DiffHopp: A Graph Diffusion Model for Novel Drug Design via Scaffold Hopping

Jos Torge! Charles Harris! Simon V. Mathis' Pietro Li6 '

Abstract

Scaffold hopping is a drug discovery strategy to
generate new chemical entities by modifying the
core structure, the scaffold, of a known active
compound. This approach preserves the essential
molecular features of the original scaffold while
introducing novel chemical elements or struc-
tural features to enhance potency, selectivity, or
bioavailability. However, there is currently a lack
of generative models specifically tailored for this
task, especially in the pocket-conditioned context.
In this work, we present DiffHopp, a conditional
E(3)-equivariant graph diffusion model tailored
for scaffold hopping given a known protein-ligand
complex.

1. Introduction

Scaffold hopping (Bohm et al., 2004) is a widely used strat-
egy in drug discovery that involves modifying the core struc-
ture or ‘scaffold’ of a known active compound whilst pre-
serving the functional groups which can be seen as the
‘business-end’ of the molecule which interacts with the tar-
get (Figure 1). The aim of scaffold hopping is to retain the
essential molecular features (also known as pharmacophoric
features (Yang, 2010)) of the original scaffold while intro-
ducing new chemical elements or structural features that
can improve the desired properties, such as potency, selec-
tivity, or bioavailability, whilst designing molecule of novel
structure.

Recently, there has been considerable excitement on the
application of deep generative models for many areas within
drug discovery (Tong et al., 2021; Xie et al., 2022; Isert
et al., 2023; Baillif et al., 2023), particularly using diffusion
models (Ho et al., 2020). There are a number of diffusion
models that have been proposed for structure-based drug
design (Schneuing et al., 2022), fragment-linking (Igashov
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Figure 1: Scaffold hopping: Scaffold atoms highlighted
in red. The scaffold holds the functional groups in place
for binding. Scaffold hopping refers to interchanging scaf-
folds while leaving the functional groups unchanged. Com-
pared to inpainting, scaffold hopping uses a fixed defini-
ton of scaffold-vs-rest and in contrast to fragment linking,
which links large existing fragments with small molecular
bridges, scaffold hopping typically redesigns the majority
of a molecule.

et al., 2022) and molecular docking (Corso et al., 2022).

While diffusion models for drug design can in principle
be repurposed for scaffold hopping by using an inpainting
formulation (appendix C), there are no diffusion models
specifically designed for scaffold hopping and it is unclear
how inpainting with existing models (Schneuing et al., 2022)
would compare to a tailored approach.

In this work, we introduce DiffHopp, an E(3)-equivariant
graph diffusion model specifically trained to perform scaf-
fold hopping on known active compounds within protein
pockets. Here, we seek to learn the conditional probability
distribution of molecular scaffolds given a target pharma-
cophore. In summary, our main contributions are:

1. We train a 3D diffusion generative model specifically
for the case of scaffold hopping that is conditioned
on whole protein pockets, rather than some desired
shape. We further repurpose general pocket condi-
tioned diffusion models (Schneuing et al., 2022) via
inpainting (appendix C) and observe that specific train-
ing for scaffold hopping outperforms comparable
general models used via inpainting.

2. We find that using more powerful geometric graph
neural networks provides a cure for low connectiv-
ity, a key limitation in current pocket-conditionend
molecule generation via diffusion (Schneuing et al.,
2022).



2. Background and Related Work

Traditional Scaffold Hopping Methods Traditionally,
scaffold hopping can be accomplished in different ways
(Sun et al., 2012). Pharmacophore-based methods define a
pharmacophore model which captures common features in
known bioactive molecules and then screen large databases
for active molecules of novel structure (Hessler & Bar-
inghaus, 2010). Fragment-based methods aim to replace
problematic fragments or scaffolds by searching fragment
databases based on a simplified chemical similarity (Birchall
& Gillet, 2011). However, these non-generative approaches
rely on similarity functions, which might not capture the
whole spectrum of scaffold relationships. (Hu et al., 2017)

Deep Learning-based Scaffold Hopping Early work
treated scaffold hopping as sequence translation problem
using SMILES (Zheng et al., 2021). However, this does not
allow reasoning about the 3D chemistry. SQUID (Adams &
Coley, 2022) introduces the first 3D generative model for
scaffold hopping, but condition on a desired chemical shape
rather than the full receptor chemistry. When used in an
inpainting formulation (Lugmayr et al. (2022), appendix C),
DiffSBDD (Schneuing et al., 2022), a diffusion model for
pocket conditioned ligand generation, can be seen as the
closest work to ours. Further, DiffLinker (Igashov et al.,
2022), which is trained to generate linkers between molec-
ular fragments using a conditional diffusion model, could
in principle be repurposed for scaffold hopping. However,
fragment linking typically redesigns small linkers between
large fragments, while scaffold hopping normally requires
redesigning most of the molecule and is therefore out-of-
distribution for the training of fragment linking models.

Diffusion Models Denoising Diffusion Probabilistic Mod-
els (DDPMs) (Ho et al., 2020) are a powerful class of gener-
ative model used to learn complex probability distributions.
In short, DDPMs define a Markovian diffusion process that
transforms an observed data distribution into a known prior
(typically N'(0,1)). A score function (where the score is
the gradient of the log probability of the underlying density
function Vy log p(x)) is then learnt to reverse this forward
diffusion process, meaning we can sample new data from
the tractable prior A'(0,I) (Song & Ermon, 2019).

3. Methods

Dataset We train our model on 19,378 protein-ligand com-
plexes from PDBBind, filtered for QED > 0.3 and split as
in Corso et al. (2022). From these complexes, we define
the Murko-Bemis scaffold (Bemis & Murcko, 1996) for
each ligand using RDKit'. Here, we treat atoms not in the
scaffold as functional groups.

'www.rdkit.org

Molecule representation All molecules (proteins and lig-
ands) are represented as geometric graphs G = {h, z} with
node features h € RY*¥ and coordinates x € RV *3, Lig-
ands are represented at an atom level, with h being the one-
hot encoding of the atom type. For computational efficiency,
protein graphs are subset to the pocket region (defined as
all atoms within 8 A of the ligand) and are represented at
a C,, granularity with node features hp being the one-hot
encoded residue type. Edges within the ligand are fully
connected, whereas all protein-ligand and protein-protein
edges are drawn with a radius threshold of 5A. The edge
features between nodes ¢ and j consist of the distance d;;
and the normalised direction vector (x; — x;)/(d;;).

DiffHopp architecture We recast the scaffold hopping
problem as learning a conditional probability distribution in
3D, where we wish to construct a new sample scaffold z,
given a molecular context u (u is the concatenation of the
pocket p and functional groups g). This is achieved using
an equivariant diffusion model pg(zo | u) parameterized
using a denoising network e¢(z;, ¢, u). We parameterize
our denoising network €y using a diffusion adaptation of the
equivariant Geometric Vector Perceptron (GVP) architec-
ture (Jing et al., 2020). Following previous work (Schneuing
et al., 2022; Igashov et al., 2022), we embed all features
into a shared feature space using seperate Multi-Layer Per-
ceptrons (MLPs) hemp = [0 (h.), ¢4 (hy), ¢p(h,)] for z, g
and p respectively. We then perform 7 layers of message
passing on the combined pocket-ligand graph to update the
hidden node features h’ and 2. The noise estimator for the
scaffold is then taken as €/, €}, = X, gour(h’,) With @ou an
MLP to map from embedding space to Gaussian noise.

Training and Sampling We follow the DDPM training
procedure (Ho et al., 2020) outlined in detail in Appendix A
(Algorithm 1). To ensure equivariance, we employ the zero
center of mass trick from previous work (Hoogeboom et al.,
2022). We use use 7' = 500, AdamW as the optimizer
and employ a polynomial variance schedule (Hoogeboom
et al., 2022) with s = 10~* and all a; values clipped to
a lower bound of 1073. We also scale atom features h
by 0.25, which was shown in previous work to improve
performance empirically (Hoogeboom et al., 2022). We
adapt the simplified noise-prediction objective (Schneuing
et al., 2022) into a reweighted loss optimizing atom type
and coordinate features individually:

1
Lreweighled =E 1(”61’ - eleQ + ||€h - G;LHQ) (D

where [e,, €p] = € and [€), €},] = €g(z,t,u) denote the
true and predicted noise respectively. Our sampling proce-
dure follows previous work on equivariant diffusion models
(Hoogeboom et al., 2022) and is given in Algorithm 2 (see
appendix).
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Figure 2: Visual abstract. Given a protein-ligand complex, an equivariant diffusion model is used to sample a scaffold
from a scaffold distribution conditioned on functional groups and protein pocket. The resulting scaffold is merged with the

functional groups to lead a scaffold hopped ligand.

Postprocessing Following Schneuing et al. (2022), we
extract the resulting point cloud (fixed functional groups
and designed atoms) and convert it into a molecule with
bonds using OpenBabel (O’Boyle et al., 2011). Molecules
are then relaxed using 200 steps of force-field relaxation
with UFF (Rappé et al., 1992) to remove clashes.

4. Experiments

We set out to answer the following questions: (1) Is a model
specifically trained for scaffold hopping much better than
a general purpose molecule generation model used with
inpainting? (2) What is the effect of using more powerful
geometric graph neural networks as denoisers in diffusion
for molecule generation?

Evaluation To evaluate the quality of generated
molecules, we use metrics established in previous work
(Schneuing et al., 2022; Igashov et al., 2022). Connectivity
measures whether generated molecules are fully connected.
Diversity is the average pairwise Tanimoto-dissimilarity
(Bajusz et al., 2015) between all generated molecules for a
pocket. Novelty is the fraction of molecules different from
those in the training set. QED (Bickerton et al., 2012) is a
measure of drug-likeness. SA (Ertl & Schuffenhauer, 2009)
estimates ease of synthesis of drug-like molecules. Vina
Score is an estimate of binding affinity between ligand and
target pocket calculated using the docking software QVina2
(Alhossary et al., 2015).

Scaffold-hopping results The main quantitative results
for scaffold hopping are presented in Table 1 with distribu-
tions of key metrics in Figure 4. Our generated molecules
have relatively high chemical diversity, despite the func-

tional groups being fixed in all samples. This indicates that
our model can produce molecules of high scaffold/structural
diversity. Our mean Vina score of -7.883 is impressive
when considering that we often perform drastic topologi-
cal changes and that the molecules in PDBBind are biased
towards high affinity molecules. QED and SA scores are
also competitive when compared to the test set and previous
work with mean scores of 0.612 (Schneuing et al., 2022)
and 0.664 (Adams & Coley, 2022). A graphical example
of a DiffHopp output is provided in Figure 3 for a random
target in the test set (PDB:6bgd) (Nittinger et al., 2019).

2D

(a) Reference
Vina: -9.4, QED: 0.79

(b) DiffHopp output
Vina: -10.4, QED: 0.69

Figure 3: Model output for randomly chosen pocket
(PDB:6bgd). Out of 10 generated samples, the best one as
measured by Vina score was chosen. Functional groups are
highlighted in red. DiffHopp produces more aromatic rings
and the molecule has improved binding affinity.



Method Connectivity (1) Diversity (1)  Novelty (1) QED (1) SA () Vina (kcal/mol, |)
DiffHopp 0.914 +0.28 0.592+£021 0.998 £0.05 0.612+0.18 0.664 +0.13 -7.883 £1.53
DiffHopp-EGNN 0.757 £0.43 0.644 +0.17 1.000 £0.02 0.514+0.19 0.604 +0.13 -7.240 + 1.47
GVP-inpainting 0.652 +0.48 0.668 +0.18 0.997 £0.06 0.547+£0.20 0.680 +0.11 -7.552 £ 1.77
EGNN-inpainting 0.793 £ 0.41 0.667 £0.18 0.999 +£0.03 0.467 £0.20 0.644 £0.11 -7.163 £1.52
Test set 1.000 + 0.00 - 1.000 £0.00 0.606 £0.17 0.736 £0.12 -8.767 £1.92

Table 1: Mean and standard deviation of the common molecular metrics for the molecules from both the test set and the
DiffHopp models. Furthermore, results using inpainting on molecule generation models are shown. Best metrics are in bold.

Test set DiffHopp

Vina (keal/mol) QED SA

i

025  0.50 0.
Figure 4: Distribution of selected metrics in the test set
and the molecules generated with DiffHopp. The model’s
samples are comparable in distribution to the test molecules
and, while slightly less often than the test set, the model
occasionally generates high scoring samples.
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We perform dimensionality reduction of the molecular scaf-
fold fingerprints generated by DiffHopp versus the training
dataset (Appendix Figure 8) and observe that DiffHopp has
successfully learned to generate diverse scaffolds that match
the training set for diversity chemotypes.

Comparison to scaffold-hopping via inpainting We
compared DiffHopp to a general DiffSBDD-like (Schneuing
et al., 2022) molecule generation model, trained with the
same denoiser. Unlike DiffHopp, this inpainting model was
trained without providing functional groups of a ligand as
context. To sample scaffolds we fix the functional groups
and perform sampling with inpainting (details in App. C).
DiffHopp showcases clearly superior performance for con-
nectivity, QED, and Vina scores than the inpainting model,
while matching its performance in other metrics, barring
diversity (Table 1). Consequently, our findings affirm that a
custom scaffold-hopping model outperforms a repurposed
general model via inpainting. The price to pay for the extra
performance is the rigid definition of scaffold vs rest, which
has to be chosen before training.

Ablation study of more powerful denoiser To test the
effect of the more powerful GVP-denoiser, we conducted an
ablation study (see Table 1), replacing the DiffHopp GVP-
encoder with an E(3)-Equivariant Graph Neural Network
(EGNN) (Satorras et al., 2021). Both models were tuned
through extensive hyperparameter optimization.

Our ablation shows that switching from EGNN to GVP
significantly improved connectivity, addressing a common
problem in EGNN-based works (Schneuing et al., 2022),
where low molecular connectivity due to small coordinate
errors causes bond omissions in postprocessing. We be-
lieve this improvement is because GVP is a more expressive
model (Joshi et al., 2023), which in contrast to EGNN can
also reason about angles. This was also reflected in training
through reduced coordinate loss compared to the EGNN ab-
lation (Appendix Fig. 5). Additionally, mean QED and Vina
scores improved markedly, underlining GVP’s superiority.

Limitations Full atom representations were shown to im-
prove pocket-conditioned diffusion modeling (Schneuing
et al., 2022), however, training such was beyond the compu-
tational budget of this project. Future work could investigate
whether full-atom representations allow generated scaffolds
to better mediate protein-ligand interactions. A related issue
is our definition of functional groups as any atom not in
the scaffold, which may not capture key pharmacophoric
properties contained in the original scaffold (e.g. oxygen
bound to the ring in Figure 3).

Whilst the exact size of the medicinally relevant scaffold
shape is uncertain, Hu & Bajorath (2010) found that for
the majority of targets, between 5-49 structurally distinct
scaffolds are available in public databases. Further work
will analyse whether DiffHopp is able to enrich the diversity
of chemotypes available for targeting a given protein and
whether it generalises to scaffolds beyond those seem in the
training set.

5. Conclusion

In this work, we have demonstrated that DiffHopp, an equiv-
ariant graph diffusion model, is highly capable of perform-
ing the medicinally important task of scaffold hopping to
design molecules of potent activity whilst generating novel
structures. We found that it outperforms generalist molecule
diffusion models used via inpainting and that the expressiv-
ity of the denoiser correlated directly with high molecular
connectivity. We would thus recommend future work to use
more expressive architectures such as GVP. Code will be
made available upon acceptance.
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A. Training and sampling algorithm

We use the same training and sampling algorithms as in Hoogeboom et al. (2022) and Schneuing et al. (2022), which is a
slight adaptation of the original DDPM sampling (Ho et al., 2020). The main difference to Schneuing et al. (2022) is the
separation of coordinate and atom-type loss in the training.

Algorithm 1 Training algorithm

repeat

Sample zg, u from training data

Subtract center of gravity of zg from zy, u

Sample ¢t ~ U(0, .., T), e, ~ N(0,1), e, ~ N(0,I)

Subtract center of gravity from €,

€+ [€y, €p)

Zi — /20 + /1 — Q€

[€,, €] < €o(z,t,1)

Take gradient descent step on V(5 (|lex — €, [1? + |len — €},]12))
until convergence

Algorithm 2 Sampling algorithm

Require: context u
Sample zr ~ N(0,1)
fortinT, T —1,...,1do
if t > 1 then
Sample €, ~ N (0,1), €, ~ N(0,1)
Subtract center of gravity from €,

€ < [€, €p]
else
e+~ 0
end if
Zi_1 \/%(zt — fjat eg(z¢,t, 1)) + os€
end for
return zg

B. Loss curves

C. Performing scaffold-hopping with inpainting

Another approach to scaffold generation is via inpainting: Lugmayr et al. (2022) introduce an inpainting method for existing
diffusion models to condition their output on known parts. They demonstrate the potential and applicability of the technique
by using diffusion models pre-trained for image generation to inpaint images - filling in missing regions.

It is possible to view the scaffold hopping problem as an inpainting task - using a model trained on de-novo ligand generation,
it is possible to consider the scaffold as a missing region while providing the known functional groups of the molecule.

The inpainting method is based on the observation that each step in the reverse diffusion process py(z:—1|z:) depends only
on z;. Thus, it is possible to change z; as long as the correct properties of the corresponding distribution are maintained
(Lugmayr et al., 2022). To create conditioned samples, it is possible to simply enforce the conditioning in the generative
process by replacing parts of the predicted z;_; with the correct zX""". Formally, given a known z, a current z; and a
mask indicating the known parts m, we can define

20~ N(ar120, (1= @)1 N
2N~ N (g (21, 1), o (71,1)) "~

Zi1=m0Q zlt“lofv" +(1-m)o zgikfown ()
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Figure 5: DiffHopp validation losses. Left: total reweighted loss. Middle: node features MSE. Right: Node coordinate MSE.
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Figure 6: An overview of reverse diffusion process with inpainting. The ligand z;_; is constructed from known and
unknown parts, and then iteratively updated.

As the diffusion model attempts to harmonise the input as the diffusion process progresses, this should naturally result in the
model generating in-distribution samples with the desired known parts. The process of inpainting is shown in Figure 6.

However, Lugmayr et al. note that direct application of this method leads to locally harmonised results that struggle to
incorporate the global context? (Lugmayr et al., 2022). They theorise that the model is limited in how much it can harmonise
the sample z; at each step because it does not know about 5" when making the prediction for z{"k""", They compensate
for this by not directly following the reverse Markov chain in a linear fashion, but instead moving back and forth in the
diffusion process to enable the model to properly incorporate the known parts. This movement is parameterised by 7 and
r, where the jump length j indicates the length of each of the r resamples. An example of a repaint schedule is shown in

Figure 7.

We extend the training procedure to support the training of diffusion models for de-novo ligand generation. In practice, this
is done by restricting the context u to contain only the protein pocket. Furthermore, z, represents a complete ligand in the
training procedure, not just a scaffold. We thus support training models that approximate pg(zo|u), where z is a ligand and
u is a protein pocket, similar to the setup of DiffSBDD (Schneuing et al., 2022)).

D. Model details

This section details more specific architectural details. Following previous work (Schneuing et al., 2022), the Swish
activation function with # = 1 (Ramachandran et al., 2017), defined as SiLU (Elfwing et al., 2018)

f(z) = x - sigmoid(x) (%)

?In the paper, the authors describe a case where inpainting the face of a dog leads to a furry texture, not to a face.
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Figure 7: An example repainting schedule with 7' = 250, r = 5 and j = 20. Note that resampling always happens 7 times
with length j.

is used for all non-linearities, except where explicitly detailed otherwise.

D.1. Encoding and Decoding Functions for the Graph Embedding

The learnable functions ¢, ¢4, ¢, which encode the respective node features for the shared graph are implemented as Multi
Layer Perceptron (MLP). Each function consists of two linear layers, the former mapping from n to 2n features and the
latter from 2n to m features, with one non-linearity in between. n denotes the number of original features and m the size of
the joint embedding space (without time appended).

@out 18 a 2-layer MLP with the inverted structure of ¢, .

D.2. EGNN
The learnable functions ¢, ¢y, ¢a and ¢, are used in each EGNN layer (Satorras et al., 2021).

Given a value for hidden features h, ¢, is a two-layer MLP mapping from the features of the input to & and then from h
to h using two linear layers, with a non-linearity after each of them. The final output is divided by a normalisation factor
C = 100, to prepare for the sum aggregation.

The learnable function ¢y, is another two-layer MLP with a hidden layer size h with a single non-linearity between both
layers.

The attention mechanism ¢,y is defined as a single linear layer with a single output, followed by a sigmoid function.
Finally, the position update ¢,, = R tanh(¢,-), where R = 15 limits the range of movement. ¢, is a 3-layer MLP with
hidden sizes h, where the last layer maps to a scalar and has no bias.

D.3. GVP-GNN

This section describes the architecture of the constructed GNN using GVPs (Jing et al., 2020) in more detail. o is a sigmoid
function in all GVPs mentioned. Unless explicitly stated otherwise, o is the SiL.U activation function and o the identify
function.

The inputs of the GVP are nodes with scalar features s, representing the embedded input scalars in the graph space, and no



vector features. The input edges simply consist of a normed direction vector and the distance between the two respective
nodes, as detailed in the paper.

Both edge attributes and node attributes are passed through embedding layers. The edges are embedded in a two step process,
first normalising the inputs using a layer normalisation (Ba et al., 2016) and then passing them through a GVP with o, o
being the identify function, which outputs a scalars of hidden size 4/2 and a single vector.

The nodes are embedded in a similar fashion, however outputting //2 scalars and h/2 vectors, leading to h features in total.

The message passing layers are defined similar to the EGNN:

m;w = ¢€ (hvv hw, evw)

’ ~
m, = § Coyw My (6)
weN,

b, = ¢n(h,, m;)

where €,,, = ¢u(m,,,) is an attention mechanism to learn a soft estimations of the edges, similar to the EGNN.

¢e is a composition of three GVPs with hidden sizes (h/2, h/2) and the last one having o has identity function. ¢y is a
single GVP mapping to a single scalar with o being the sigmoid activation function. The final output is normalised by
C = 100, similar to the EGNN.

én(hy, m)) = norm(h, + ¢}, (norm(h, +m)))), a residual (He et al., 2016) architecture with ¢}, being a composition of
two GVPs with (h/2, h/2) has input, hidden and output size. The last layer again has o as identity function. norm denotes a
layer normalisation(Ba et al., 2016). The norm is not learned for vectors.

E. Hyperparameter tuning and settings

We considered the following hyperparameter settings. The best model was chosen by taking the model with the lowest
validation set loss. Hidden Features denote the number of features for each node between the GNN Message Passing layers.
Embedding Size denotes the size of the node embeddings in the input graph. GNN Layers denotes the number of message
passing layers in the GNN architecture.

Parameters Search space DiffHopp-EGNN EGNN-inp. DiffHopp GVP-inp.
Static

Batch Size 32

Diffusion steps 1’ 500

Number of steps 150000

Seed 1

Tuned

Attention mechanism  True, False False False True False
Hidden Features 32,64, 128, 256 64 256 256 256
Embedding Size 32,64, 128, 256 128 256 64 32
Learning rate Se-3, 2e-3, 1e-3, Se-4  1e-3 le-3 Se-4 Se-4
GNN Layers 4,5,6,7 7 7 7 6

F. Scaffold clustering

Figure 8 shows a dimensionality reduction plot for the scaffolds from the training dataset and those generated using DiffHopp.
For each molecule, we select the Murko-Bemis scaffold (Bemis & Murcko, 1996) and calculate its fingerprints using
RDK:it’s topological fingerprints (Kearsley et al., 1996), dimensionality reduction is then performed with UMAP (McInnes
et al., 2018). We observe that DiffHobb is able to generate diversity scaffolds for a variety of molecules with varying
functional groups.
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Figure 8: UMAP dimensionality reduction of molecular scaffolds from various sources. Grey: scaffolds in the PDBBinding
training dataset. Three molecualrs are chosen at random from the test set (PDB 6FTF, 6JSG and 6PYA in blue, orange and
green respectively) and the reduced mapping for the original scaffold (large star) and DiffHopp generated scaffolds (small
dot) are shown. DiffHopp is able to generate a large diversity of scaffolds, regardless of the original chemotype specified by
the functional groups in the test set molecule.

G. Further examples

To help understand the merits and shortcomings of DiffHopp, we cherrypicked three examples below that illustrate typical
successes and shortcomings of DiffHopp (Figure 9).
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(a) Reference (b) Connected sample (c) Unconnected sample
Vina: -8.0, QED: 0.65 Vina: -8.5, QED: 0.69 Vina: -8.4, QED: 0.46

Figure 9: Cherry-picked samples to illustrate capabilities and shortcomings. It can be seen that the model is able to produce
scaffolds that perform better on key metrics. However, not all samples are connected. In the chemical structure, functional
groups are highlighted in red.



