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Abstract

Many biological applications require joint opti-
mization of multiple, potentially competing ob-
jectives. Multi-objective Bayesian optimization
(MOBO) is a sample-efficient framework for iden-
tifying Pareto-optimal solutions. At the heart
of MOBO is the acquisition function, which de-
termines the next candidate to evaluate by nav-
igating the best compromises among the objec-
tives. We propose the CDF INDICATOR, a Pareto-
compliant metric for evaluating the quality of ap-
proximate Pareto sets. and an acquisition func-
tion, called BOTIED, based on the CDF indi-
cator. BOTIED can be implemented efficiently
with copulas, a statistical tool for modeling com-
plex, high-dimensional distributions. We bench-
mark BOTIED against common acquisition func-
tions, including EHVI and random scalarization
(ParEGO), in a series of synthetic and real-data
experiments. BOTIED performs on par with the
baselines across datasets and metrics while being
computationally efficient!

1. Introduction

Bayesian optimization (BO) has demonstrated promise in
a variety of scientific and industrial domains where the
goal is to optimize an expensive black-box function using
a limited number of potentially noisy function evaluations
[1;2; 3; 4; 5] . In BO, we fit a probabilistic surrogate model
on the available observations so far. Based on the model, the
acquisition function determines the next candidate to eval-
uate by balancing exploration (evaluating highly uncertain
candidates) with exploitation (evaluating designs believed
to maximize the objective). Often, applications call for joint
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optimization of multiple, potentially competing objectives.
Unlike in single-objective settings, a single optimal solution
may not exist and we must identify a set of solutions that
represents the best compromises among the multiple objec-
tives. The acquisition function in multi-objective Bayesian
optimization (MOBO) navigates these trade-offs as it guides
the optimization toward regions of interest.

Many MO acquisition functions without scalarization, such
as expected hypervolume improvement [EHVI; 6; 7; 8; 9] or
entropy search, involve high-dimensional integrals and scale
poorly with increasing numbers of objectives. EHVI and ran-
dom scalarization [10; 11] are sensitive to non-informative
transformations of the objectives, such as rescaling of one
objective relative to another or monotonic transformations
of individual objectives. To address these challenges, we
propose BOTIED?, a novel acquisition function based on
multivariate ranks. We show that BOTIED has the desirable
property of being invariant to relative rescaling or mono-
tonic transformations of the objectives. While it maintains
the multivariate structure of the objective space, its imple-
mentation has highly favorable time complexity and we
report wall-clock time competitive with scalarization.

In Fig. 1(a), we present the intuition behind multivariate
ranks. Consider a maximization setup over two objectives
where we seek to identify solutions on the true Pareto fron-
tier (red curves), hypothetical and inaccessible to us. Sup-
pose we have many candidates, represented as circular pos-
terior blobs in the objective space, where the posteriors have
been inferred from our probabilistic surrogate model. For
simplicity, assume the posterior widths (uncertainties) are
comparable among the candidates. Let us consider the in-
dividual candidates. How do we estimate each candidate’s
proximity to the true Pareto frontier? Our surrogate predicts
the candidate shaded in blue to have high values in both
objectives and, unbeknownst to us, it happens to lie on the
true Pareto front. On the other hand, the green candidate is
predicted to be strictly dominated by the blue counterpart.
The areas of regions bounded from above by the candidates
corroborate this ordering, as shown in the leftmost panel;
the hypervolume (HV) dominated by the blue candidate (see

>The name choice stems from non-dominated candidates con-
sidered as "tied".
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Figure 1: (a) Conceptual summary of BOTIED: Here, the blue candidate is predicted to dominate green with respect to both
objectives. The HV indicator is consistent with this ordering; the area of the box bounded by the blue candidate is bigger
than that bounded by the green. Multivariate ranks and CDF scores, used in BOTIED, are also more favorable for the blue

candidate. (b) The CDF scores closely trace HV.

Eq. 2.1) is bigger than that of the green. Alternatively, we
can compute multivariate ranks of the candidates (middle
panel). Consistent with the HV ordering, the blue candi-
date is ranked higher, at 1, than the green candidate, at 3.
Note that, due to orthogonality, there may be fies among
the candidates. Ranking in high dimensions is not a trivial
task, as there is no natural ordering in Euclidean spaces
when M > 2. To compute multivariate ranks, we propose
to use the (joint) cumulative distribution function (CDF)
defined as the probability of a sample having greater func-
tion value than other candidates, Fy (y) = P(f(X) < y),
where y = f(x). In Fig. 1(b and c) the gray dashed lines in-
dicate the level lines of the CDF. The level line at F'(-) = 1
is the Pareto frontier estimated by our CDF. As Fig. 1(b)
shows, the CDF scores themselves closely trace HV as well.

Motivated by the natural interpretation of multivariate ranks
as a multi-objective indicator, we make the following contri-
butions: (i) a new Pareto-compliant performance criterion,
the CDF indicator, and (ii) a scalable and robust acquisition
function based on multirank, BOTIED.

2. MOBO with tied multivariate ranks

When there are multiple objectives of interest, a single best
design may not exist. Suppose there are M objectives,
f: X — RM_ The goal of multi-objective BO is to identify
the set of Pareto-optimal solutions such that improving one
objective within the set leads to worsening another. We say
that © dominates &', or f(x) > f(a'), if fo.(z) > fin(2)
forallm € {1,..., M} and f,,(x) > fi(2') for some m.
The set of non-dominated solutions 2 * is defined in terms
of the Pareto frontier (PF) P*,
2= {x: flx) e 7Y,
where P* = {f(x) : x € X, Pz’ € Xs.t. f(2') = f(x)}.

MOBO algorithms typically aim to identify a finite subset
of Z™*, which may be infinite, within a reasonable number
of iterations. One way to measure the quality of an approxi-
mate PF P is to compute the hypervolume (HV) HV (P|r.qf)
of the polytope bounded from above by P and from below
by 71ef, Where 7o € RMisa user-specified reference point.
More specifically, the HV indicator for a set A is

IHV(A) = /M ]I[rref 2y = A]dy 2.1
R
We obtain the EHVI acquisition function if we take
upnvi(x, f, D) = HVI(P', P|r.es) = (2.2)

[Ty (P 7eet) — Ty (Plrees) ]+,
where P’ = P U {f(x)} [6: 7].

In MOBO, it is common to evaluate the quality of an approx-
imate Pareto set X by computing its distance from the opti-
mal Pareto set X* in the objective space, or d(f(X), f(X*)).
The distance metric d : 2¢ x 29 — R quantifies the differ-
ence between the sets of objectives, where 27 is the power
set of the objective space Y. Existing work in MOBO mainly
focuses on the difference in HV, or HVI.

In the following, the (weak) Pareto-dominance relation is
used as a preference relation = on the search space X in-
dicating that a solution z is at least as good as a solution
y(x =y)ifand only if V1 < i < M : f;(z) > fi(y). This
relation can be canonically extended to sets of solutions
where aset A C X weakly dominates aset B C X (A = B)
iff Vvy € Bdr € A : x = y [12]. For MOBO, we need
quality indicators that assign each approximation set a real
number, i.e., a (unary) indicator [ is a function I : Y — R
[12]. One important feature such indicator should have is
Pareto compliance [13], i.e., it must not contradict the order
induced by the Pareto dominance relation, i.e. it should be
Pareto-compliant. In particular, this means that A > B.
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2.1. CDF Indicator

Here we propose the CDF indicator for measuring the qual-
ity of Pareto approximations.

Definition 1. (Cumulative Distribution Function): The
cdf of a real-valued random variable Y is the function given
by:
Yy

py (t)dt.

i.e. it represents the probability that the rv. Y takes on a
value less than or equal to y.

Fy(y)=P(Y <y)= / 2.3)

— 00

For more then two variables, the joint CDF is given by:

(Y15--,9m)
FY1,~~,YM = / pY(t)dt
(

—00,...,—00)

2.4)

Definition 2. (CDF Indicator). The CDF indicator I is

defined as the maximum multivariate rank
Iy (A) == maxyeaFy (y)

where A is an approximation set in Y.

(2.5)

Next we show that this indicator is compliant with the con-
cept of Pareto dominance.

Theorem 1. For any arbitrary approximation sets A € Y
and B €Y, it holds

A=BABY# A= Ip(A) > Ip(B).  (2.6)

The proof can be found in Appendix A. We illustrate the
robust properties of the CDF indicator in Fig. 2.

Estimation of the CDF indicator Estimating the multi-
variate joint distribution Fy is a challenging task. A naive
approach would involve estimating the multivariate density
function and then computing the integral, which is com-
putationally intensive. We thus turn to copulas [14; 15],
statistical tool for flexible density estimation in higher di-
mensions.

Theorem 2 (Sklar’s theorem [16]). The continuous ran-
dom vector Y = (Y1,...,Yn) has joint a distribution F
and marginal distributions Y1, . . ., Fr if and only if there
exist a unique copula C, which is the joint distribution of
U= U,....,Uy)=F(Y1),...,Fa(Ynm).

From Sklars’ theorem, we note that a copula is a multivariate
distribution function C' : [0,1]™ — [0, 1] that joins (i.e.
couples) uniform marginal distributions:
F(yl,...,yM):C(Fl(yl),...,Fd(y]w)). (27)
By computing the copula function, we also obtain access to
the multivariate CDF, and by construction to the multivariate
ranking. The benefits of using copulas as estimators for the
CDF indicator are three fold: (i) Scalability and flexible
estimation in higher dimensional objective spaces, (ii) Scale
invariance wrt different objectives (Fig. 2), (iii) Invariance
Under Monotonic Transformations of the objectives.

Vine copulas for high-dimensional CDFs A copula can
be modeled following a parametric family depending on
the shape of the dependence structure, such as the Clayton
copula with lower tail dependence. For additional flexibility
as well as scalability, [17] has proposed vine copulas, a
pair-copula construction that allows the factorization of any
joint distribution into bivariate copulas. Thus, the copula
estimation problem partitions into first determining a graphi-
cal model, structure called vine consisting of M (M —1)/2
trees. Each edge in a tree represents a bivariate copula for
which we can choose a parametric or nonparametric estima-
tor. [18] propose efficient algorithms to organize the pair
constructions. See Appendix E for an example decomposi-
tion using domain knowledge.

2.2. CDF-based acquisition function: BOtied

Suppose we fit a CDF on y"), y@) ... y(N*) the N, mea-
surements acquired so far. Denote the resulting CDF as
F(-;D;), where we have made explicit the dependence on
the dataset up to time ¢. The BOTIED utility function is as

follows:

w(x, f,Dy) = F(f(x); Dy) (2.8)

3. Empirical results

Metrics We use the HV indicator, a standard evaluation
metric for MOBO, as well as our CDF indicator. We rely on
efficient algorithms for HV computation based on hyper-cell
decomposition [19; 20], implemented in BoTorch [21].

Baselines We assume noisy function evaluations, so im-
plement noisy versions of all the acquisition functions as
baselines. The baseline acquisitions include NEHVI (noisy
EHVI) [8] NParEGO (noisy ParEGO) [10] which uses ran-
dom augmented Chebyshev scalarization and noisy expected
improvement; and random. For BOTIED we have imple-
mentations vl and v2, with the only difference being the
way of incorporating the variance from the Monte Carlo
(MC) predictive posterior samples, either fitting the copula
on all of them (v1) or on the means (v2). See Appendix B
for algorithms of both versions.

Datasets A toy Penicillin test function [22] (d =7, M = 3)
simulates the penicillin yield, time to production, and unde-
sired byproduct for various parameters of the production pro-
cess. This task allows for direct evaluation of f. To emulate
a real-world drug design setup, we modify the permeability
dataset Caco-2 [23] from the Therapeutics Data Commons
database [24; 25]. Permeability is a key property in the ab-
sorption, distribution, metabolism, and excretion (ADME)
profile of drugs. The Caco-2 dataset consists of 906 drug
molecules annotated with experimentally measured rates of
passing through a human colon epithelial cancer cell line.
We represent each molecule as a concatenation of fingerprint
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Figure 2: Impact of transforming of one of the objectives, yo, as arctan(ys). The color gradient corresponds to value of the
indicator for each data point. Gray circles are overlaid on the five points with the top indicator scores, where the selection is
done in a greedy sequential manner. The CDF indicator (a) is robust to arbitrary monotonic transformations of the objectives,
whereas the HV indicator (b) is very sensitive to choice of scale and results in dramatically different rankings.

and fragment feature vectors, known as fragprints [26]. The
dataset is augmented with five additional properties using
RDKit [27], including the drug-likeness score QED [28; 29]
and topological polar surface area (TPSA) and refer to the
resulting M = 6 dataset as Caco-2+. In many cases, subsets
of these properties (e.g., permeability and TPSA) will be in-
versely correlated and thus compete with one another during
optimization. In late-state drug optimization, the trade-offs
become more dramatic and as more properties are added
[30]. Demonstrating effective sampling of Pareto-optimal
solutions in this setting is thus of great value.

Results and discussion Although there is no single best
method across all the datasets, the best numbers are consis-
tently achieved by either BOtied v1 or v2 with NParEGO be-
ing a close competitor. In addition to being on par with com-
monly used acquisition functions, BOTIED is significantly
faster than NEHVI as we show in Fig. C. There are two
main benefits to using the CDF metric rather than HV for
evaluation. First, the CDF is bounded between 0 and 1, with
scores close to 1 corresponding to the discovered solutions
closest to our approximate Pareto front.> Unlike with HV,
for which the scales do not carry information about internal
ordering, the CDF values have an interpretable scale. Sec-
ond, applying the CDF metric for different tasks (datasets),
we can easily assess how the acquisition performance varies
with the specifics of the data. More results on the robust-
ness of the CDF metric and customized small-molecule vine
copula estimation can be found in Appendix E.

4. Conclusion

We introduce a new perspective on MOBO by leveraging
multivariate ranks computed with CDF scores. We propose
a new Pareto-compliant CDF indicator with an efficient
implementation using copulas as well as a CDF-based ac-
quisition function. In real and simulated chemical datasets,

3[31] shows that the zero level lines F'(-) = 0 correspond to
the estimated Pareto front in a minimization setting, equivalent to
the one level lines F'(-) = 1 in the maximization setting.

Table 1: Mean and st dev deviation for HV, computed in the
original units, and CDF indicators across synthetic datasets.
Higher is better and best per column is bolded.

Caco2+ (M=3) Penicillin (M=3)

CDF HV CDF HV
BOTIED vl 0.58 (0.06) 11645.63 (629.0) 0.48 (0.02) 319688.6 (17906.2)
BOTIED v2  0.60 (0.06) 11208.57(882.21) 0.49 (0.02) 318687.7 (17906.2)
NParEGO  0.56 (0.05) 12716.2 (670.12)  0.28 (0.09) 332203.6 (15701.5)
NEHVI 0.54 (0.06)  13224.7 (274.6)  0.24 (0.05) 318748.9 (2868.64)
Random 0.57 (0.07) 11425.6 (882.4)  0.32(0.02)  327327.9 (17036)
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Figure 3: HV/CDF over simulated BO iterations for Branin
Currin (d = 2, M = 2) [8] and DTLZ (d = 9, M = 6) [32]
we have demonstrated our CDF-based estimation of the
non-dominated regions allows for greater flexibility, robust-
ness, and scalability compared to existing acquisition func-
tions. This method is general and lends itself to a number
of immediate extensions. First, we can encode dependen-
cies between objectives, estimated from domain knowledge,
into the graphical vine model. Second, we can accommo-
date discrete-valued objectives. Finally, whereas we have
focused on selecting candidates from a fixed library, the
computation of our acquisition function is differentiable and
admits gradient-based sampling from the input space.
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A. CDF indicator

Proof: If we have A = B A B % A then the following two conditions hold: Vy € B 3z € A: x > y and Ix €
A st. fy € B:y = x. Remember that the weak Pareto dominance x = y implies that V1 < i < K : fi(x) > f;(y).
Every point in the objective space, that is weakly dominated by some element in B, is also weakly dominated by some
element in A. From the definition and fundamental property of the CDF, being a monotonic non-decreasing function, it
follows that if V1 < ¢ < k : fi(x) > fi(y) = Fy(z) > Fy(y). It is easy to see that by choosing the datapoint with
maximum CDF score per set, the set contains the non-dominated solution, will have higher value for the indicator. Since set
A contains the non-dominated solution, I'r, (A) = {amaz|Fy (@maz) > Fy(a;),Vi,0 < i < |A|} cannot be worse than
the indicator value of I, (B) = {bmaz|FyY (bmaz) > Fy(;),Vj,0 < j < |B|} and therefore I, is Pareto compliant.

In the low-data regime, empirical Pareto frontiers tend to be noisy. When we have access to domain knowledge about
the objectives, we can use it to construct a model-based Pareto frontier using vine copulas. This section describes how to
incorporate (1) the known correlations among the objectives to specify the tree structure (vine) and (2) the pairwise joint
distributions (including the tail behavior), approximately estimated from domain knowledge, to specify the copula models.
The advantages of integrating copula-based estimators for our metric and acquisition function are three fold: (i) scalability —
from the convenient pair copula construction of vines, (ii) robustness wrt marginal scales and transformations —, and (iii)
domain-aware copula structures — from the explicit encoding of dependencies in the vine copula matrix, including choice
of dependence type, e.g., low, high tail dependence.

B. Algorithm: Multi-objective BO with BOtied

Algorithm 1 MOBO with BOTIED: a CDF-based acquisition function

1: Input: Probabilistic surrogate £, initial data Dy = {(2,,, y,)}Y°,, X c R%,Y ¢ RM
2: Output: Optimal selected subset Drp.

3: Fit the initial surrogate model f(a:z) on Dy.

4: for {t=1,...,T} do

5 Sample the candidate pool 1, - ,xny € X
6: for{i=1,...,N}do
7 Evaluate f on the candidate pool to obtain the posterior p(f(x;)|Dy—1)
8: Draw L predictive samples fi(j) ~ p(f(x;)|De—q), for j € [L]
9:  end for
10:  Obtain uniform marginals {uEJ ) }ien),jeqr) from the pooled samples { fi(j )}ie[ N].jelL]
11:  Version 1: Fit a vine copula C' on the uniform marginals on the sample level, {ugj ) YielN],jelL)-

Version 2: Fit a vine copula C' on the mean-aggregated uniform marginals, {+ Zle uz(.j ) Yielny-
12: for{i=1,...,N}do

13: Version 1: Compute the expected CDF score 8(z;) = + Zle C (ugj ))
Version 2: Compute the CDF score of the mean ranks S(x;) = C (% Zle ugj )>
14:  end for

15: " < argmax;e(y) (i)
16: Dt <_Dt—1 U{(mz*ayz*)}
17: end for

18: return Dp

C. MOBO toy experiments

As a numerical testbed, we begin with toy test functions commonly used as BO benchmarks: Branin-Currin [33] (d = 2,
M = 2)and DTLZ [32] (d = 9, M € {4,6,8}).

D. Benefits of using CDF indicator and Vine copulas for estimation



BOtied: Multi-objective Bayesian optimization with tied multivariate ranks

It is important to note that, to be able to estimate a copula,

we need to transform the variables of interest to uniform g .
. [ w 10 Acquisition
marginals. We do so, by the so-called probability integral Py Em EOtied vi
transform (PIT) of the marginals. E EEE BOtied v2
X
Definition 3. Probability Integral Transform (PIT) of 810 == ;aEr:SIO
(8]
a random variable Y with distribution Fy is the random = ,
variable U = Fy (y), which is uniformly distributed U ~ = BC (M=2) DTLZ (M=6) DTLZ (M=8)
U[O, 1]. Dataset
The benefit of using copulas as estimators for the CDF Figure 4: Wall clock time per single call of acquisition func-

indicator are three fold: (i) Scalability and flexible esti- tion.

mation in higher dimensional objective spaces, (ii) Scale

invariance wrt different objectives, (iii) Invariance Under Monotonic Transformations of the objectives. These three
properties suggest that our indicator is more robust than the widely used Hypervolume indicator, as we will empirically
show in the following section. Sklar’s theorem, namely the requirement of uniform marginals, immediately implies the
following corollary which characterizes the invariance of the CDF indicator to different scales.

Corollary 1. (Scale Invariance) A copula based estimator for the CDF indicator is scale invariant.

Corollary 2. (Invariance Under Monotonic Transformations) Let Y1,Ys be continuous random variables with copula
Cvi v, If o, B : R — R are strictly increasing functions, then:

Com),80v2) = O va (D.1)
where Co, (v, 5(v,) 18 the copula function corresponding to variables oY1) and B(Y3).

Corollary 1 follows from the PIT transformation required for copula estimation. The proof for invariance under monotonic
transformations based on [34] can be found in Appendix A and without loss of generality can be extended to more than two
dimensions. We empirically validate the robustness properties of the copula-based estimator in Fig. 2.

E. Vine Copulas encoding domain knowledge in small molecule BO

Fig. 5 illustrates the use of copulas in the context of optimizing multiple objectives in drug discovery, where data tends to be
sparse. In panel (a) we see that, thanks to the separate estimation of marginals and dependence structure, different marginal
distributions have the same Pareto front in the PIT space, in which we evaluate our CDF scores. Hence, with copula based
estimators, we can guarantee robustness without any overhead for scalarization or standardization of the data as required by
counterparts. In panel (b) we show how we can encode domain knowledge of the interplay between different molecular
properties in the Caco2+ dataset. Namely, permeability is often highly correlated with ClogP and TPSA, with positive and
negative correlation, respectively, which is even more notable at the tails of the data (see panel (a)). Such dependence can be
encoded in the vine copula structure and in the choice of copula family for each pair. For example, a rotated Clayton copula
was imposed so that the tail dependence between TPSA and Permeability is preserved.
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Figure 5: (a). Regardless of the distributions of the marginals, the CDF score from a copula is the same. (b) An example
of explicitly encoding domain knowledge in a BO procedure by imposing the in blue tree structure (specifying the matrix
representation of the vine) and selection of pairwise dependencies (choice of parametric/nonparametric family).



