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Abstract
Elucidating the biogeography of the gut micro-
biome is critical for understanding how the tril-
lions of microbes that live in our intestines form
complex communities and interact to maintain
human health, or when disrupted, contribute to
disease. A new technology, metagenomic plot
sampling by sequencing (MaPS-seq), provides
unprecedented micron-scale spatial data of entire
microbiomes. However, the data is noisy and high-
dimensional, making direct interpretation difficult.
Here we present MC-SPACE, a Bayesian model
that infers mixtures of spatially coherent micro-
bial community subtypes and alterations in their
prevalence due to perturbations, from MaPS-seq
data. We apply MC-SPACE to a fecal microbiota
transplantation (FMT) mouse study and find dis-
tinct microbial communities from donor mice that
are spatially coherent and engraft into recipient
mice, causing significant spatial restructuring of
gut microbiomes. Our results highlight the ability
of MC-SPACE to infer spatial microbiome struc-
ture from high-throughput data, and yield insights
into the spatial dynamics of microbial coloniza-
tion of the gut, which has potential to improve
treatment for human diseases responsive to FMT.

1. Introduction
The microbiome, or collection of commensal micro-
organisms that live on and within us, is extremely complex
and plays key roles in many prevalent human diseases, such
as infectious (Van Nood et al., 2013), autoimmune, and other
diseases. Thus, many efforts are underway to manipulate
the microbiome for therapeutic purposes. For therapies to
be effective, they must interact with a complex pre-existing
microbial ecology. Spatial associations between microbes
are thought to be important in these ecologies, because they
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influence many key factors such as maintenance of biodiver-
sity (Reichenbach et al., 2007), microbe interactions with
each other (Cordero & Datta, 2016) and their host, as well
as the stability and plasticity of the microbiome (Bucci et al.,
2016; Lee et al., 2022; Olsson et al., 2022).

However, the biogeography of the microbiome is relatively
unexplored, in part due to technological limitations. Cur-
rent imaging technologies require extensive experimental
optimization (Amann & Fuchs, 2008; Mark Welch et al.,
2017), are limited to profiling small numbers of targeted mi-
crobes often at low taxonomic resolution (Valm et al., 2012),
and are challenging to scale to complex and diverse natural
microbiomes. To address these issues, MaPS-seq (Sheth
et al., 2019) was recently developed. The core idea behind
MaPS-seq is to “freeze” microbes in place, barcode spatially
proximate microbes in particles (typically 10 to 30 µm in
diameter) and then disaggregate the material and interro-
gate it with high-throughput sequencing. MaPS-seq data
has particular noise characteristics that make analysis chal-
lenging, including uneven particle amplification, variable
read depth, and mixing effects, likely due to unencapsulated
DNA contaminating particles.

To address these challenges, we developed MC-SPACE, a
Bayesian model. Our contributions include: (1) automatic
discovery of parsimonious spatially co-occurring groups of
microbes, which we term community subtypes; (2) a noise
model specifically tailored to MaPS-seq data, and (3) infer-
ence of changes in community subtype abundances due to
experimental perturbations. Below, we first present experi-
ments with semi-synthetic data to benchmark MC-SPACE
against standard methods. We then apply MC-SPACE to a
new mouse FMT dataset to demonstrate our method’s ability
to uncover microbial spatial dynamics.

Prior work. Current methods for analyzing MaPS-seq data
mainly focus on detecting pairwise associations by binariz-
ing operational taxanomic units (OTUs) in each particle and
comparing to a null model of co-occurrence (Sheth et al.,
2019; Urtecho et al., 2022). These methods fail to capture
multiple associations in a community. A Gaussian mixture
model was developed for MaPS-seq data in (Pasarkar et al.,
2021) that recovers clusters of OTUs. However, none of
these methods model the actual measurement noise in MaPS-
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Figure 1. The MC-SPACE model depicted using plate notation.

seq data, and cannot capture changes due to perturbations,
which is key to elucidating microbial spatial dynamics.

2. Methods
MC-SPACE is a sparse Bayesian mixture model (Figure
1) for discovering latent groups of spatially co-localized
microbes, or community subtypes, as well as effects due to
perturbations, from MaPS-seq data. The model considers
pre-perturbation (A) and post-perturbation groups (C), as
well as optional comparator groups (B). We model a com-
mon set of community subtypes for all groups. Assume
we have O OTUs, S biological replicates, Lg particles per
group, and a maximum of K community types. The genera-
tive process is then as follows:

1. Sample components θko ∼ LN (0, 1) for each commu-
nity subtype k and OTU o

2. Sample latent mixture weights xkgs∼N(ηkg, σ
2
g) for

each group g and subject s

3. Sample sparsity indicators γk ∼ Bern(πγ) and
compute community mixture weights βkgs =

γk exp(xkgs)∑
j γj exp(xjgs)

4. For each observed particle l in group g and subject s:

(a) Sample a community type, zlsg ∼ Cat(βgs)

(b) Sample reads rlsgo ∼ Mult(Rlsg, (1−πg)θzlsq+
πgBg) for all Rlsg reads in the particle

Here LN denotes the logistic-normal distribution. Group
means ηkA and ηkB are sampled from a standard Normal
prior. We explicitly model the effects of perturbations by
linking the pre- and post-perturbation group means: ηkC =
ηkA + δkck, where δk ∼ N(0, ρ2δ) specify perturbation
magnitudes and indicators ck ∼ Bern(πc) specify whether
the perturbation effect is present for community k.

Community Mixing. To account for the mixing effect in
MaPS-seq data, we added contaminating communities with

parameters Bgo =

∑
s

∑
l∈Lg

rlsgo∑
s

∑
l∈Lg

∑
j rlsgj

. This assumes the

mixing effect corresponds to contamination from the bulk
read distribution. Reads are then sampled from a mixture
distribution, with weights πg learned during inference.

3. Inference
Inference for latent mixture variables θ and community
proportions x was performed using amortized variational in-
ference (Gershman & Goodman, 2014; Kingma & Welling,
2014), where parameters of approximating distributions are
functions of the data. Specifically, we constructed infer-
ence networks that take a normalized representation r̃lsg of
the data as input, and output the parameters for Gaussian
approximating distributions. Normalized reads for each par-
ticle l are first passed into a fully-connected 2-layer MLP
encoder network with O inputs and H = 50 outputs. The
outputs of the encoder are then averaged over all particles
for all subjects, which is then passed through linear layers
that output the mean and variance parameters of the approx-
imating distribution. KL terms were computed analytically
for all variables except for xkgs, which we approximated us-
ing a Stochastic Gradient Variational Bayes estimator. The
model was trained via gradient descent using the ADAM
optimizer.

To balance the sparsity inducing-prior for γ with the data
likelihood, we introduced an adjustable parameter ξ that
multiples the corresponding KL term. This is similar to the
scale factor used in the β-VAE model to learn more inter-
pretable disentangled latent factors (Higgins et al., 2017).
This scale parameter was chosen to give a stable clustering
as we describe next.

Stability metric. To determine the setting for ξ, we took a
stable clustering approach (Von Luxburg et al., 2010) and
constructed a metric inspired by (Duan et al., 2019), origi-
nally developed for unsupervised disentanglement ranking
for VAEs. Specifically, we trained our model on a range
of ξ values, with 5 different initial seeds each. We then
computed a similarity matrix F ij for each pair of seeds i, j
for a given setting of ξ. Each entry of F ij is given by the
Spearman correlation F ij

ab = SpCorr(zia(l), zjb(l)), where
zia(l) is the posterior probability of particle l being assigned
to community a for model i. We then computed a stabil-
ity score Sij as, Sij = 1

da+db

[∑
b

f2
a ·γb∑
a F ij

ab

+
∑

a
f2
b ·γa∑
b F ij

ab

]
,

where fa = max
a

F ij
ab and da =

∑
a γa. This metric will be

larger for pairs of models that cluster particles into similar
clusters, and smaller for models where the particle assign-
ment is less stable across different seeds.

4. Results
4.1. FMT dataset

We applied MC-SPACE to a mouse FMT dataset described
in (Urtecho et al., 2022). Prior studies had revealed consis-
tent distinct microbial compositions across mice from dif-
ferent vendors, with Jackson labs (Jax) mice having lower
ecological diversity and Envigo mice showing higher di-
versity. Envigo mice flora were able to robustly invade
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Figure 2. Results on semi-synthetic data. (A) Community reconstruction error for varying amounts of contamination noise. MC-SPACE
(nomix) is the model without contamination communities included. Typical contamination percentages for real MaPS-seq data are around
0.05. (B) Comparison between k-means and MC-SPACE in detecting significant perturbations to community abundances. Effect sizes
correspond to percent change in community distribution due to perturbation. For comparison, effect sizes detected on our real FMT data
were 0.14 and 0.45, for 4 subjects. All results are from 10 datasets simulated with K = 6 underlying communities.

mice from other vendors, and were resistant to invasion,
while Jax mice were among the most susceptible to invasion.
MaPS-seq was therefore used to investigate the spatial colo-
nization dynamics of Jax mice receiving Envigo flora FMTs.
The dataset consists of MaPS-seq data for 3 mice groups:
Jax (pre-perturbation group), Envigo (comparator group),
and Env2Jax (post-perturbation group, Envigo flora → Jax
FMT), each with 4 biological replicates. After quality fil-
tering, each sample consisted of a median of 677 particles
(IQR=226.5) and 160 OTUs. Particle read depth had a me-
dian of 1798 reads (IQR=1867). Note the highly skewed
and variable number of reads per particle, highlighting the
noisy nature of MaPS-seq data.

4.2. Benchmarking with semi-synthetic data

To assess MC-SPACE’s ability to recover underlying com-
munity structure and perturbation effects, we compared MC-
SPACE to a k-means clustering method on semi-synthetic
data. Semi-synthetic data was simulated from the commu-
nities MC-SPACE learned on the FMT dataset (Figure 3)
using a bootstrapping-type procedure. Briefly, we randomly
sampled K = 6 communities and their proportions β with
replacement from inferred communities and randomly per-
muted OTU labels to avoid duplicated communities and
preserve distributional properties. For perturbation experi-
ments, we perturbed a randomly selected community with
a fixed effect size, where the effect size is the change in
abundance of a community due to perturbation. Subjects
were then sampled with variances set to values inferred on
real data. We then sampled 700 particles for each subject
(corresponding to approximately the number of particles
per subject in the real dataset), with read depths sampled
from a negative binomial distribution fitted to the read depth
distribution of the original dataset after filtering. Reads for
each particle were then sampled from a mixture distribution
with varying contamination mixture weights.

We first compared each model’s ability to recover underly-
ing communities on semi-synthetic data with varying levels

of mixing contamination. As the true number of communi-
ties in real datasets is usually unknown, we ran each model
with 20 communities as a conservative overestimate of the
true number. To use k-means, we first applied a centered log-
ratio (CLR) transformation to the reads normalized to rela-
tive abundance. The communities for k-means were then ob-
tained by applying the softmax function, which is the inverse
of the CLR transformation, to the cluster centers and con-
verting them back to relative abundances. The reconstruc-
tion error was then calculated as E = 1

K

∑
k H(θk, θ̃c(k)),

where H(a, b) = 1√
2

√∑
i(
√
ai −

√
bi)2 is the Hellinger

distance, θk are ground truth communities, θ̃k are model in-
ferred communities, and the map c(k) = argmin

i
H(θ̃i,θk).

We found that without contamination communities MC-
SPACE (nomix) was overly sensitive to contamination noise
and obtained worse fits at high levels of contamination. In
contrast, the full model, which explicitly addresses mixing
contamination, consistently outperformed k-means (Figure
2A).

We next compared MC-SPACE to k-means in detecting sig-
nificant perturbations. We varied the number of subjects
and effect sizes around values inferred from the real FMT
dataset. Contamination mixture weights were set to val-
ues inferred on real data (πA = 0.0005, πB = 0.002, πC =
0.04). To focus our analysis on each model’s ability to de-
tect perturbations, we ran each model with the true number
of communities K = 6. For k-means, the inferred commu-
nity distribution βkgs is given as the proportion of particles
assigned to community k for each group g and subject s. Sig-
nificant changes between pre- and post-perturbation groups
were then detected using a Wilcoxon rank-sum test followed
by Benjamini-Hochberg (BH) correction. Changes with p <
0.05 were taken to be significant. For MC-SPACE, posterior
probabilities p(ck|r) were converted to binary outcomes for
perturbation effects by applying a threshold at probability
0.5. Performance was then evaluated using the F1-score. As
shown in (Figure 2B), MC-SPACE outperformed k-means
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Figure 3. MC-SPACE results for FMT study. (A) Family level
membership of learned communities and enrichment. Values corre-
spond to number of OTUs present, with darker colors representing
significant enrichment. (B) Proportions of learned communities in
each group and significantly perturbed communities.

in detecting perturbations across all effect sizes and number
of subjects.

4.3. MC-SPACE learns perturbation effects on spatial
communities in an FMT study

We analyzed the mouse FMT dataset with MC-SPACE to
gain biological insights into the effects of FMT on the mam-
malian gut microbiome. The most stable clustering obtained
by MC-SPACE consisted of 6 community subtypes (Figure
3). We first assessed the composition and enrichment of each
community at the Family level. The presence of an OTU
o in a community k was determined by using a threshold
of θko > 0.005, equal to the threshold used for initial data
filtering (Urtecho et al., 2022). To perform an enrichment
analysis, we used the hypergeometric test followed by a BH
correction. We found many of the communities present in
all mice were significantly enriched in the Muribaculaceae
Family. Community C1 was enriched in Bacteroidaceae and
Ruminococcaceae (Figure 3A).

Of the 6 learned communities, MC-SPACE detected 2 as
significantly perturbed (Figure 3B): C1 was significantly
suppressed, and C6 was significantly enhanced post-FMT.
Interestingly, C1 was the most abundant in Jax mice, mak-
ing up 45% of the community distribution, and contained
no taxa from the Muribaculaceae Family. In contrast, C1
is essentially absent in Env2Jax mice, and the remaining
spatial communities post-FMT are significantly enriched
in the Muribaculaceae Family and also contain some Lach-
nospiraceae Family OTUs (Figure 3A).

We next sought to further understand taxa responses to per-

Figure 4. Distribution of generality scores of OTUs from top 5
families. Statistical significance was assessed with a Wilcoxon
rank sum test followed by Benjamini Hotchberg correction (* :
p < 0.05, ** : p < 0.01, *** : p < 0.001).

turbations by examining their generalist behavior. Gen-
eralist behavior may allow taxa to more robustly engraft
and colonize multiple community types, as they can utilize
multiple resources and adapt to changes. In contrast, we
expect more specialized taxa to be part of fewer commu-
nities and more susceptible to changes from perturbations.
To quantify generalist behavior, we computed generality
scores (Gerber et al., 2007), or normalized entropies, for
each OTU o in the 5 most abundant families (Figure 4):
GenSo = − 1

logK

∑
k hko log hko, where hko = θko∑

j θjo
.

This score gives a measure of how much an OTU participates
in multiple communities. Of the most abundant families,
Muribaculaceae were the most generalized (Figure 4). This
aligns with existing research suggesting that many Muribac-
ulaceae are generalists and are able to utilize a diverse set
of mucus-derived sugars (Pereira et al., 2020). In contrast,
Ruminococcaceae were the least generalized, and primarily
belonged to community C1. Many Ruminococcaceae were
displaced post-FMT, which may be due to competition with
invading taxa or changes in local nutrients post-FMT and
their inability to adapt to new resources.

5. Discussion and future work
Overall, our results suggest MC-SPACE’s noise model and
explicit modeling of perturbation effects provide significant
advantages in uncovering biologically relevant spatial dy-
namics from MaPS-seq data. There are multiple possibilities
for future work, such as using MC-SPACE to inform dynam-
ical systems models for determining interactions between
microbes, or incorporating prior biological knowledge such
as phylogenetic relationships into the model. A current
limitation of the model is in determining which taxa are
present/absent in a community in a threshold independent
manner. This can be addressed by explicitly modeling OTU
sparsity in each community subtype. The variational in-
ference framework also allows for easy generalization of
MC-SPACE to other types of studies such as time-series
experiments involving perturbations and multiple subjects.
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