
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Figure 1. Evidence of functional specialization of facial expression and facial identity in a joint model. (A) We optimized three neural
networks with VGG11 architecture: one specialized for facial expression, one specialized for facial identity, and one for both tasks jointly.
(B) Decoding accuracy on the test set using activations extracted from the second to last layer of each model. Specialized face expression
network outperforms face identity network for facial expression decoding, and specialized face identity network outperforms specialized
face expression network in facial identity decoding. We generated 100 bootstraps on the test set to obtain error bars. (C) Joint network
simultaneously trained on both tasks performs at least as well as the specialized network for both tasks. We generated 100 bootstraps on
the test set to obtain error bars.

putational systems, learning task-specific features in deeper
layers. However, training a network simultaneously on both
facial identity and expression has not been attempted yet.
This is a more challenging task, as the network receives the
same type of input images (faces), and functional special-
ization is not necessarily expected, and harder to interpret.
Our study introduces a novel approach of simultaneously
training a model on facial expression and identity, priori-
tizing interpretability of learned features to solve each task.
Our contributions are: 1) Jointly trained ConvNets on facial
expression and identity perform at least as well as special-
ized models trained on a single task, while specialized ones
only performed well on their respective tasks, suggesting
task-specific functional specialization of the joint model,
2) The joint model captures more efficient facial attributes
specific to each task than specialized model for one task,
3) We offer an interpretable visual explanation of how the
network processes and differentiates between facial identity
and expression tasks, and 4) We propose using identified fa-
cial biomarkers to enhance facial processing skills in patient
with facial recognition impairments.

2. Data and Method
2.1. Data
In our study, we aim to train neural networks on tasks related
to facial expression and identity recognition. For this pur-
pose, we have employed three diverse datasets comprising
images of individuals displaying various facial expressions
under different conditions:
The KDEF dataset (Lundqvist et al., 1998), with 4900 pic-

tures of facial expressions from 70 individuals (35 women),
showcases seven emotional expressions from five angles.
Since its creation in 1987, this dataset has been widely used
in neuroscience, psychology, and computer vision research.
The VoxCeleb dataset (Nagrani et al., 2017) a compilation
of short video clips from interviews with 1251 individuals,
represents a broad demographic range. We’ll use this dataset
to validate the findings in the identity task.
Lastly, the FER-2013 dataset, which includes 30,000 images
of seven different facial expressions from various individu-
als, will be employed for validation in the expression task.

2.2. Model training and evaluation
To evaluate the performance of our joint model for facial
identity and expression, we optimized three neural networks
with VGG11 architecture (Figure 1A) with random weights
initialization. VGG11 is a relatively straightforward CNN
architecture comprising eight convolutional layers and three
fully connected layers, making it well suited for our inter-
pretability goals. The convolutional layers have a 3*3 kernel
size and are followed by a rectified linear unit (ReLU) acti-
vation function and a max pooling layer with a 2*2 kernel
size. We chose this well-known architecture for its perfor-
mance in computer vision tasks, and its relatively shallow
depth which aligns with the fast processing of the human
visual system.
The KDEF dataset was used for training, with each set of
35 distinct identities split into two sets of 2450 frames each,
with 80% of the frames used for training and 20% for testing,
ensuring identity-wise splitting for expression. One set was
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Figure 2. Class Activation Maps Average on the top predicted expression and identity for the three models. Each model generates an
activation map for each image for each possible class. For each model, we then average the activation maps of the top predicted class for
expression and identity. (A) Average Heatmap of the top predicted expression or identity class for each model. (B) Boxplot comparison of
pixel values for expression and identity predictions among the three models. We conducted pairwise Mann-Whitney U tests to compare
the pixel values. (C) Heatmap of intersection of joint model for expression and identity. We only activated pixel values above the 95th
percentile. (D) Class activation visualization of the expression heatmap on two example input frames from the KDEF dataset.

used for training the identity network, the other for training
the expression network, and both sets were used for training
the joint model (multi-label network). All the models were
trained for 250 epochs with identical parameters, using SGD
with an initial learning rate of 0.001, momentum of 0.9, and
weight decay of 0.0001. The cross-entropy loss was used to
update the weights of the model. To ensure generalization,
we repeated the same procedure using the VoxCeleb dataset
to train the identity network, the FER-2013 dataset to train
the expression network, and both datasets to train the joint
network.
To assess the transferability of representations learned from
one task to the other, we extracted vector representations
from the second-to-last layer of each train and test frame
and trained a support vector machine on the extracted repre-
sentations (Figure 1B). Since the classes are balanced, the
performances of the models were measured by the classifi-
cation accuracy of the top predicted class for each frame in
the test set, with error bars obtained through bootstrapping
on the predictions.

2.3. Interpretability methods
CNNs extract meaningful features from images through its
convolutional filters. These filters, when visualized and
interpreted, provide insights into how the CNN processes
images, allowing us to identify the specific features the
model leverages to predict a particular class.
Class Activation Maps (CAMs) (Selvaraju et al., 2017) is a
technique that highlights the regions of an image that con-
tribute most to the final class prediction of a model. This
is done by calculating the weighted sum of the output fea-
ture map of the last convolutional layer, where the weights
are determined by the gradient of the predicted class with
respect to each channel. This produces an activation map
that depicts the relative importance of each spatial location
in the image for the target class. CAMs are highly inter-
pretable, and allow identification of specific features and

patterns the model utilizes for a particular class. This is
particularly useful for understanding how the joint model’s
decision-making processes differ when predicting either
identities or expressions. To identify general patterns for
expressions and identities, we averaged the activation maps
from the joint model of the top predicted class for expres-
sion and the top predicted class for identity. We displayed
these activation maps on the average face background image
using the straight images in the KDEF dataset, to ensure
that these activation maps align visually with the specific
facial attributes identified for each class.
Another way to understand the decision-making process
of the model is to examine the features extracted by the
model’s filters (Yosinski et al., 2015). We visualized the
preferred stimulus for each filter by initially presenting the
network with a random noise input image, then modifying
this input to maximize the activation of the filters. This was
achieved using gradient ascent to adjust the values of the
initial random noise input image and creating a loss function
that maximizes the value of the filter. The iterative adjust-
ment of the input image values using stochastic gradient
ascent led to the maximization of the filter’s activation. The
resulting image is a visual representation of the filter’s target
features.

3. Results
3.1. Evidence of functional specialization in the joint

model
We have trained 3 VGG11 networks: one for facial iden-
tity, one for facial expression, and one jointly on both tasks
using the KDEF dataset as previously detailed. As antici-
pated, the specialized facial expression network effectively
decoded untrained facial expressions, and the specialized
facial identity network accurately decoded untrained facial
identities. However, the specialized facial expression net-
work demonstrated subpar performance in decoding facial
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identities (p < 0.0001, two-sided paired t test, Figure 1B),
and the specialized facial identity network similarly under-
performed for decoding facial expressions (p < 0.0001,
two-sided paired t test, Figure 1B).
Interestingly, the network trained jointly on both tasks per-
formed at least as well on each task compared to the spe-
cialized network trained solely on that task (Figure 1C). For
further validation, we replicated these findings using the
VoxCeleb and FER2013 datasets (S.Figure 1).
Despite using facial images as input, the representations
learnt by the models trained on a single task did not seem to
benefit greatly for the other task. In contrast, when trained
simultaneously on both tasks, the model spontaneously seg-
regated for both tasks, displaying a degree of functional
specialization specific to each task.

3.2. Interpretability and visualization of what the
models learn

To explore this functional specialization, we aimed to in-
terpret what the models focus on for a given task. This
is particularly interesting for the model trained jointly on
expression and identity as, in the event of segregation, we
would expect to find systematic differences in relevant facial
attributes for each task, and potentially in the filters of the
deeper layers utilized by the model to solve each task.
Firstly, the joint model learned a more effective representa-
tion characterized by smaller receptive fields compared to
the specialized models (p < 0.0001, Figure 2).
Importantly, the joint model generated distinct heatmaps on
opposite sides of the face, with the identity heatmap sig-
nificantly larger than the expression heatmap (p < 0.0001,
Figure 2A-B). For expression recognition, the joint model
focused on a narrow vertical facial region extending from
the upper eye down the mouth, a feature noted in human
studies (Schyns et al., 2007). For identity recognition, the
model focused on larger facial regions including the face
shape and the eye. The joint model also learned a subset of
features common to both tasks (Figure 2C).
We further analyzed individual facial frames for specific
expressions and identities. The joint model accurately cap-
tured action units (Ekman & Friesen, 1978) for expression
prediction. When predicting disgust for BM04DIS, the
model created a narrow line extending from the nose to the
bottom lips capturing the three action units characteristic
of disgust (Nose Wrinkler, Lip Corner Depressor, Lower
Lip Depressor) (Figure 2D). When predicting happiness for
BM02HAS, the model created a narrow vertical line and
considered the eyes, jaw and corner of the mouth, effectively
capturing the happiness action units (Cheek Raiser and Lip
Corner Puller).
In light of the previous analyses, we expected the network to
segregate for both tasks by learning representations specific
to each task. To understand the patterns that the convolu-
tional layers seek in an image, we visualized the preferred

stimulus of each filter in the model. The filters in the early
layers showed similar features regardless of the task, encod-
ing simple directional edges and colors (first convolutional
layer), while the filters in higher layers encoded more com-
plex combinations of edges and colors to represent facial
features such as eyes (fourth and sixth convolutional lay-
ers). Units in the last convolutional layer encoded face
appearances (Figure 3, S.Figure 2A). In the final layer, we
observed an increasing number of blank filters, indicating
that the features encoded by the filters were increasingly
task-related rather than image-related. These results demon-
strate that the development of distinctive features each task
relies on becomes apparent in the later layers (S.Figure 2).

Figure 3. Exploring the representations learned by convolutional
neural networks. Images optimized to drive responses in one
example filter. We show images optimized to drive responses in
one example filter for each of the three models in the first, fourth,
sixth, and last (eighth) convolutional layers of VGG11.

4. Discussion and future work
Our research has shed light on the capacity of a single con-
volutional neural network, trained simultaneously on both
facial expression and identity recognition, to exhibit func-
tional specialization, thereby segregating distinct features
specific to each task.
The interpretability methods provided meaningful insight
into the decision-making process of the model. CAM and
preferred stimulus visualization showed that the joint model
focuses on different facial attributes for each task, and
that task specific features only emerge in the deeper layers.
These methods could be widely applicable to other studies
aiming to understand the internal mechanisms of biological
visual systems. Our study also identified task-specific fa-
cial biomarkers that could assist in training individuals with
facial recognition impairments. Notably, by examining the
images that maximally activate each unit in the model, we
can potentially identify and tune disrupted neurons in the
visual system to respond better to task-optimized images.
Looking ahead, there is a need to explore more biologically
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plausible architectures that process facial information dy-
namically, enhancing our understanding of the mechanisms
underlying facial recognition. Furthermore, additional re-
search should focus on comparing these artificial neural
networks with their biological counterparts in the brain,
opening new avenues for neurobiological applications.
In conclusion, our work underscores the potential of CNNs
as powerful tools in computational biology, generating inter-
pretable models of complex biological processes like facial
recognition.
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Figure S.1. Same as Figure 1B. and C. with two other datasets.
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Figure S.2. Exploring representations learned by convolutional neural networks. (A) Images optimized to drive responses in five example
units of the last convolutional layer for the three models. We show images optimized to drive responses in the top five units of the last
convolutional layer for each of the three models. We focus on the last convolutional layer due to the small receptive fields in earlier layers.
(B)Visualization of intermediate convnet outputs for the three models. We visualize intermediate Convnet outputs for each of the three
models given an input image of AM17HAS from the KDEF dataset. This provides insight into the learned features and processing steps
that occur in the Convnet.


