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Evaluation Metrics for Protein Structure Generation
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Abstract
Generative models have become increasingly pop-
ular for sampling novel proteins. To compare and
evaluate these models, we need metrics that can
assess the quality of the generated structures. We
propose a set of standardized metrics for bench-
marking protein generation. We experimentally
show that these metrics can measure differences
between proteins on a distributional level, as well
as quantify the novelty, diversity and designability
of the generated proteins.

1. Introduction
Proteins are biological macromolecules, made up of a se-
quence of amino acids with 20 different naturally occurring
types, and serve an incredibly diverse set of functionali-
ties, playing a role in almost all biological processes. Deep
learning has recently made tremendous progress in protein
science from determining the three-dimensional structure of
a protein given its sequence (Jumper et al., 2021) to the task
of protein-ligand docking (Corso et al., 2023). Furthermore,
an increasing number of works are using generative models
to computationally generate new but physically realistic pro-
tein structures that could lead to new treatments and speed
up drug discovery. Recent protein generation methods have
utilised generative adversarial networks (Anand & Huang,
2018), variational autoencoders (Harteveld et al., 2022) and
now most commonly diffusion models (Ingraham et al.,
2022; Trippe et al., 2023). In protein generation, we are
given a set of known proteins from an unknown distribution
pdata(x) found in nature. The goal of protein generation
is then to sample new proteins from the same distribution.
Although many works are tackling this problem, we cur-
rently have limited methods for assessing the outputs of
these models in-silico. This is critical for comparing models
and furthering the field, as well as to decrease experimental
time when evaluating the vast number of sampled proteins.
Standardised benchmarks enable quantitative comparisons
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between independently proposed models and have facili-
tated methodological progress in computer vision (Deng
et al., 2009) and protein structure prediction (Moult et al.,
2020) in the past. Some standard benchmarks have been
developed for sequence generation (Castorina et al., 2023).
We focus on assessing the ability of protein structure gener-
ative models to sample new proteins from the distribution
of proteins found in nature. For this, we want metrics which
can measure if sampled proteins are physically realistic,
novel, diverse and designable.

Our contributions are as follows:

• We extend and propose novel metrics for the evaluation
of protein generative models.

• We show that our distributional measure is more sen-
sitive to changes in protein topology than previous
approaches.

• We experimentally verify that our metrics measure
the novelty, diversity, and designability of sampled
proteins.

• We implement our metrics as a benchmark suite for the
comparison of protein generative models.

2. Background
In other areas such as molecule, image, and graph gener-
ation, models are assessed on their ability to mimic the
training distribution (distributional learning) (Preuer et al.,
2018; Southern et al., 2023). For protein structure genera-
tion, we also care about domain specific metrics such as the
novelty, designability and diversity of the generated proteins.
We provide a background on current metrics used and the
limitations for each.

2.1. Metrics for Protein Generation

2.1.1. DISTRIBUTION LEARNING

For comparing distributions of proteins, we want a metric
which is zero when the distributions are the same and which
increases as one distribution gets ‘further’ from the other. In
previous works, a descriptor function was combined with a
divergence measure, such as KL-divergence, to compare two
sets of proteins. Different descriptor functions have been
utilised such as residue angles, secondary structure counts,
ramachandran angles (Wu et al., 2022a) and residue-residue
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distances (Anand & Achim, 2022) and divergences between
these descriptors on the true and sampled distribution are
given. However, these approaches are not expressive enough
to be sensitive to fine-grained topological differences (see
Section 3.1) and therefore cannot pick up on important
structural dissimilarities between distributions. We want
a more expressive descriptor which can differentiate more
distributions of proteins than using angles and distances, and
which is stable with respect to perturbations of the input.

2.1.2. NOVELTY

Novelty measures the amount to which the generated sam-
ples differ significantly from the reference set. This is im-
portant to ensure that the model is not merely memorising
the input. To measure the novelty of the sampled proteins,
previous work measured the maximum TMscore (Zhang &
Skolnick, 2005) between the generated and the training set
of proteins or between the generated set and any chain in
the Protein Data Bank (PDB) using FoldSeek (van Kem-
pen et al., 2022). Although (Xu & Zhang, 2010), looked
at the significance of the TMscore in terms of topological
similarity at a specific value, we still lack understanding on
what extent these scores imply that the sampled proteins are
novel. Additionally, the current metric is dependent on the
training set of proteins used and so it is difficult to compare
and benchmark models.

2.1.3. COVERAGE AND DIVERSITY

It is important for generative models to cover all relevant
modes of the target distribution and to avoid phenomena
such as ‘mode collapse’. This allows us to generate novel
proteins across the full protein space. Previously, internal
diversity of generated proteins has been measured using
Max-Cluster (Herbert & Sternberg, 2008) to hierarchically
cluster proteins with a 0.5 TM-score threshold (Yim et al.,
2023). The diversity is then given by (number of clusters)
/ (number of samples). Although these methods show that
the generated proteins are different from each other and no
mode collapse is occurring, they do not give an indication
of how much the sampled proteins cover the protein space.

2.1.4. DESIGNABILITY

Designability is defined as the total number of amino acid
sequences that can fold to a target protein structure. This
has previously been approximated with a self-consistency
evaluation (Trippe et al., 2023): sequences for the protein
are generated with a sequence design model (e.g. Protein-
MPNN (Dauparas et al., 2022)), these sequences are then in-
put to a structure prediction model (eg. AlphaFold (Jumper
et al., 2021)) and the agreement between the predicted struc-
ture and the original protein is measured. In (Wu et al.,
2022a), they show that 87% of natural structures have an

scTM ≥ 0.5 which should give an upper bound on the met-
ric. Although this measure may be useful in practice, it
effectively measures the invertibility of the sequence and
structure prediction models and has not been shown to be
highly correlated with known protein designability. There
are also parameters such as scTM threshold, sequence and
structure design models, and number of generated sequences
which benefit different models, making it difficult to com-
pare approaches.

3. Method and Evaluation
As outlined, current metrics are not sensitive to topological
differences, do not fully capture protein designability or
coverage, and are often dependent on the training set used.
Therefore, we propose and extend new metrics to form a
benchmark suite for comparing protein generative models.

3.1. Distribution learning

Generative modelling aims to capture a given data distri-
bution as accurately as possible. To measure success, we
therefore seek a metric that is zero when the training dis-
tribution and the distribution of generated samples are the
same and increases as the distributions get more dissimilar.

Definition Similarly to the image (Fréchet Inception dis-
tance) and small molecule community (Fréchet ChemNet
distance) (Preuer et al., 2018), we propose to measure the
distance between the final layer embeddings of a neural
network between the generated and the training set. We
choose ProteinMPNN (Dauparas et al., 2022) as our model,
since it works directly on structures without sequence in-
formation, and we use the maximum mean discrepancy
(MMD) (Gretton et al., 2012) to get the distances between
distributions. The biased empirical estimate of MMD be-
tween two samples X = {x1, ..., xn} and Y = {y1, ..., ym}
can be computed as

MMD2
k(X ,Y) =

1

n2

n∑
i,j=1

k(xi, xj)+
1

m2

m∑
i,j=1

k(yi, yj)

− 2

nm

n∑
i=1

m∑
j=1

k(xi, yj) (1)

and depends on the choice of the kernel function k (O’Bray
et al., 2021). In our experiments, we use a Gaussian kernel
applied to the neural network embeddings ϕ(x) ∈ Rd.

Evaluation To assess whether our metric is expressive
enough to distinguish topologies and behaves well as two
distributions get topologically more equivalent. We mea-
sure the correlation between topological overlap and dif-
ferent measures including secondary structure counts, Cα



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Evaluation Metrics for Protein Structure Generation

Figure 1: Correlation between topological overlap and dif-
ferent measures on CATH dataset.

distances, protein length, ϕ, ψ dihedral angles and our pro-
posed measure using ProteinMPNN embeddings over 100
experiments. To define topological overlap, we randomly
select two sets of n = 100 proteins from a particular CATH
class of which a predefined fraction dtopo ∈ [0, 1] have the
same label on the CATH architecture level.

In Figure 1 we see that our measure is the most correlated
with topological overlap, whilst secondary structure also
performs well. This is not surprising given that a lot of the
architectures in CATH are defined through the presence of
certain secondary structures.

3.2. Novelty

Instead of assessing novelty in the context of a specific
training set, we propose using a standardised set based on
the CATH database for comparisons of generated structures.
This allows for easy comparison of models and ensures
that the standardised set covers the full topological space of
natural proteins.

Definition We first create a reference distribution of TM-
scores for artificial proteins with a novel topology. To this
end, we remove a single topology from the CATH dataset
and compute the maximum TM-score between any pro-
tein from our query set with this topology to all proteins
from other topology classes. We repeat this leave-one-out
procedure to create a reference distribution of maximum
TM-scores for novel topologies. In a similar vein, we cal-
culate maximum TM-scores for all query proteins to the
CATH set without leaving out a topology, thereby creating a
reference distribution for non-novel topologies. To evaluate
a set of generated proteins, we perform the same steps to ob-
tain a third distribution of maximum TM-scores which can
be compared to the reference distributions of novel and non-
novel proteins. Our topological novelty metric is defined

Figure 2: Distributions of TMscores to CATH reference set
using protein structures generated from the Genesis model
when the generation is conditioned on a novel fold and when
the generation is conditioned on a known topology.

as

Novelty(X ) = 1− d(X ,Xnovel)

d(X ,Xnovel) + d(X ,Xnon-novel)
, (2)

with d being the KL-divergence. It will be high whenever
the distribution is close to the novel and far from the non-
novel reference distribution.

Evaluation To showcase our approach, we evaluate two
sets of proteins generated from the Genesis model described
in (Harteveld et al., 2022). The first set is sampled whilst
being conditioned on a native topology and the second set
is generated with a fold that is not observed in nature. From
2, we find that we get a high novelty for protein structures
with novel topologies (novelty score = 0.779) whilst being
lower for structures with known natural topologies that are
close to the training distribution (novelty score = 0.050).

3.3. Coverage

We propose a metric to measure the ability of the model to
sample the full topological space of proteins. Unlike pre-
vious approaches that focus on internal diversity measures,
here we explicitly measure the coverage of the generative
model.

Definition To gauge the coverage of the (known) struc-
tural space, we define a diversity metric based on the ‘spread’
of similarity values to all CATH topologies. We represent
each topology in CATH with a single protein and measure
the TMscore from the sampled proteins to each topology.
We can then represent the TMscores as anN×T matrix, M ,
where N is the number of generated samples and T = 1470
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Table 1: Coverage metric when sampling 50 proteins from
the CATH database with different strategies.

Sampling Coverage Metric

Topology 0.00088
Architecture 0.00095

Class 0.00231
Any 0.00276

is the number of CATH topologies. A high score at posi-
tion (i, j) in the matrix corresponds to a topology j which
protein i is close to. As we want sampled proteins to cover
topological space, we wish columns of the matrix to have
high variance - we want different proteins to be close to dif-
ferent CATH topologies. We can thus define our coverage
measure as

Coverage(X ) =
1

T

T∑
j=1

Var(m1,j , ...,mN,j), (3)

Additionally, we can use similar principles to create an
internal diversity measure. Here, instead of calculating
TMscores to CATH, we can calculate pairwise TMscores of
the generated proteins.

Evaluation In order to validate the approach, we first
sample N proteins with a given topology, then N proteins
with a given architecture, then N proteins in a certain class
and finally N proteins in the full CATH database to see that
our metric is increasing as the size of the CATH space that
we are covering increases. We set N = 50 and see that
Table 1 is in line with our expectations of the measure.

3.4. Designability

We want a metric that will be able to approximate the des-
ignability of a given structure. Additionally, we would like
to not use structure prediction models such as Omegafold
(Wu et al., 2022b) or AlphaFold (Jumper et al., 2021) given
that these require a sequence which another model is re-
quired to generate.

Definition The total number of amino acid sequences that
can fold into a target protein structure is known as des-
ignability. We focus on the diversity of protein sequences,
where a large diversity means that dissimilar sequences and
a large coverage of the sequence space can fold into a given
structure. To measure this we use the ProteinMPNN model
(Dauparas et al., 2022) which predicts sequences that fold
into a target structure. We generate n sequences and calcu-
late the mean edit distance of the generated proteins. This
gives us an approximation for the diversity of sequences

Figure 3: Mean edit distance of sequences generated from
CATH protein structures using ProteinMPNN vs the mean
edit distance of the CATH sequences in the protein topology
which the protein belongs to.

that can fold into the structure and thus the protein’s des-
ignability.

Evaluation It is difficult to have a ground truth designabil-
ity score for a single protein. However, we propose to
approximate the designability of a protein with the des-
ignability of its topology. This allows us to utilize datasets
in which many sequences map to the same topology. Using
the CATH database, we score the designability of a topology
using the mean edit distance of sequences in that topology.
A high mean edit distance implies that there are a lot of
dissimilar sequences that fold into a similar structure. We
want a metric, which given a single protein structure, can es-
timate the designability of the topology in which it is in. We
generate 10 sequences using ProteinMPNN and calculate
the mean edit distance of the generated proteins. From Fig-
ure 3, we see that this metric is well correlated (correlation
= 0.895) with the mean edit distance of CATH sequences
with that topology and thus can be used to approximate to
the designability of the protein topology.

4. Conclusion
We have described metrics for evaluating protein generation
in terms of the novelty, designability and coverage of the
sampled structures. Additionally, we have outlined a distri-
butional metric for evaluating the differences between two
distributions of protein structures which, unlike previous ap-
proaches, is sensitive to topological differences. We believe
these metrics are important for the community in multiple
ways, from benchmarking current and new approaches to
speeding up drug discovery by aligning the evaluation with
important metrics in the discovery pipeline.
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