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Abstract

Despite the rising importance of monoclonal an-
tibodies as clinical therapeutics, sizes of exper-
imental datasets for antibody developability re-
main in the 100’s, creating a challenge for predict-
ing developability properties during the discov-
ery phase, and hindering success in bioprocess
development. Here we present AbPROP, which
combines various three-dimensional graph and
language models to leverage structurally aware
learning and pre-training on millions of unlabeled
sequences towards predicting antibody binding
and developability properties. Our key findings:
(1) supervised fine-tuning on experimental data
greatly improves performance of language mod-
els compared to using supervised few-shot pre-
diction with embeddings, (2) the addition of a
structurally aware prediction head for language
model fine-tuning increases downstream perfor-
mance up to a distinct threshold beyond which
integrating structural features into language mod-
els does not yield further improvement, and (3)
unlabeled sequence pre-training increases perfor-
mance on downstream tasks while structural pre-
training has minimal to no effect.

1. Introduction
Monoclonal antibodies (mAbs) are one of the fastest grow-
ing segments of therapeutics, due to several factors including
favorable specificity, potency, pharmacokinetic half-lives
and wide therapeutic versatility (Goulet & Atkins, 2020;
Bailly et al., 2020). However, most candidates fail in the
drug development process, a primary source of the large cost
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to antibody drug discovery. Poor antibody developability
profiles can further hamper the pipeline by requiring invest-
ment in additional downstream processes for formulation
and storage, preventing preferred methods of administration
(needing to resort to intravenous injection), and increasing
overall cost of goods – which, together, limits accessibility
of new therapeutics (Bailly et al., 2020; Whaley & Zeitlin,
2022). Developability properties include but are not limited
to thermostability, aggregation propensity, poly-specificity
(affinity to off-target antigens) and hydrophobicity (Bailly
et al., 2020; Waight et al., 2023). While throughput capabil-
ities are increasing, dataset sizes for these properties (with
high fidelity scalar measurements) remain in the 100’s, and
combining similar assays is rarely possible due to differ-
ences in experimental parameters. Thus, we considered
use of a Large Language Model (LLM) to leverage pre-
training on millions of unlabeled, naturally occurring an-
tibody sequences to predict these properties despite small
dataset sizes. In addition to developabilty properties, we also
train and predict on two large ( >105 sequences) datasets
from yeast-display followed by FACS-based (Fluorescence-
Activated Cell Sorting) binding assays.

1.1. Large Language Models for Protein Design

Transformer based LLMs trained on millions of unlabeled
protein sequences have been successful at a wide variety of
tasks (Devlin et al., 2019) including classifying sequences as
human or non-human, (Prihoda et al., 2022) generating anti-
body CDR loop residues based on a given sequence scaffold
(Shuai et al., 2021) and serving as foundation for state-of-
the-art protein structure prediction algorithms (Jumper et al.,
2021). The success of the transformer architecture in these
tasks can be partially attributed to its attention mechanism –
calculation of a scaled dot product between key and query
vectors, both representing the amino acids in a sequence,
through which the attention between residues is derived
(Vaswani et al., 2017). This allows for learning of long-
range and higher order relationships to make predictions
based on the structure, and therefore function, of proteins.
The function of proteins are heavily reliant on interactions
between multiple residues far apart in sequence due to the
often globular 3D fold of protein structures via hydrophobic,
van der Waals, and non-bonded electrostatic interactions
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(Gromiha & Selvaraj, 2004; Vaswani et al., 2017). For pro-
teins, LLM training is typically masked language modeling
(MLM), in which the identities of residues hidden from the
model are predicted (Nijkamp et al., 2022). In this work
we employ AbLang, a RoBERTa based Protein Language
Model (PLM) trained on the OAS – a database of hundreds
of millions of antibody VH and VL sequences, compiled by
Olsen et. al (2021) (Liu et al., 2019). AbLang has 85 mil-
lion parameters between its VH and VL pretrained models
and was chosen due to it being open source and having bet-
ter MLM performance on antibodies than a PLM baseline
trained on general protein sequences (Olsen et al., 2022).

1.2. Graph Neural Networks for Protein Design

Protein structures can be represented as graphs in which
residues are nodes and information about their connections
are encoded in edges. In recent years protein GNNs have
been successful at the task of inverse-folding – predicting the
proteins sequence given its backbone structure (Yang et al.,
2022b; Ingraham et al., 2019; Jing et al., 2020). All three
GNNs in this study employ algorithms to extract structurally
aware embeddings from graphs. The Graph Attention Net-
work (GAT) is a general purpose algorithm for predicting
properties from graphs, with applications from modeling
networks of journal citations to protein-protein interactions
(Velickovic et al., 2017). It takes graphs with featured nodes
and featureless edges as input, a stark contrast to Geometric
Vector Perceptrons (GVP) (Jing et al., 2020) and the Struc-
tured Transformer (SGN) (Ingraham et al., 2019). The two
latter models employ geometric distances and torsion angles
calculated from the protein structure and employ them as
node and edge encodings. Additionally, GVP and SGN
were pretrained with PDB structures on the inverse-folding
task. AbPROP models using these heads were initialized
with these weights, made available by Yang et. al. (2022b).

1.3. AbPROP Model Architecture

AbPROP combines sequential learning of AbLang with
structurally aware learning of GNNs. In theory, passing se-
quence representations through a GNN head provides an ad-
vantage in that dependencies between residues do not have
to be learned through pretraining, as would be the case with
a sequence only model, but are explicitly defined by graph
edges (Wang et al., 2022; Gligorijević et al., 2021). Shown
in Figure 1 we pass information from AbLang to GAT for
AbPROP-GAT. We additionally evaluated a sequence-only
option we refer to as AbPROP-Seq in which sequence em-
beddings are passed directly to the pooling function for
property prediction. SGN and GVP, unlike GAT, are pre-
trained on the inverse-folding task (Olsen et al., 2022) and
employ angular and geometric features in addition to the
basic graph depicted in Figure 1. With AbPROP-SGN and
AbPROP-GVP, we add amino-acid logits from AbLang to

structural node and edge features from the graph featuriza-
tion step (Appendix B.8,9) instead of the sequence embed-
ding. Graph convolutions then use sequence and structural
data to produce graph embeddings, which are pooled into a
representation (Appendix B.10) for property prediction.

Figure 1. AbPROP. The FV(s) are passed into AbLang models
trained on the corresponding set of OAS chains. Using the pre-
dicted structure of the FV(s), a k-nearest-neighbors graph is gen-
erated and featurized with representations as node features. From
this, GAT/GVP/SGN graph convolutions produce graph embed-
dings for each node that are finally passed to a pooling neural
net which predicts the property. The number of layers loss is
backpropagated into AbLang is a hyperparameter.

2. Evaluation and Results
In Table 1 we show performance of all four AbPROP mod-
els. Baselines are random forests with one-hot sequence
encoding and AbLang embeddings as features (Pedregosa
et al., 2011). For AbPROP models we show performance af-
ter hyperparameter tuning with five-fold cross validation
then testing on unseen, and sufficiently unique holdout
data. The MRGX and MERS data are large 4-class and
5-class binding affinity classification datasets against the
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MrgX1 GPCR and MERS-CoV Spike Protein respectively,
derived from proprietary single-domain VHH yeast display
and FACS experiments against these targets. The HIC-RRT
(relative hydrophobicity) and T-Agg (Temperature of Ag-
gregation) scalar datasets are also proprietary. The PSR
(Poly-Specific Reactivity), HIC-RT (hydrophobicity) and
T-Mid (Temperature of protein denaturation) scalar datasets
were retrieved from Shehata et. al (2019). Lastly, the Amy-
loid Light Chain Database (AL-Base) is a binary classifica-
tion task for antibody light chains as amyloidic (aggrega-
tion prone) or non-amyloidic from Bodi et. al (2021). For
this dataset, instead of one-hot encodings and embeddings
as baseline comparators, we show performance of a novel
decision-tree based machine learning model VLAmY-Pred
(Embedding Column) as well the best performing physio-
chemical aggregation predictor (One-Hot Column), both
from Rawat et. al. (2021). See Appendices A and B for
details on datasets and methods.

Table 1. Performance of AbPROP Models and Baselines. Base-
lines have a 95% confidence interval from n = 10 trials with vary-
ing random states and number of trees. For scalar valued datasets
we provide the Spearman rank correlation coefficients [0-1] and
percent accuracies for classification datasets [0-100].

BASELINES ABPROP MODELS

DATA SET ONE-HOT EMBEDDING SEQ GAT GVP SGN

MERS 66.9± 0.2 65.0± 0.1 68.5 68.7 68.1 68.1
MRGX 57.7± 0.4 57.3± 0.2 58.4 59.4 59.0 58.7
PSR -0.03± 0.01 0.08± 0.01 0.27 0.25 0.23 0.24
HIC-RT 0.36± 0.01 0.32± 0.02 0.46 0.51 0.43 0.48
T-MID 0.49± 0.01 0.38± 0.02 0.61 0.62 0.54 0.60
T-AGG 0.41± 0.02 0.47± 0.03 0.44 0.55 0.44 0.43
HIC-RRT 0.67± 0.01 0.29± 0.02 0.72 0.73 0.77 0.55
AL BASE 48.4 71.0 85.3 86.6 N/A N/A

2.1. Dataset Titration

The assays in this work are time and resource intensive (She-
hata et al., 2019; Bailly et al., 2020), hence finding dataset
size requirements for ML models is imperative. We began
to understand comparative performance between one-hot
and AbPROP-Seq models by doing a titration of our HIC-
RRT dataset along with ’default’ hyperparameters on down-
sampled data, shown in dark blue in Figure 2. We expect
hyperparameter-optimized models to perform better than
shown (blue line), and indicate an ’over-fitted’ scenario with
a dashed light-blue line, which indicates hyperparameter
optimization using the hold-out set. These two lines indicate
the likely bounds of a properly hyperparameter-optimized
model, which, at the low-n end, is challenging due to dataset
sizes. Our full dataset accuracy reported in Table 1 is shown

Figure 2. HIC-RRT Titration. Baseline is random forest with one-
hot-encoding. Dark blue is AbPROP-Seq with default hyper-
paramters. Light blue is the best score from 100 models with
hyperparameters fitted on the held-out set, providing an upper
bound. The red point indicates the proper performance for the
full dataset. Standard error derived from 95% confidence intervals
from 10 trials with varying data splits and hyperparameters.

in Figure 2 in red, and lies between these bounds. Thus in
the worst case, AbPROP will outperform one-hot encoding
for small data and perform similarly for larger data (>150);
in the best case, where there is no validation overfitting, it
will outperform at all sizes.

2.2. Effect of Sequence and Structure Pretraining

The hypothesis behind AbPROP is pretraining on large
datasets of unlabeled proteins can be leveraged for increased
performance on small, labeled datasets. To test this, we
conducted an experiment (Figure 3) comparing model per-
formance of AbPROP-Seq with MLM pretraining versus
randomly initialized weights. We analogously performed
the same experiment with the GNN portion of AbPROP-
SGN and AbPROP-GVP, holding the AbLang transformer
pretrained but either using randomly initialized or weights
from inverse-folding pretraining for the GNN heads.

3. Discussion
3.1. Finetuning

It is clear from comparison of the embedding baseline with
AbPROP-Seq in Table 1 that PLM performance is increased
with supervised fine-tuning as demonstrated by significant
gains in six of seven datasets. We hypothesize this is true
because language models learn the likelihood of a sequence
based on its training data of observed sequences (Nijkamp
et al., 2022). Thus, because the training data of sequences
are functionally selected, the sequence probability distribu-
tion learned by AbLang should resemble the overall fitness
distribution of natural sequences. However, here we predict
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developability properties, and being a favorable sequence for
pharmaceutical development does not necessarily correlate
to being a favorable sequence in natural selection. Thus, it
follows that fine-tuning of the learned representation which
predicts sequence likelihood is needed to increase predictiv-
ity for fitness-adjacent developability endpoints.

3.2. Sequence and Structure Pretraining

Previous literature has shown an advantage in sequence
pretraining for property prediction on proteins (Yang et al.,
2022b), but none have directly compared this advantage with
structural pretraining. As seen in Figure 3, significant per-
formance gain using pretrained weights compared to random
weights was observed for the language model but not the
GNN head. Despite the pretraining MLM task being starkly
different than property prediction, this result indicates there
is predictive value in sequence pretraining as a starting point
for property prediction. As for the GNN results, there are
several possible explanations for the lack of improvement.
Most obvious is inaccurate input structures. The pretrained
GNNs (GVP and SGN) employ alpha-carbon distance vec-
tors and dihedral angles as structural features from which
the pretrained graph convolutions extract meaning from;
however, our input structures were predicted using IgFold
which cannot accurately model the most variable region of
the antibody, CDR H3, (Ruffolo & Gray, 2022) which some
argue must be modeled by an ensemble of structures due to
the intrinsic flexibility of the loop in solution (Fernández-
Quintero et al., 2019). Therefore, these distances, orienta-
tions and angles computed from predicted, static structures
may just be noisy features from which the pretrained GNN
models can use to overfit to the target variables, which is
less likely for GAT, our best performing model, as it does
not employ these features. Additionally, the models may
need to be trained on more structures than the roughly 20k
in CATH (of which only 3% are antibodies). Finally, an
approach more sophisticated than simply concatenating lan-
guage model logits to node structural encodings is needed
to better integrate the language and structural features for
property prediction.

3.3. Structural Feature Integration

In Wang et al. (2022), addition of the GNN head improved
accuracy for residue level properties, but a conclusion for
whole-protein property prediction was not clear and their
study was limited to only two datasets. To provide a clearer
answer we trained on eight protein fitness datasets with
language models connected to three types of GNNs, and
found a nuanced relationship between additional structural
information and performance. In line with the finding that
sequence pre-training is more critical than structural pre-
training for property prediction, we see in Table 1 that the
structurally pre-trained (GVP and SGN) AbPROP

Figure 3. Effect of MLM Pretraining for A. AbPROP-Seq and
Structural Pretraining for B. AbPROP-GVP and C. AbPROP-SGN
on performace. Error bars show 95% confidence interval for mean
Spearman coefficient from 20 trials, with hyper parameters varying
between trials. *, **, ***, **** correspond to 80%, 90%, 95%
and 99% certainty from a difference of means t-test.

models do not perform significantly better than sequence-
only models. However, we also see that the best model
across the board is AbPROP-GAT, consistently performing
as well or better than the AbPROP-Seq in all eight, suggest-
ing that structural information boosts performance when
it only consists of edges connecting the nearest neighbors
of each residue. Given that (1) structural pre-training and
incorporation of additional structural features does not im-
prove performance but (2) the GAT model outperforms all
other models, we argue the addition of geometric and struc-
tural features from imperfect, static, predicted structures
in the SGN and GVP models introduces noise which de-
creases performance, whereas the simple nearest neighbor
edges employed by GAT is the ”sweet spot” for structural
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incorporation, and is robust to the inaccuracies of predicted
structures while still gleaning salient structural information
from them to boost performance.

4. Conclusions
In this work we aimed to address the challenge of predict-
ing antibody properties given antibody sequences, includ-
ing for small developability datasets and binding datasets.
We did this by leveraging pre-training on millions of unla-
beled sequences through structurally aware fine-tuning on
downstream experimental data. The AbPROP models and
comparisons with associated baselines we have shown (1)
sequence pre-training increases downstream performance,
(2) fine-tuning sequence representations on downstream
data increases performance compared to naive sequence em-
beddings, (3) the addition of a graph neural network head
onto language models increases performance, however, in
our hands, (4) structural pre-training in said graph neural
net does not significantly improve performance compared
to sequence pre-training nor does increasing the amount
of structural features in graph heads beyond a k-nearest-
neighbors graph. We suspect our latter finding (4) could be
explored further. We are also exploring more sophisticated
unsupervised structural pre-training techniques, training on
larger sets of experimental and high fidelity predicted struc-
tures, and incorporating ensembles of structures instead of
a single static structure for prediction.
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Figure 4. Datasets. In order to test the robustness of our models to predict for several different use cases we procured a group of datasets
diverse in sequence type, size, assay, and output shape to train on from public and internal sources.

A. Data
A.1. Internal Datasets

A.1.1. MERS AND MRGX1 BINDING AFFINITY YEAST DISPLAY

In this paper we demonstrate our performance on binders identified from two in-vitro phage-yeast display campaigns for
single-domain VHH’s (nanobody) on two separate antigen targets. Naturally produced by camelids, nanobodies retain
the high affinity and specificity of traditional immunoglobulins while only having a heavy chain (Sevy et al., 2020). We
have developed a diverse nanobody library with characteristics that closely mimic the natural repertoire and isolated VHH
sequences against MERS spike protein and MRGX1 GPCR, in which we were able to isolate diverse binders. Mutations
were limited to the CDR H3 and positions in the H2 and H1 which were predicted to affect binding, in order to minimize
mutations to the humanized germline framework. CDR H1 and H2 lengths remained fixed while CDR H3 length varied.
Residues which impact binding were determined via Rosetta DDG analysis of binding interface residues in 208 nanobody-
antigen complexes in the PDB. After the library was designed and sequences were expressed in yeast cells, magnetic
cell sorting (MACS) was employed to filter out cells with sequences that bound off-target reagents. Then yeast cells
containing antigen-specific sequences were sorted using fluorescence-activated cell sorting (FACS) into bins of antigen
concentration. Finally, with next generation sequencing of the nanobodies contained in the sorted cells, binding sequences
were correspondingly sorted into four or more antigen concentration bins–we used (100, 30, 10, 3) and (300, 30, 10, 3) nM
concentrations for the MERS and MRGX1 antigens, respectively. Details of library generation and binding assays can be
found in Sevy et. al (2020). In addition to being against different targets and having a different number of affinity bins, the
size of the MERS and MRGX datasets are 48,134 and 14,064 VHH sequences respectively.

A.1.2. HYDROPHOBIC INTERACTION CHROMATOGRAPHY RELATIVE RETENTION TIME (HIC-RRT)

The HIC-RRT dataset used in the present study contains 514 IgG1 datapoints from 24 different clustered mAb projects,
with each project consisting of sequences designed for a different antigen target. As described in Waight et al. (2023), the
hydrophobicity of a given mAb were determined by recording the relative elution time (compared to a control mAb) through
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a hydrophobic interaction chromatography column and measuring the absorbance spectra at 280nm, A280nm. The resulting
value is relative retention time (RRT), which was done to increase the accuracy of HIC measurements due to gradual drift
to longer retention times during the lifetime of the column. Taking the relative retention time eliminates the effect of this
confounding variable. Briefly, in the assay, 50 µg of sample at 0.5-1.0 mg/mL were mixed 1/1 (v/v) with a buffer solution
(100 mM sodium phosphate, 2 M Ammonium Sulfate pH 7.0), filtered through a 0.22 µm PVDF membrane, and 60 µL
loaded on a Dionex Pro Pac HIC-10 column. The column was equilibrated in 100 mM sodium phosphate, 1 M Ammonium
Sulfate pH 7.0 (mobile phase A) and samples were eluted using an inverted gradient to 100 mM sodium phosphate pH 7.0
(mobile phase B).

A.1.3. AGGREGATION TEMPERATURE BY NANO-DSF (T-AGG)

The T-Agg dataset used in the present study contains 525 IgG1 datapoints from 25 different internal clustered mAb projects.
Nano-DSF (Nano–Differential Scanning Fluorimetry) studies were performed as described in Waight et al. (2023) using the
Nanotemper Prometheus NT.48 instrument to measure protein stability. Briefly, samples ( 10 µL at 0.5-1 mg/mL) were
loaded into capillaries and the temperature ramped at 1°C/min from 20°C to 94.8°C. The melting point (Tm,onset and Tm)
(°C) temperatures indicate the structural stability of the samples, and the unfolding curves (or thermogram) were generated
by plotting the ratio of the fluorescence intensities (F350nm/ (F330nm) as a function of temperature, with each intensity tracking
the level of folded or unfolded protein. The melting point temperatures were defined by the onset (Tm,onset) and inflection
point (T-Mid) of the thermogram. The colloidal stability of the sample can be simultaneously determined by measuring
the attenuation of back reflected light intensity passing through the sample and the aggregation temperature (T-Agg) was
defined as the point at which light scattering increases (or back reflected light intensity decreases) due to unfolding.

A.2. External Datasets

The three datasets for PSR, HIC-RT and T-Mid were all derived from two studies using the same assays released by Adimab
(Shehata et al., 2019; Jain et al., 2017). The difference between the two studies is the size and origin of mAbs tested, with
the Jain et. al. study testing 137 clinical mAbs and the Shehata et. al. study testing 400-450 (depending on assay) mAbs
from primary naı̈ve B cells, IgM and IgG memory B cells, and long-lived plasma cells (LLPCs) (2019).

A.2.1. POLY-SPECIFICITY REAGENT ASSAY (PSR)

The PSR assay is a measure of the relative non-specific binding of a given mAb compared to reference antibodies. This data
was collected as previously described (Shehata et al., 2019; Jain et al., 2017; Xu et al., 2013). In short, soluble membrane
proteins were prepared from CHO cells, biotinylated, mixed with IgG-presenting yeast, secondary labelled (Extravidin-R-PE,
anti-human LC-FITC, and propidium iodide) and analyzed by FACS. The median fluorescence intensity (MFI) in the R-PE
channel is used to assess nonspecific binding and normalized to reference antibodies with low, medium, and high MFI values
(in the R-PE channel).

A.2.2. HYDROPHOBIC INTERACTION CHROMATOGRAPHY RETENTION TIME (HIC-RT)

The hydrophobicity of a given mAb in these datasets were an analog to internally collected data, however, under modified
experimental conditions (Estep et al., 2015; Shehata et al., 2019; Jain et al., 2017). In brief, 5 µg of sample at 1 mg/mL were
mixed into a buffer solution (1.8 M ammonium sulfate and 0.1 M sodium phosphate pH 6.5) to reach 1 M ammonium sulfate
and loaded into a Sepax Proteomix HIC butyl-NP5 column. The column is equilibrated in 1.8 M ammonium sulfate, 0.1 M
sodium phosphate pH 6.5 (mobile phase A) and samples are eluted (1 mL/min over 20 min) using an inverted gradient to 0.1
M sodium phosphate pH 6.5 (mobile phase B).

A.2.3. MELTING TEMPERATURE BY DSF (T-MID)

The mAb structural stability, T-Mid (also referred to as Tm), collected in these datasets (Shehata et al., 2019; Jain et al.,
2017; He et al., 2011) were an analog to internally collected data, however, under modified experimental conditions. Briefly,
melting temperature (T-Mid) was determined by loading 10 µl of sample at 1 mg/mL mixed with 10 µL of 20x SPYRO
orange onto a plate that is scanned from 40 °C to 95 °C at a ramp rate of 0.5 °C/2 min. The T-Mid is defined as the inflection
point of the thermogram and determined using BioRad analysis software.
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A.2.4. LIGHT CHAIN AMYLOID DATASET AND BASELINES (AL-BASE)

This dataset consists of kappa and lambda antibody light chains, which are either amyloid sequences derived from patients
with AL amyloidosis or chains derived from patients with multiple myeloma or healthy controls, i.e., non-amyloid chains. A
model which can predict a which class a given light chain falls under could also be extended to engineering of aggregation
resistant antibody therapeutics (Rawat et al., 2021). Thus, to investigate whether our model could accomplish this better
than other approaches, we trained on the same smaller subset (1828 out of 4364) of sequences from Rawat et. al., who
reported the accuracy of several physio-chemical and structure-based baseline models as well as their own novel machine
learning approach “VLAmY-Pred”. This model was a decision-tree algorithm which used physicochemical amino-acid
features from AA-Index averaged across the whole chain. Some important differences in the k-fold cross validation and test
sets between AbPROP and VLAmY-Pred is (1) AbPROP was tested on 5 folds of 83% of the data instead of “VLAmY-Pred”
which was tested on 10 folds of presumably 90% of the data (100% if they included their test set) (2) the AbPROP test
set was a randomly selected 17% of the sequences while AL-Test was a randomly selected 10% of the sequences (Al-Test
was not released so we were unable to test on this exact set), and (3) the TANGO, WALTZ and RFAmyloid models were
completely blind to the AL-Base data while AbPROP and VLAmY-Pred trained on the data.

B. Methods
B.1. Structure and Graph Generation

For training of AbPROP models, predicted structures were generated for all sequences using IgFold with PyRosetta
minimization due to its speed and state-of-the-art accuracy for antibody structure prediction (Ruffolo & Gray, 2022). For all
sequences only the FV’s were modeled, whether that be the VL, VH or both. Following structure generation, structures are
transformed into graphs, in which nodes are amino acids, and edges are placed between the closest k amino acids to each
respective node as in Ingraham et. al (2019). For the GAT model, k is a hyperparameter, but for GVP and SGNN, k was
fixed at 20 so the pretrained weights could be used (pre-training was done by Yang et. al. (2022b) with k-nearest-neighbors
graphs generated with k = 20 ). Depending on the GNN, the edges either contain or do not encode the geometry between its
respective amino acids. Code for graph transformation and processing was adapted from the models and respective GitHub
repositories in Ingraham et. al. (SGN) (2019), Yang et. al. (MIF-ST) (2022b) and Wang et. al (LM-GVP) (2022).

B.2. MSA Generation

For all sequence datasets, with the exceptions of MERS and MRGX1 due to their larger size, multiple sequence alignments
(MSA) were created using the MOE software. Split into FASTA files with all VH and VL chains, the CDRs were first
annotated using IMGT numbering (Lefranc, Pommié et al. 2003), and aligned using MOE’s default settings. Due to the
smaller size of these datasets the gaps produced were minimal relative to the sequence size and took a trivial amount of
compute time. Due to the larger size of the MRGX1 dataset, the Clustal Omega software, which utilizes seeded guide
trees and Hidden Markov Model profile techniques (Madeira et al., 2022), was used for alignment as it can be paralleled
across several CPUs. Due to the even larger size and diversity of the MERS datasets, additional manual data trimming was
employed to minimize the number of gaps, given the compute and memory required by transformers scale quadratically
with input sequence length (Yang et al., 2022a). Through reducing our dataset size from 50406 to 48131, we reduced our
MSA length from 340 to 131; this 2.6 fold reduction in length results in an estimated 6.7 fold reduction in compute needs
from AbLang.

B.3. Data Splitting

All datasets were split into train and holdout. Five-fold cross validation was employed in hyperparameter tuning, in which
the validation set was a randomly selected but predefined fifth of the training data. Models with the highest average accuracy
across all folds were selected for holdout prediction, which were never seen by any of the models during validation, ensuring
we are measuring the model’s ability to generalize to unseen data. Specifically, the five versions of the model trained on
each validation split were ensembled for prediction on the holdout set. Depending on the dataset and its diversity, we either
employed random or clustered splitting for holdout selection, as described below.
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B.4. Random Splitting

For the AL Base dataset, we concluded a simple random split was appropriate given we were comparing performance with
Rawat et. al (2021) which had results derived from presumably random k-fold-cross-validation and holdout testing. For the
datasets from Jain et. al. (2017) and Shehata et. al. (2019) (PSR, T-Mid and HIC-RT), approximately 400 human mAbs
were measured in Shehata et. al. by deriving sequences from primary naı̈ve B cells, IgM and IgG memory B cells, and
long-lived plasma cells (LLPCs) from the germline cells of four healthy donors (i.e., as opposed to single/double mutation
yeast display libraries). Additionally, the clinical mAbs included in the Jain et. al (2017) are inherently diverse due to their
targeting of different antigens. From these two facts, our intuition was the combined Jain and Shehata dataset would be
diverse enough for random splitting. This was confirmed by looking at the distribution of sequence similarity across all pairs,
where we found 99.9% of sequence pairs had under 92.9% similarity, 98.8% of sequence pairs had under 87.1% similarity.

B.5. Sequence Similarity Clustering

Unlike the datasets from Jain et. al. (2017) and Shehata et. al. (2019), our internal T-Agg and HIC-RRT datasets had
sequences with high similarity due to the natural grouping of antibodies from therapeutic pipeline projects. To effectively
assess the generalizability of the models we built, the holdout set was designed to contain low sequence identity (<95%)
from the train/validation stage to provide a worst-case scenario model fit. In brief, the sequence analysis workflow as
described in Waight et al.(2023), begins with generation of a pairwise mutation matrix, and clustering of sequences based
on the matrix. The sequences are split using a stratified group method that ensures (1) <95% sequence identity for all
sequences in the holdout compared to train/validation, (2) the holdout contains approximately 20% of the dataset, and (3)
there is a representative distribution of the biophysical property in both the train/validation and holdout. A slightly different
approach was taken for the larger MERS and MRGX-1 yeast display datasets. We clustered the dataset into 600 clusters
with k-means clustering and sequence similarity as the distance metric. To ensure we had large clusters in our holdout set,
we sampled 3 random clusters from those which were 50-100 sequences, then proceeded to randomly add 197 smaller
sized clusters to the holdout set. As such, the holdout set has a total of 200 clusters that are unseen during training. For the
remainder of the dataset, we stratified split the sequences between train and holdout, so that the holdout set summed up to
2,500 sequences each, which was eventually reduced to 2,396 sequences after data trimming and MSA generation.

B.6. AbLang

AbLang is a PLM trained on all sequences in the OAS (Observable Antibody Space) for the purpose of restoring missing
residues in antibody sequences (Olsen et al., 2021). It inherits from the Bidirectional Encoder Representations from
Transformers (BERT) base architecture of 12 transformer layers with 12 attention heads and was trained on the MLM task
of predicting masked residues. Specifically, 1 to 25% of residues were chosen per sequence in the OAS, and, of this subset,
80% were masked, 10% were randomly changed and 10% were left unchanged. AbLang was shown to restore the missing
residues of antibody sequences better than using IMGT germlines or by using a PLM trained on general protein sequences,
suggesting for antibody related downstream tasks, using a language model trained on antibody sequences offers better
learned representations for antibody related tasks. For this reason as well as it being open source, we selected AbLang to
serve as the transformer encoder portion of our model.

B.7. Graph Attention Network

The graph attention network (GAT) aims to harness the success of self-attention in sequence-based tasks for graph input, the
foundation of which is its graph attention layer. Each GAT layer iterates the updates of the embeddings or hidden state of
each node based on “messages” relayed from nearby residues (Velickovic et al., 2017). Unlike the transformer however,
GAT takes advantage of the relational knowledge contained in the edges of graphs. A significant advantage to LLMs, which
must infer protein contacts, GAT and GNNs largely are implicitly given prior knowledge of the inter-dependencies of
residues by way of an input structure (Wang et al., 2022). The advantage is the edges allow use of masked attention, in
which attention coefficient calculations are restricted to residue pairs which are neighbors, unlike the original transformer
approach which calculates attention between all N2 residue pairs. The attention coefficient for a given edge between two
nodes is calculated by multiplying both nodes’ representations by a weight matrix, then multiplying an attention weight
vector to the concatenation of these transformed representations. This operation is done along several attention heads which
have different weight matrices. Then for a given node, the attention weight of all its edges, aggregated across all attention
heads, is then used to update its hidden state. Through each iteration each node’s representation becomes contextually aware
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of its surrounding nodes. GAT achieved state of the art performance on protein-protein interaction and citation network
datasets (Velickovic et al., 2017).

B.8. Structured Transformer

The structured transformer, or as we refer to it here, Structured Graph Network (SGN), is one of the first inverse-folding
deep learning model for proteins. It functions very similar to a transformer, predicting masked residues autoregressively,
with a few key differences relating to its prediction being pre-conditioned on the structure of the protein. First, like the
approach of GAT, its calculation of self-attention is restricted to residue pairs which are neighbors, defined for proteins
using a k-nearest-neighbors graph derived from the Euclidean distance between residues. Unlike GAT, SGN calculates
attention coefficients like the original transformer, by taking the scaled-dot product of the two nodes but nonetheless updates
node-embeddings using these coefficients in a similar manner as GAT (Ingraham et al., 2019). Another key difference is that
the only structural information used by GAT is knowledge of which nodes are neighbors, while SGN utilizes node and edge
features. It includes the distances between residues, and orientation and direction of residues as a structural encoding for
each edge. It then calculates a positional encoding like the original transformer (having to do with the distance between
residues in sequence), and finally concatenating the positional and structural encoding to become the starting features of
each edge. For node features they take the sine and cosine of the three dihedral backbone angles as the starting features
for each residue. The additional structural information aims to help the model make predictions of missing residues by
informing it of the geometry of its neighbors (Ingraham et al., 2019).

B.9. Geometric Vector Perceptron

Unlike the GAT and SGN, the Geometric Vector Perceptrons (GVP) does not have an attention mechanism, and instead
employs a message passing algorithm, using messages from neighboring nodes and edges to update node representations at
each step. Details are provided in Jing et al. (2020). Of all three structural graph algorithms, it encodes the most structural
information in its node representations, with each node having scalar and vector features. The node embedding includes a
one-hot representation of the amino acid when available, the sine and cosines of the three dihedral angles (same as SGN),
and six unit vectors providing orientations between inter- and intra-residue Cα and Cβ atoms. The edge embeddings contain
a unit vector of the direction between the two residues’ Cα atoms, an encoding of the distance between the residues, and a
positional encoding of the sequence position distance of the two residues (same as SGN and the original transformer).

B.10. Pooling Function

We employed two different pooling functions to predict properties from the output of GNN or Transformer layers. The
output of the GNN (or of AbLang if using sequence-only model) layers will be in RLXH , with L being the sequence length of
the MSA and H being the embedding size of the GNN or AbLang encoder. The first pooling function is a simple averaging
across the embedding dimension, creating a vector of size L, followed by dense neural layers which predicts the output from
the L-length vector. Our other pooling function was an implementation of the ”Universal Readout Function” for graphs from
Navarin et al.(2019), which is a learnable pooling function consisting of two sets of dense layers, Phi (ϕ ) and Rho ρ (Rho).
ρ, like the averaging function, first operates on the embedding dimension of length H, transforming the output from RLXH

to RL. ρ is followed by ϕ, which operates on the residue dimension, transforming the ρ output from RL to RO, where O
is the size of the target variable. Essentially, ρ learns to extract information from the relevant positions in the embedding
dimension, while ϕ learns to extract information from relevant the positions in the MSA. Universal pooling was found to be
superior to averaging in Navarin et al. (2019), while Wang et al. (2022a) found averaging to be the best pooling function,
thus we included the choice of universal versus average pooling as a hyperparameter which varies between models.

B.11. Model Training and Hyperparameter Tuning

All deep learning models were implemented in PyTorch and trained on NVIDA P100 GPUs. Models were hyperparameter
tuned using the HyperOpt python package, with Tree-structured Parzen Estimators selected as the optimization algorithm.
The optimization algorithm employed for training was the PyTorch implementation of AdamW. A wide range of scalar
hyperparameters were explored: learning rate, batch size, drop rate, number of encoder frozen layers, weight decay, betas
of the AdamW optimization algorithm, hidden dimension size between dense layers, as well as binary options: use of
universal vs. average pooling, normalization of the target variable, and use of a dynamic learning rate. We evaluated
anywhere between 100-1000 sets of hyperparameters for each model with 5-fold cross-validation (testing each selection of
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hyperparameters on all five folds and averaging the accuracies), with large models trained on larger datasets residing in
the lower part of that range due to time constraints. At the end of hyperparameter tuning we took the hyperparameter set
with the highest average score across all five folds as the best set. We then ensembled the predictions from each of the five
models with this hyperparameter set (each model was trained on one of the five folds) on an unseen holdout set to derive a
final accuracy. These values are reported in Table 1.

B.12. One-Hot Encoding and Embedding Baselines

The two sequence-based baselines evaluated in this study were random forest classifiers or regressors using either one-hot
encoding or the language embedding of the sequences as features. Several studies presenting performance of language
models on downstream tasks neglect to show a one-hot encoding baseline, which can outperform language embeddings
in practice despite it being faster to compute O(N) vs O(N2) (where N is the length of the MSA) for each sequence and
requiring a few lines of simple code (Yang et al., 2022a). The one-hot encoding is derived by encoding each amino-acid as a
21-length-vector where the i’th position corresponds to each of the 20 canonical amino acids, with the final position in each
vector corresponding to a gap in the MSA. Letting L be the length of the MSA, these vectors were then concatenated to form
a single L x 21 length feature input to represent each sequence. Embeddings were derived from the final hidden layer in the
encoder before the amino-acid prediction head of AbLang. Letting H be the hidden/embedding dimension size, this hidden
layer has shape L x H. The average value was taken across the hidden dimension to derive a single sequence vector of shape
L as recommended in Olsen et. al (2022) . Averaging and max-pooling across both dimensions, L and H, were attempted but
this method seemed to yield the best accuracy for our datasets. These inputs were then used as features for a random Forest
regressors (for HIC-RRT, HIC-RT, T-Agg, PSR, and T-Mid) and classifiers (for MERS, MRGX and Al-Base). These models
were trained on the same training data and tested on the same holdout data as the deep learning models. The accuracies we
report have error bars reflecting 95% confidence intervals for the mean performance derived from 10 trials for each dataset
with different random forest number of trees and random states.

C. Supplemental Figures and Tables

Table 2. Effect of MLM Pretraining on Downstream Performance. As with Figure 3A, error bars show 95% confidence interval for mean
Spearman coefficient or classification accuracy from 20 trials, with hyper parameters varying between trials. Average scores which are
significantly greater by at least 80% certainty are in bold, and same as Figure 3A, *, **, ***, **** correspond to 80%, 90%, 95% and
99% certainty from a difference of means t-test.

DATA SET NAIVE PRETAINED P-VALUE

MERS 61.7± 5.8 67.6± 0.4 0.040746***
AL BASE 88.0± 0.9 89.6± 0.5 0.012714***
HIC-RRT 0.59± 0.15 0.74± 0.14 0.122316*
PSR 0.16± 0.07 0.18± 0.08 0.370891
HIC-RT 0.14± 0.13 0.35± 0.18 0.071298**
T-MID 0.25± 0.08 0.42± 0.05 0.007776****
T-AGG 0.21± 0.12 0.47± 0.17 0.019808***
MRGX 59.1± 1.3 61.3± 0.5 0.011503***
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Figure 5. Confusion Matrix for Best Model’s Performance on MERS Binding Dataset
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Figure 6. Confusion Matrix for Best Model’s Performance on AL-Base Dataset
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Figure 7. Confusion Matrix for Best Model’s Performance on MRGX Binding Dataset
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Figure 8. Effect of MLM Sequence Pretraining for A. AbPROP-Seq and Structural Inverse Folding Pretraining for B. AbPROP-GVP
and C. AbPROP-SGN on property prediction performace. Error bars show a 95% confidence interval for the mean perfect classification
accuracy from n = 20 trials, with each trial having a random set of hyper-parameters for both naive and pretrained. We include p-value
derived certainty from difference of means t-tests. *, **, ***, **** correspond to 80%, 90%, 95% and 99% certainty, respectively.
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Table 3. Effect of Structural Pretraining on Downstream Performance for Geometric Vector Perceptron (GVP). As with Figure 3B, error
bars show 95% confidence interval for mean Spearman coefficient or classification accuracy from 20 trials, with hyper parameters varying
between trials. Average scores which are significantly greater by at least 80% certainty are in bold, and same as Figure 3B, *, **, ***,
**** correspond to 80%, 90%, 95% and 99% certainty from a difference of means t-test.

DATA SET NAIVE PRETAINED P-VALUE

MERS 63.4± 3.9 63.8± 3.6 0.446
AL BASE 90.0± 0.6 88.2± 1.6 0.048***
HIC-RRT 0.61± 0.10 0.61± 0.12 0.491
PSR 0.24± 0.05 0.25± 0.06 0.395
HIC-RT 0.25± 0.05 0.32± 0.13 0.195*
T-MID 0.36± 0.13 0.36± 0.06 0.472
T-AGG 0.30± 0.12 0.43± 0.08 0.080**
MRGX 61.0± 0.4 61.0± 0.05 0.462

Table 4. Effect of Structural Pretraining on Downstream Performance for Structured Graph Neural Net (SGN). As with Figure 3C, error
bars show 95% confidence interval for mean Spearman coefficient or classification accuracy from 20 trials, with hyper parameters varying
between trials. Average scores which are significantly greater by at least 80% certainty are in bold, and same as Figure 3C, *, **, ***,
**** correspond to 80%, 90%, 95% and 99% certainty from a difference of means t-test.

DATA SET NAIVE PRETAINED P-VALUE

MERS 64.3± 6.0 68.3± 0.5 0.141*
AL BASE 89.5± 0.7 89.6± 1.4 0.467
HIC-RRT 0.36± 0.10 0.56± 0.08 0.011**
PSR 0.22± 0.07 0.20± 0.06 0.343
HIC-RT 0.25± 0.12 0.38± 0.12 0.114*
T-MID 0.32± 0.06 0.41± 0.07 0.061**
T-AGG 0.26± 0.14 0.24± 0.11 0.396
MRGX 61.5± 0.1 61.2± 0.3 0.096**


