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Abstract
The field of RNA secondary structure prediction
has made significant progress with the adoption of
deep learning techniques. In this work, we present
the RNAformer, a lean deep learning model using
axial attention and recycling in the latent space.
We gain performance improvements by design-
ing the architecture for modeling the adjacency
matrix directly in the latent space and by scal-
ing the size of the model. Our approach achieves
state-of-the-art performance on the popular TS0
benchmark dataset and even outperforms methods
that use external information. Further, we show
experimentally that the RNAformer can learn a
biophysical model of the RNA folding process.

1. Introduction
RNA molecules play a central role in many cellular pro-
cesses, including regulation of transcription, translation,
epigenetics, or more general differentiation and develop-
ment (Morris & Mattick, 2014). These functions strongly
depend on the structure of the RNA, which is defined by the
secondary structure that describes the intra-molecular base-
pair interactions, determined by the sequence of nucleotides.
Also, the secondary structure can provide important insights
into RNA behavior and guide the design of RNA-based
therapeutics and nanomachines (Kai et al., 2021). There-
fore, the accurate prediction of the secondary structure is
very desirable and a significant problem in computational
biology (Bonnet et al., 2020).

Traditionally, the problem of secondary structure prediction
is solved with dynamic programming approaches that min-
imize the free energy (MFE) of a structure, like the most
widely used algorithm, RNAfold (Hofacker et al., 1994).
The optimization is based on thermodynamic parameters de-
rived from UV melting experiments (Szikszai et al., 2022).
More recently, deep-learning-based approaches have con-
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quered the field, showing superior performance on bench-
mark datasets, and can further incorporate additional infor-
mation e.g. embeddings from large-scale RNA sequence
models (Singh et al., 2019; Chen et al., 2022).

We present in this work a deep learning architecture that
outperforms other methods on a commonly used benchmark
dataset, such as TS0 provided by Singh et al. (2019), without
ensembling or making use of additional information. Our
performance improvements are mainly based on an axial
attention Transformer-like architecture which has a poten-
tially high inductive bias for the prediction of an adjacency
matrix. In contrast to the conventional used CNNs, axial
attention has a receptive field of the whole pair matrix at any
time and does not need to build the receptive field by depth.
Further, we gain improvement by recycling to simulate a
larger depth and classical scaling in terms of more training
data, model parameters, and longer training times.

However, some work in the field recently raised concerns
about the performance improvements of deep learning meth-
ods, questioning if the learned predictions are a result of
similarities between training and test data, and if the al-
gorithms really learn a biophysical model of the folding
process (Flamm et al., 2021). Since current datasets are typ-
ically curated with regard to sequence similarity only, the
performance of models mainly assesses intra-family perfor-
mance (Szikszai et al., 2022), while inter-family evaluations
are rarely reported. Our suggestion is to show the capability
to learn a biophysical model using sequences with predicted
structures from the widely used, well-defined but simplified
biophysical model RNAfold. To this end, we build a dataset
based on RNA family information from the Rfam (Griffiths-
Jones et al., 2003) database with structure predictions from
RNAfold and demonstrate that our method is capable of
learning the biophysical model of the folding process. Our
main contributions are:
• We propose a novel architecture for RNA secondary struc-

ture prediction based on axial attention and recycling.
• We achieve state-of-the-art results on the commonly used

benchmark dataset TS0 (Section 4.1).
• We show that our method is capable of learning the un-

derlying folding dynamics of an MFE model in an inter-
family prediction setting (Section 4.2).
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2. Background & Related Work
Secondary structure prediction algorithms can be roughly
divided into two classes: (1) de novo prediction methods
that seek to predict the structures directly from the nu-
cleotide sequence and (2) homology modeling methods that
require a set of homologous RNA sequences for their pre-
dictions (Singh et al., 2021), called an RNA family. Pre-
dictions can then be applied either within given families
(intra-family predictions) or across different families (inter-
family prediction). De novo prediction methods are typi-
cally preferred since the search for homologous sequences
is time-consuming and often, there is no family information
available for novel RNAs. Until recently, the field of de novo
RNA secondary structure prediction was dominated by Dy-
namic Programming (DP) approaches that either build on al-
gorithms for predicting the MFE secondary structure (Zuker
& Stiegler, 1981), or algorithms to find the most likely struc-
ture (maximum expected accuracy). One disadvantage of
these algorithms is that they are typically limited to the
prediction of nested RNA secondary structures, i.e. they
cannot predict Pseudoknots (Staple & Butcher, 2005) out-of-
the-box, which are present in around 40% of RNAs (Chen
et al., 2020), overrepresented in functional important re-
gions (Staple & Butcher, 2005) and known to assist folding
into 3D structures (Fechter et al., 2001). Only recently,
deep-learning-based approaches conquered the field, which
benefit from making few assumptions on the underlying
biophysical folding process, while not being restricted to
only predict a subset of possible base pairs (Singh et al.,
2019), and achieved state-of-the-art performance (Chen
et al., 2022). We now briefly summarize some existing
methods and refer the reader to more detailed related work
in Appendix B.

RNAfold (Lorenz et al., 2011) uses a DP approach for the
prediction of MFE secondary structures. The version we
use here is based on the energy parameters provided by the
Turner nearest-neighbor model (Turner & Mathews, 2010).
SPOT-RNA (Singh et al., 2019) uses an ensemble of models
with residual networks (ResNets) (He et al., 2016), bidi-
rectional LSTM (Schuster & Paliwal, 1997), and dilated
convolution (Yu & Koltun, 2015) architectures. SPOT-RNA
was trained on a large set of intra-family RNA data for de
novo predictions on a newly proposed test set, TS0. Prob-
Transformer (Franke et al., 2022) uses a probabilistic en-
hancement of the Transformer architecture for intra-family
predictions. The model is trained on a large set of avail-
able secondary structure data and evaluated on TS0. RNA-
FM (Chen et al., 2022) uses sequence embeddings of an
RNA foundation model that is trained on 23 million RNA
sequences to perform intra-family predictions of RNA sec-
ondary structures in a downstream task. The foundation
model consists of a large Transformer architecture, while
the downstream model uses a ResNet32 (He et al., 2016).
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Figure 1. An overview of the RNAformer architecture.

3. RNAformer
Our model architecture is inspired by AlphaFold (Jumper
et al., 2021), which models a multi-sequence alignment and
a pair matrix in the latent space and processes it with the
use of axial attention (Ho et al., 2019). In our approach,
which we dub RNAformer1, we simplify this architecture
and only use axial attention for modeling a latent represen-
tation for the pairing between all nucleotides of the input
RNA sequence. This construction leads to a potentially
higher inductive bias since each layer adds some value to
the latent representation of the adjacency matrix. To capture
the dependency between the potential pairings we use two
mechanisms: (1) axial attention and a (2) convolutional

1Source code and models: github.com/automl/RNAformer

https://github.com/automl/RNAformer
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layer. Axial attention is a type of attention mechanism that
captures dependencies between positions along a specific
axis of the input data. In our case, we apply axial attention
to the row and the column of the latent pairing matrix to cre-
ate a dependency between all potential nucleotide pairings.
To improve the modeling of local structures like stem-loops,
we use a convolutional neural network with a kernel size of
three instead of the position-wise feed-forward layer from
the vanilla Transformer (Vaswani et al., 2017).

RNAformer embeds the RNA sequence with a linear layer
twice and broadcasts them, one for a row-wise and one for a
column-wise representation before we add them to the initial
latent representation. Now we apply multiple Transformer-
like blocks, each consisting of a row-wise axial attention, a
column-wise axial attention, and a two-layer convolutional
network. Lastly, we apply a linear layer and output the
paring matrix of the secondary structure directly. Similar to
AlphaFold, we apply recycling of the processed latent space
to artificially increase the model depth and allow the model
to reprocess and correct its own predictions. Therefore, we
pass the latent representation multiple times through the
block without gradient and calculate gradients only for the
last recycle iteration. We apply dropout, pre-norm, and
residual connections to all layers except the embedding and
generator layers. For loss calculation, we masked 50% of the
unpaired entries in the adjacency matrix before calculating
the mean cross-entropy loss. This helps to increase the
learning signal in the heavily imbalanced adjacency matrix.
Refer to Figure 1 for an overview of our architecture.

4. Experiments
We evaluate the performance of our model in two settings.
First, we evaluate the intra-family prediction capability
based on the bpRNA dataset. Secondly, we assess the perfor-
mance on inter-family predictions, as well as investigate the
learning of a biophysical model by training the RNAformer
on a dataset derived from Rfam database and the generated
target secondary structures with RNAfold.

4.1. bpRNA Experiment

Data curation In order to generate a training dataset for
intra-family predictions, we first collect a large data corpus
from the following public sources: the bpRNA-1m (Danaee
et al., 2018), the ArchiveII (Sloma & Mathews, 2016) and
RNAStrAlign (Tan et al., 2017) dataset provided by Chen
et al. (2020), all data from RNA-Strand (Andronescu et al.,
2008), as well as all RNA containing data from PDB. Sec-
ondary structures for PDB samples were derived from the
3D structure information using DSSR (Lu et al., 2015). Af-
ter removing duplicates we use the exact same protocol as
Singh et al. (2019) to remove sequence similarities while we
replace the training set TR0 with our own data. In particular,

Table 1. The mean performance of three runs with different
random seeds in comparison on the TS0 benchmark dataset. We
evaluated all competitors based on their open-sourced models and
will publish our evaluation script with the model and code.

Model TS0

F1 Score MCC Solved

RNAformer 32M+ ⟲ 0.728 0.733 17.2%
RNAformer 32M 0.717 0.727 16.6%
RNAformer 8M 0.708 0.716 14.4%
RNAformer 2M 0.677 0.684 11.4%
RNAformer 0.5M 0.644 0.653 8.7%

RNA-FM 0.667 0.671 10.4%
ProbTransformer 0.625 11.8%
SPOT-RNA 0.597 0.597 0.05%
RNAfold 0.492 0.499 0.8%

we apply a 80% similarity cutoff between the sequences
using CD-HIT (Fu et al., 2012) and a homology search us-
ing BLASTN (Altschul et al., 1997) with a large e-value
of 10, to further reject sequences from our training set that
show homologies with the respective test sets. Most DL
methods use the TS0 dataset for evaluations. However, sim-
ilar to Franke et al. (2022), we did not cluster the training,
validation, and test data internally to learn from the data
diversity.

Model & Training Setup We evaluate the RNAformer in
a setup with 6 blocks and with different latent dimensions of
32, 64, 128, and 256, resulting in total parameter counts of
roughly 0.5M, 2M, 8M, and 32M parameters, respectively.
We applied recycling (⟲) with 6 iterations to the largest
model and sample the number of recycle iterations during
the training uniformly from 2 to 6. We trained all models
on 8 GPUs with a batch size of 500 tokens per GPU and
a maximum sequence length of 500, for 50k steps. This
limit is mainly due to the large memory footprint of the two-
dimensional latent space, however, we note that the same
cutoff was also applied in previous work (Singh et al., 2019).
For optimization, we used AdamW (Loshchilov & Hutter,
2019) learning rate warm-up, a cosine learning rate decay,
weight decay, and gradient clipping. Refer to Appendix A
for all hyperparameter values.

Results We compared RNAformer to the models in the
related work and present the results in Table 1. For a
more comprehensive comparison refer to Appendix D. Our
largest model with 32M parameters with the use of recycling
achieves a new state-of-the-art result on the TS0 benchmark
set. We solve 17.2% of the sequences completely without
any mistakes. The recycling (⟲) leads to a performance
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gain of ∼ 1% and a steady increase of the parameter count
from 0.5M to 32M also leads to a steady performance in-
crease. This shows that we gain performance from over-
parameterization and could indicate that the inductive bias
induced by the architecture is beneficial for this task.

4.2. Rfam Experiment

Data curation To evaluate the performance on inter-
family predictions, as well as investigate the learning of
a biophysical model, we derive a training dataset from fami-
lies of the Rfam database version 14.9 (Kalvari et al., 2020).
We first select all families with a covariance model with
maximum CLEN of ≤ 500 and sample a large set of se-
quences for each family from the covariance models using
Infernal (Nawrocki & Eddy, 2013). We then build a large set
with two third sequences from families with CLEN ≤ 200
and one-third of sequences from the families with CLEN >
200 to increase the number of families further. We randomly
select 25 and 30 families from this set for validation and test-
ing, respectively, and leaf all samples from other families for
training. All sequences are folded using RNAfold (Lorenz
et al., 2011). We apply a length cutoff at 200 nucleotides
since we expect RNAfold predictions to be more reliable
for sequences below this threshold, to save computational
costs, and since all datasets of experimentally derived RNA
structures from the literature show a maximum sequence
length below 200 nucleotides. Singh et al. (2021) created
a test set, TS-hard, in an inter-family manner similar to the
data pipelines used by the Rfam database for RNA family
assignments. We follow this pipeline to remove similar se-
quences between our training data and the validation- and
test sets provided by Singh et al. (2021) using CD-HIT and
BLASTN as described before. We then build an MSA of
all sequences in TS-hard with BLASTN at an e-value of 0.1
using NCBI’s nt database as a reference and build covari-
ance models from the MSAs using Infernal. However, while
Singh et al. (2021) used SPOT-RNA for predictions of the
consensus structures of the MSA, which appears inappropri-
ate since the method was built for de-novo predictions, we
use LocARNA-P (Will et al., 2012), a commonly used tool
to build MSAs based on sequence and structure-based align-
ments. The covariance models were then used to remove all
sequences from the training data, using an e-value threshold
of 0.1. We use this dataset to learn the underlying biophysi-
cal model of RNAfold, evaluated on the Rfam test data, and
for evaluations on TS-hard. Again we avoid clustering the
datasets internally to keep structural diversity. All datasets
are described in more detail in Table 4 in Appendix C.

Model & Training Setup We used the same setup as
in the first experiment with the difference of a maximum
sequence length of 200 tokens, a batch size of 600 tokens
per GPU, and a training time of 100k steps.

Table 2. We train different sizes of our model on the Rfam dataset
on three different random seeds and report the mean performance.

Model Rfam TS TS-hard

F1 Score Solved F1 Score

RNAformer 32M+ ⟲ 0.967 84.5% 0.651
RNAformer 32M 0.936 65.2% 0.642
RNAformer 8M 0.925 60.0% 0.639
RNAformer 2M 0.870 37.2% 0.625

RNAfold 0.636

Results As shown in Table 2, we can replicate the
RNAfold algorithm increasingly better with growing model
size. Our largest model achieves a mean F1 score of 94.8
on the test set and predicts 76.3% of the structures entirely
correct. This result suggests that the RNAformer can learn
the underlying biophysical model of the folding process.
We observe similar results regarding scaling for the TS-hard
dataset, where F1 scores increase with model size, resulting
in a similar performance as RNAfold, which further sup-
ports our observation on the Rfam dataset. Interestingly,
our larger models even slightly outperform RNAfold on TS-
hard. However, these results require further investigations
and a closer look at what the RNAformer layers models
in detail, before we speculate about whether these results
originate from the RNAformer architecture, or simply from
slight deviations from the learned biophysical model.

5. Conclusion & Future Work
We introduced a new architecture for RNA secondary struc-
ture prediction and showed state-of-the-art performance on
the TS0 benchmark set. The gain in performance is based
on axial attention, a recycling of the latent space, and a
larger dataset based on the same similarity criteria as used
in related work. We also trained the RNAformer on a dataset
derived from the Rfam database with RNAfold prediction
to demonstrate that we can learn a biophysical model like
RNAfold. The downside of our approach is a large mem-
ory footprint. Our approach could be further improved by
the usage of additional information like MSA (Singh et al.,
2021) or language embeddings with additional text informa-
tion. We could also improve the architecture and enhance
it with a probabilistic layer to capture ambiguities (Franke
et al., 2022) or scale it even further. Another way to im-
prove or adapt our model is finetuning, which is heavily
used for large language models and could be applicable to
fine-tuning high-quality data. However, besides method-
ological improvements, more effort in the generation and
collection of high-quality data is required to achieve accu-
rate predictions of RNA structures with deep learning.
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Appendix

A. Training Details

Group Parameter Value

Training

accelerator GPU
devices 8
gradient clip val 1.0
max steps 50000 (100000)
seed 1 / 2 / 3

Optimizer

optimizer AdamW
learning rate 0.001
weight decay 0.1
betas [0.9, 0.98]
eps 1.0e-09
adam w mode true
num warmup steps 2000
decay factor 0.01
schedule cosine annealing

Model

vocab size 5
max len 500 (200)
model dim 256 / 128 / 64 / 32
n layers 6
num head 4 / 2 / 1 / 1
ff kernel 3
cycling 6
resi dropout 0.1
embed dropout 0.1
relative position encoding True
ln eps 1e-5
softmax scale True
key dim scaler True
flash attn True
initializer range 0.02

Data

dataset bpRNA (Rfam)
random ignore mat 0.5
num cpu worker 32
num gpu worker 8
min len 10
max len 500 (200)
batch token size 500 (600)
shuffle pool size 100

Table 3. The hyperparameters of the RNAformer training.
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B. Related Work
As described in Section 2, RNA secondary structure prediction was previously dominated by dynamic programming
approaches the either optimize for MFE or maximum expected accuracy (MEA) predictions. The runtime of these
approaches in O

(
n3

)
. However, linear time approximations have been proposed Huang et al. (2019). Besides runtime,

the major disadvantage of these algorithms is that they are typically limited to the prediction of nested RNA secondary
structures, which strongly limits their accuracy (Szikszai et al., 2022). Some work, however, used heuristic approaches to
overcome this issue, again at the price of runtime (Theis et al., 2010; Sato et al., 2011).

In this regard, deep learning approaches have strong advantages, especially when modeling the RNA secondary structure as
an adjacency matrix, where all types of pairs and pseudoknots are represented identically. We now discuss existing deep
learning approaches in more detail.

SPOT-RNA Singh et al. (2019) was the first algorithm using deep neural networks for end-to-end prediction of RNA secondary
structures, using an ensemble of models with residual networks (ResNets) He et al. (2016), bidirectional LSTM- (Hochreiter
& Schmidhuber, 1997) (BiLSTMs) (Schuster & Paliwal, 1997), and dilated convolution (Yu & Koltun, 2015) architectures.
SPOT-RNA was trained on a large set of intra-family RNA data for de novo predictions on TS0, and further fine-tuned
on a small set of experimentally-derived RNA structures, for predictions including tertiary interactions. However, the
performance for these types of base pairs was rather poor and the currently available version of the algorithm excludes
tertiary interactions from its outputs.

E2efold (Chen et al., 2020) uses a Transformer encoder architecture for de novo prediction of RNA secondary structures.
The algorithm was trained on a dataset of homologous RNAs and showed strongly reduced performance across evaluation in
multiple other publications (Sato et al., 2021; Fu et al., 2022), which indicates strong overfitting. We use the same data as
the respective work for evaluations and thus exclude E2efold from our evaluations.

MXFold2 (Sato et al., 2021) seeks to learn the scoring function for a subsequent DP algorithm using a CNN/BiLSTM
architecture. The network is trained to predict scores close to a set of thermodynamic parameters. In contrast to the
previously described methods, MXFold2 is restricted to predicting a limited set of base pairs due to the DP algorithm.

UFold (Fu et al., 2022) employs a UNet (Ronneberger et al., 2015) architecture for de novo secondary structure prediction,
additionally reporting results for predictions on data that contains tertiary interactions after fine-tuning the model. In UFold
an RNA sequence is an image of all possible base-pairing maps and an additional map for pair probabilities, represented as
square matrices.

SPOT-RNA2 (Singh et al., 2021) is a homology modeling method that incorporates MSA features as well as sequence profiles
(PSSM) and features derived from direct coupling analysis (DCA) for the prediction of RNA secondary structures. Similar
to SPOT-RNA, predictions are based on an ensemble of models but using dilated convolutions only. Since SPOT-RNA2’s
predictions are based on evolutionary features and homologous sequence information, the predictions can be considered
intra-family wise independent of the curation of the dataset since homologies between the evolutionary information and the
training or test sets were not explicitly excluded during evaluations. Nevertheless, we use the carefully designed test set,
TS-hard, proposed by Singh et al. (2021) for our evaluations on inter-family predictions as described in Section C.

ProbTransformer (Franke et al., 2022) uses a probabilistic enhancement for either an encoder or decoder transformer
architecture for intra-family predictions. The model is trained on a large set of available secondary structure data and
evaluated on TS0. By learning a hierarchical joint distribution in the latent, the ProbTransformer is the first learning
algorithm that is capable of sampling different structures of this latent distribution, which was shown by reconstructing
structure ensembles of a distinct dataset with multiple structures for a given input sequence.

RNA-FM (Chen et al., 2022) uses sequence embeddings of an RNA foundation model that is trained on 23 million RNA
sequences from 800000 species to perform intra-family predictions of RNA secondary structures in a downstream task. The
foundation model consists of a 12-layer transformer architecture, while the downstream models use a ResNet32 architecture.

REDfold (Chen & Chan, 2023) uses a residual encoder-decoder architecture inspired by the UNet architecture of UFold.
Interestingly, the model input is a 146×L×L tensor, representing square matrices of all possible base pairs (10 combinations
for dinucleotide pairs) and tetranucleotide combinations (136 combinations) without considering their order. The model is
trained on highly homogeneous data, reporting strong performance on 4-fold cross-validation experiments, but also reporting
strong results when considering sequence similarity. However, when we evaluated REDfold on TS0, we did not observe the
same performance (see Table 5). Together with the results on unseen families provided by Chen & Chan (2023), this might
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indicate potential overfitting.

We note that there are other methods we do not consider here because they either showed inferior performance to methods
we compare against (Zhang et al., 2019; Rezaur Rahman Chowdhury et al., 2019; Saman Booy et al., 2022; Wayment-Steele
et al., 2022) or because their source code is not publicly available (Jung et al., 2022).

C. Data

Dataset # Samples Min – Max Length Mean Length # Families

TS-hard 28 34 – 189 65.6 –
Rfam Test 3344 37 – 182 79.4 30
Rfam Valid 2727 34 – 160 80.2 25
Rfam Train 410408 22 – 200 95.2 3796

TS0 1305 22 – 499 136.1 –
VL0 1291 33 – 497 132.1 –
bpRNA Train 40836 13 – 500 123.0 –

Table 4. Dataset overview.

D. Experiments

Model
TS0

F1 Score Solved

mean std mean std

RNAformer 32M+ ⟲ 0.728 0.002 17.2% 0.002
RNAformer 32M 0.717 0.002 16.6% 0.001
RNAformer 8M 0.708 0.001 14.4% 0.003
RNAformer 2M 0.677 0.005 11.4% 0.001
RNAformer 0.5M 0.644 0.003 8.7% 0.002

RNA-FM* 0.667 10.4%
ProbTransformer 0.625 11.8%
SPOT-RNA 0.597 0.05%
MXFold2 0.550 1.4%
UFold 0.588 3.8%
RNAfold 0.492 0.8%
LinearFold-C 0.509 1.2%
LinearFold-V 0.493 0.8%
RNAStructure 0.490 0.6%
pKiss 0.450 0.3%
CONTRAfold 0.522 0.8%
IpKnot 0.504 0.4%
REDfold 0.475 2.2%

Table 5. Performance comparison on the TS0 benchmark dataset. We report the mean and standard derivation of the performance of three
RNAformer runs with different random seeds. *The number differs from their publication since we used their open-sourced model and
our evaluation script which will be publicly available upon acceptance. We note, however, that the RNAformer also achieves a higher F1
score than reported in the publication of RNA-FM.
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