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Abstract
The advances in high-throughput sequencing tech-
nology have led to significant progress in mea-
suring gene expressions at the single-cell level.
The amount of publicly available single-cell RNA-
seq (scRNA-seq) data is already surpassing 50M
records for human with each record measuring
20,000 genes. This highlights the need for un-
supervised representation learning to fully in-
gest these data, yet classical transformer archi-
tectures are prohibitive to train on such data in
terms of both computation and memory. To ad-
dress this challenge, we propose a novel asym-
metric encoder-decoder transformer for scRNA-
seq data, called xTrimoGene, which leverages
the sparse characteristic of the data to scale up
the pre-training. This scalable design of xTrimo-
Gene reduces FLOPs by one to two orders of mag-
nitude compared to classical transformers while
maintaining high accuracy, enabling us to train
the largest transformer models over the largest
scRNA-seq dataset today. Our experiments also
show that the performance of xTrimoGene im-
proves as we increase the model sizes, and it also
leads to SOTA performance over various down-
stream tasks, such as cell classification, perturb-
seq effect prediction, and drug combination pre-
diction.

1. Introduction
Single-cell RNA sequencing (scRNA-seq) technology has
transformed the field of cell biology and enabled us to un-
derstand cell-cell, cell-gene and gene-gene relations at the
cellular level (Jovic et al., 2022; Chen et al., 2019). This
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technique captures the expression levels of thousands of
genes in parallel, facilitating the study of cellular hetero-
geneity (Chen et al., 2022; Li et al., 2022). Integrating
and modeling such large-scale scRNA-seq data can reveal
rich cellular information and benefit various biological task
learning.

Representation learning from scRNA-seq data (Flores et al.,
2022) has been an active area of research in past decades.
The first published pre-trained model for single-cell data is
scBERT, which uses a low-rank transformer (Yang et al.,
2022) to analyze the scRNA data. It learns the cellular
representation by randomly masking a percent of non-zero
gene expression values and tries to recover them. scBERT
has achieved state-of-the-art results for cell-type annota-
tion tasks. The study shows the potential of a pre-training
strategy for single-cell biology research. However, scBERT
has certain limitations in fully utilizing scRNA-seq data
properties. These limitations include:

(1) Scalability. The large number of genes (almost 20,000)
and the sparsity of scRNA-seq data, with nearly 90% of val-
ues being zero, lead to many redundant computations (e.g.,
self-attentions between zero tokens). (2) Limited resolution
for expression values. scBERT rounds the gene expression
values into integer values, which limits the model’s abil-
ity to distinguish closeness and similarity between gene
expression values. The strategy leads to a loss of resolu-
tion and introduces bias during model training, resulting in
sub-optimal performance.

scRNA-seq data are characterized by high dimensional (ap-
proximately 20,000 genes), high sparsity (90% zero in a
typical dataset (Ruochen Jiang, 2022; Jiarui Ding, 2020))
and the gene expression values are continuous scalars. To ad-
dress the challenges associated with scRNA-seq data model-
ing and consider the unique nature of this data, we present a
novel and efficient framework, xTrimoGene, for pre-training
large-scale scRNA-seq data. Our framework makes the fol-
lowing key contributions:

(1) We design an asymmetrical encoder-decoder architecture
to guide the pre-training process, which enables us to learn
a high-capacity model for single-cell RNA-seq data. Our
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Figure 1. The xTrimoGene Framework: (1) Random positions (including both zero and non-zero values) are masked for prediction.
(2) Masked and zero-valued positions are filtered out. (3) Remaining unmasked positions are aligned with padding tokens (grey) to
ensure maximum length consistency within a batch. (4) Gene expression values and gene embeddings are separately projected into
embeddings. (5) These two embeddings are element-wise added. (6) The resulting input is fed into the encoder. (7) The intermediate
encoder embedding is combined with embeddings for masked positions and zero embeddings. (8) This combined representation is then
fed into the decoder. (9) Decoder embedding is projected to model output with a MLP layer. The MSE loss is calculated between the
model output and ground truth values for the masked positions. Detailed description can be referred to appendix A.1.

model achieves an improvement in the speed of pre-training
of over 3 times compared to previous encoder-only models.

(2) We illustrate that the efficiency and scalability of our
model allow us to train the largest single-cell pre-trained
model to date, with approximately 100 million parameters
for the xTrimoGene-100M model, using a curated scRNA-
seq dataset of approximately 50 billion effective gene to-
kens.

(3) The pre-trained model xTrimoGene achieved remark-
able results in multiple downstream tasks, including cell
type annotation, perturbation prediction and synergistic drug
combination prediction.

2. xTrimoGene Architecture
xTrimoGene is a highly efficient framework for pre-training
large-scale single-cell RNA-seq data (illustrated in Figure 1
and appendix A.1). The training process is based on a regres-
sion masked task, aimed at accurately recovering masked
values in the expression matrix (appendix A.2.1). The set-
ting is more fitted than previous classification task (appendix
Figure 3). We also ablated the masking strategy (appendix
Table 3) and observed both agreements and discrepancies
with NLP tasks (appendix Figure 4,5,6). Notably, a spe-
cific optimized asymmetrical encoder-decoder framework

is employed to accelerate the learning of sparse matrices.
This is achieved by feeding only the unmasked non-zero
positions (less than 10% of the full length) into the encoder,
while the largely masked and zero positions are input into
a lightweight decoder with a reduced number of layers and
attention heads. A similar rational design has been proven
powerful in masked autoencoders (MAE) (He et al., 2021),
which is tailored for CV data pre-training. In addition, a
novel auto-discretization strategy is introduced to project
continuous expression values into a latent embedding space.
Instead of rounding to the nearest integer, values are directly
mapped to the latent space allowing for the representation of
closely-related values. The strategy has been valid effective
(appendix Figure 7) and advantageous (appendix Figure 8)
over previous binning methods.

3. xTrimoGene achieves high computational
efficiency and scalability

We quantitatively compared the training cost of xTrimoGene
with other two encoder-only models, including full-length
attention Transformer and kernel-based approximation Per-
former (scBERT). We observed that total FLOPs for Per-
former decreased to 10% of native Transformer (see Table 1).
Notably, xTrimoGenes runs a 3-times faster than Performer.
The results validate the efficiency of xTrimoGene, which is
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readily adapted for large-scale data pre-training.

Table 1. Computational efficiency comparison between different
algorithms. The resource column is normalized by the Transformer
row.

Model name Parameter Total train Resource
(M) (FLOPs)

Transformer 11.3 2.46E+20 100%
Performer 8.9 2.65E+19 10.8%
xTrimoGene 9.8 8.38E+18 3.4%

The Deep Learning community has shown significant in-
terest in the scalability of proposed models (Kaplan et al.,
2020; Brown et al., 2020). To test the scale-up ability of
xTrimoGene, we pre-trained three models across multiple
compute regions and scales (e.g., from 3M to 100M param-
eters, appendix Table 4). The training curve clearly shows
all models are steadily down to a lower loss when train-
ing steps increase (appendix Figure 9). More importantly,
xTrimoGene-100M model obtains a significant improve-
ment over xTrimoGene-10M model, which is also superior
over xTrimoGene-3M model. The tendency is consistent
across different data size. The results suggest xTrimoGene
framework is robust to scale-up, making it possible and
convenient to pre-train larger models with more data.

4. xTrimoGene demonstrates superior
performance on both single cell and bulk
level downstream tasks

Currently, multiple tasks have been established to evalu-
ate different models, including cell type annotation and
recently developed perturbation response prediction tasks.
We first assessed the performance of xTrimoGene on these
single-cell tasks. Additionally, we explored the potential
application on bulk RNA-sequencing data, with a focus on
synergistic drug combination prediction.

4.0.1. CELL TYPE ANNOTATION

First, we evaluated xTrimoGene’s performance on cell type
annotation task with Zheng68K (Zheng et al., 2017) and
Segerstolpe (Segerstolpe et al., 2016) dataset, which has
been widely benchmarked. We compared the xTrimo-
Gene against other several methods, including scBERT
(Yang et al., 2022), ACTINN (Ma & Pellegrini, 2020),
Scanpy (Wolf et al., 2018), CellTypist (Domı́nguez Conde
et al., 2022), scVI (Lopez et al., 2018) and singleCellNet
(Yuqi Tan, 2019). For xTrimoGene model, we added a max-
pooling layer and a linear layer to predict cell type labels
with fine-tuning mode (appendix A.5.1). For other meth-
ods, we followed their instruction with the default parameter

setting. We observed that xTrimoGene achieves a high Preci-
sion and F1 score, surpassing all the other methods (Table 2).
The results indicated xTrimoGene learns a well-represented
cellular embedding by simply aggregating contextual gene
embedding.

4.0.2. PERTURBATION RESPONSE PREDICTION

The perturbation response prediction task evaluates what
is the expression value of genes after perturbation.
GEARS (Roohani et al., 2022) is a newly developed method
for this purpose. We compared the native GEARS (Roohani
et al., 2022) model with and without incorporating em-
beddings from xTrimoGene (appendix A.5.2). The eval-
uated dataset (Norman et al., 2019) contains both single
and double gene perturbation and we thus assess the per-
formance across different perturbation levels. As shown in
Figure 2A, GEARS with xTrimoGene embedding scores
a lower MSE (decreased 14.8%) for top20 differential ex-
pressed genes. Notably, the tendency is consistent across
different perturbation levels, regardless the perturbed target
is seen or not. The results demonstrated that the pre-training
strategy empowers xTrimoGene to capture constraints under
various circumstances, including post-perturbations. The
application further proved the efficacy and potential of xTri-
moGene to boost scRNA-seq based tasks.

4.0.3. SYNERGISTIC DRUG COMBINATIONS PREDICTION

The drug synergistic task evaluates how patients or cells
respond to a drug combination intervention (Mokhtari et al.,
2017). Since the generated wet-lab experimental data only
covers a tiny search space of possible drug combinations,
multiple models have been proposed to accelerate predicting
the synergistic landscape of drugs (Preuer et al., 2017; Wang
et al., 2022). Similar to the perturbation prediction test, we
adapted xTrimoGene to DeepDDS (Wang et al., 2022) with
the intermediate context embedding (appendix A.5.3). We
also included DeepSynergy and Random Forest for com-
parison. As illustrated in Figure 2B, utilizing embedding
from xTrimoGene model outperforms all the other models.
The result proved xTrimoGene can accurately capture cell
level representation, even for bulk sequencing data. This
also opens the avenue for xTrimoGene to be applied across
other biological modeling tasks, especially where bulk level
transcriptome data is available.

5. Explainable case study of biological
representation

The pre-training task endows the model to capture the re-
lationship between genes, which can be demonstrated by
a biologically meaningful binarized vector. Specifically,
we collected the cell type-specific marker genes of B cells
and Fibroblast from PanglaoDB (Franzén et al., 2019), and
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Table 2. The cell annotation performance on the Zheng68K and Segerstolpe dataset. xTrimoGene is evaluated with 10M parameter model.

Method Name Zheng68K Segerstolpe
Precision F1 score Precision F1 score

xTrimoGene 0.7335± 0.0226 0.7354 ± 0.0189 0.8112 ± 0.0009 0.8140 ± 0.0008
scBERT 0.7029± 0.0115 0.6695± 0.0077 0.6818± 0.0736 0.6703± 0.0653
ACTINN 0.6720± 0.0021 0.6486± 0.0041 0.7545± 0.0018 0.7219± 0.0073
Scanpy 0.6111± 0.0017 0.5474± 0.0085 0.6274± 0.0000 0.5398± 0.0000
CellTypist 0.7454 ± 0.0009 0.7151± 0.0038 0.7923± 0.0003 0.8117± 0.0001
scVI 0.4883± 0.0005 0.4843± 0.0008 0.5101± 0.0022 0.5208± 0.0016
singleCellNet 0.6452± 0.0013 0.5982± 0.0027 0.7551± 0.0096 0.8055± 0.0076
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Figure 2. Evaluation and explainable study of xTrimoGene. (A) The MSE of the top 20 deferentially expressed (DE) genes for different
models on perturbation response prediction. ”Total” denotes evaluating all test perturbation set. ”1-gene” denotes sub-test set on the
single gene perturbation, where the perturbed target is not seen in the training set. ”2-gene” represents the sub-test set for perturbing two
genes simultaneously. ”seen0”,”seen1” and ”seen2” denotes zero, one or two perturbed targets are not seen in the training set, respectively.
Black line denotes 95% confidence interval. (B) ROC curve of different models on drug combination synergy prediction task. (C)(D) Bar
plot of KEGG enrichment analysis of top expressed genes activated by particular marker genes, for B cell (C) and Fibroblast cell (D),
respectively.

selected the top 50 genes with high ubiquitousness index,
respectively. We set two zero vectors and made the cor-
responding positions of the 50 marker genes into 1, for
building the artificial binary vectors. Then we input these
two vectors into our model. We took out the name of the top
500 highly expressed genes in the model outputs and found
73 genes are specific to each cell type. Then KEGG path-
way enrichment analysis was performed on these 73 genes
via the enrichR online tools (Chen et al., 2013; Kuleshov
et al., 2016). As shown in Figure 2C, the highly expressed
genes for B cell are enriched in JAK-STAT, PD-1 and other
human immunity and cancer-related pathways, while for
Fibroblastthose are enriched in cardiac fibrosis, liver fibro-
sis and other fibrosis diseases related pathways (Figure 2D).
This illustrates the ability of our model to infer the hidden
relation between genes in different cell types from very little
gene expression information.

6. Conclusion
xTrimoGene is a new, efficient framework for learning
scRNA-seq data. The proposed asymmetric encoder-
decoder framework takes advantage of the sparse gene ex-
pression matrix, and establishes the projection strategy of
continuous values with a higher resolution. The results show
that xTrimoGene is scalable and performs well on tasks like
cell type annotation, perturbation response prediction, and
synergistic drug combination prediction. The experiments
demonstrate the efficacy of pre-training in single-cell biol-
ogy. xTrimoGene has been integrated into BioMap’s single-
cell analysis platform, functioning as a fundamental and
essential model (appendix Figure 10). The codebase, pre-
trained model, and accompanying training and evaluation
pipelines will be publicly available for access on GitHub
soon. In the future, with the increase of data, larger pre-
trained models are expected to drive more advancements in
various downstream task learning.
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A. Methods
A.1. xTrimoGene model framework

The xTrimoGene framework consists of the following com-
ponents:

Masking: A portion of the normalized gene expression
matrix V is masked for prediction, including both zero and
non-zero positions. c denotes cell sample size, and n denotes
gene number (19,264 in our setting, appendix A.3 for data
collection and processing).

Filtering: The masked and zero-valued embeddings are
filtered out, yielding a variable-length sequence of valuable
information that is prepared for encoding.

Padding: The remaining unmasked positions are aligned
with padding tokens, resulting in a much smaller unmasked-
only matrix Vunmasked. m denotes the maximum length of
the unmasked sample.

Embedding: Expression value and gene embeddings are
separately projected. d denotes the dimension of the em-
bedding. The expression embedding is calculated through
an auto-discretization mapping. The gene embedding is
retrieved from a randomly initialized lookup table.

Combining Expression and Gene Embeddings: The ex-
pression and gene embeddings (E and G) are element-wise
added to form the input embedding, which is then fed into
the encoder of the model.

Encoding: The sum of the embeddings is input into the
encoder, which implements self-attention mechanisms using
a Transformer-like architecture.

Extending masked and zero embeddings: The intermedi-
ate encoder embedding Iencoder is combined with embed-
dings for masked and zero-value positions.

Decoding: The combined embeddings are processed by the
decoder, utilizing self-attention mechanisms instead of the
typical casual attention used in NLP decoders.

Loss Computation: Decoder embedding is projected to
model output with a MLP layer. The mean squared error
(MSE) loss is computed between the predicted masked val-
ues from the model and their corresponding ground truth
values.

A.1.1. ENCODER

The scRNA-seq data is characterized by its high sparsity,
with cell information largely concentrated in the non-zero
expression values. Thus, the encoder is designed to fo-
cus only on the non-zero part of the unmasked matrix,
Vunmasked. The encoder is based on a traditional multi-
head attention transformer and takes the combination of
value embedding, E, and gene embedding, G, as its in-
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put, I ∈ Rc×m×d. The value and gene embeddings are
similar to the word and positional embeddings in natural
language modeling, respectively. The value embedding, E,
is generated using the auto-discretization strategy discussed
previously, while the gene embedding, G, is retrieved from
the embedded vocabulary.

E = Autobin(Vunmasked ⊙Mnonzero)

G = Lookup(genes)

I = E +G

(1)

Then the encoder processes the input embeddings I and
generates the high-level gene representations Iencoder ∈
Rb×m×d via the multi-head attention mechanism.

Iencoder = Trm(fQ(I), fK(I), fV (I)) (2)

where fQ, fK , fV are the project functions. Trm denotes
the Transformer block.

A.1.2. DECODER

Unlike the encoder which focuses on the main information
(non-zero expression values) in the cells, the decoder in
the system performs full-length feature abstraction and ex-
traction. The input to the decoder, Ifull, comprises three
token types: the output from the encoder, Iencoder, the genes
with zero expression embs Izero, and the mask token embs
Imasked.

Ifull = Wp(Iencoder ⊕ Izero ⊕ Imasked) + bp (3)

where ⊕ represents the concatenation operation, and Wp

and bp are learnable parameters that project the decoder’s
embedding size.

The decoder transforms the input Ifull into final gene-level
embeddings, Idecoder ∈ Rb×n×d, and predicts the masked
values through a shared linear layer, W ∈ Rd×1, applied
across all genes. The operations are expressed as follows:

Idecoder = Trm((fQ(Ifull), fK(Ifull), fV (Ifull))

Ṽ = Idecoder ·W
(4)

A.1.3. AUTO-DISCRETIZATION STRATEGY

The expression value (V ∈ Rc×n) is transformed into a
hidden embedding (E) for addtion with the gene embed-
ding (G) via an auto-discretization block. This block uses
a random look-up table (EXP lookup ∈ Rd×b), where
d is the embedding dimension and b is the number of to-
kens (default 100). The expression value is first trans-
formed with a linear layer (v1 = V · w1), where w1 is
the weight vector, then passed through a leaky ReLU ac-
tivation (v2 = leaky relu(v1)). A cross-layer projection

(v3 = w2 · v2 + α · v2), with weight vector w2 and scaling
mixture factor α, follows. The bin weights are normalized
using the Softmax function (v4 = softmax(v3)). The final
output is a weighted combination of individual embeddings
from the look-up table (output = EXP lookup·v4), where
the weights are learnable parameters.

To validate the effectiveness of the expression value projec-
tion, we conducted an analysis of viewing the weight dis-
tribution pattern for continuous values. Our results showed
that the normalized weight distribution of the close values
exhibited smooth transitions and that of the distant values
being clearly distinguishable (appendix Figure 7). This
supports the conclusion that the auto-discretization strategy
effectively represents continuous values with high resolution
while preserving relatively rich meaning.

We also compared the performance of the proposed auto-
discretization strategy with three other discretization meth-
ods: (1) Round bin with zero, in which values are rounded
to the nearest integer, and zeros are kept as it is, (2) Up
bin without zero. Values greater than zero are converted
to the nearest ceiling integer, while zero is represented as
individual 0. (3) Equal bin. All the values fall into a fixed
percentage interval, which is calculated by value distribu-
tion and frequency. We evaluated the different strategies
on a standard cell clustering task (appendix A.4) and found
that the proposed auto-discretization strategy outperformed
the others (as shown in appendix Figure 8), demonstrating
the importance of high-resolution projections in handling
expression values.

A.2. Training strategy

A.2.1. REGRESSION MASKED TASK

The traditional masked language task is a multi-class clas-
sification problem, where the predicting target is a single
token with limited, naturally distinct categories. In contrast,
the normalized gene expression value is a continuous scalar.
To fit the data property, we modify the pre-trained learn-
ing objective to a regression task, aimed at recovering the
absolute value of the masked positions. The loss function
employed is the Mean Square Error (MSE) between the
ground truth and the predicted values:

Loss =
1

(n−m) ∗ c
∑

(Vi,j − Ṽi,j)
2 (5)

where n represents the number of all genes, m represents
the maximum length of the unmasked positions in a sam-
ple, and c represents the number of cells. To evaluate the
efficacy of this modification, we compared the regression
setting with the classification setting on the cell cluster-
ing task. The results indicate that the regression model
outperforms the classification model (appendix Figure 3),
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providing evidence of the benefits of learning a more fitted
representation.

A.2.2. MASKING STRATEGY

We mask both non-zeros and zeros positions though the
scRNA-seq expression matrix is highly sparse (where zero
percentage is usually over 90%). As the zero positions per-
centage is much higher than non-zero positions, the masked
ratio can’t be the same for the two types. Otherwise, the
model tends to predict all zeros and still obtains a low er-
ror level. We propose to mask an almost equal number of
positions for zero and non-zeros positions (appendix Ta-
ble 3). The setting enforces the model to learn embeddings
for all values and not to be dominated by zero representa-
tion. We found zero values supervision is necessary to boost
the performance (appendix Figure 6), which demonstrates
that some zeros represent the true extremely low expression
level. This type of zeros is informative to illustrate how the
gene abundant behaves inside the cell.

The recovery of masked tokens in NLP is challenging due
to the fact that word comprehension relies heavily on long-
range interactions rather than local context. Accurate infer-
ence of the missing tokens can be achieved at low masking
ratios (15%) where the information in the entire sentence
is still relatively redundant and encoded by the unmasked
tokens. We investigated the density of information needed
for the scRNA-seq regression task by training models with
different masking ratios (for non-zero values, the ratio was
set 10 times higher than for zero values) ranging from 15%
to 90% with a 15% interval. The models were then eval-
uated on the cell clustering task, with the results showing
that performance improved first and then degraded as the
masking ratio increased. When the masking ratio was close
to 30%, the majority of metrics reached a peak (appendix
Figure 5). We also found percentage of [MASK] token
agrees well with NLP tasks (appendix Figure 4). These re-
sults suggest that the scRNA-seq expression vector contains
more redundant information than a sentence and highlight
the role of hidden regulations between genes in constraining
the inference of expression values.

A.2.3. ACCELERATION STRATEGY

The attention mechanism in masked language modeling is
computationally expensive for long sequences, as time and
space complexity grows quadratically along with sequence
length. Though multiple attention architectures have been
proposed to reduced the complexity to near linear, it’s still
slow to train large models with billions of data. We have
adopted multiple techniques to boost the training speed as
following.

Since FP16 or BFLOAT16 Tensor Core have twice the com-
putational throughput compared to TF32 on NVIDIA Am-

pere GPU, and, additionally, FP16 training also reduces
residual memory consumption, xTrimoGene was conducted
mainly with mixed-precision training strategy to optimize
computational efficiency.

Distributed Data Parallelism is another training strategy
used in our work, which handles large corpus on HPC clus-
ters. In our setting, one single Ampere GPU provides suffi-
cient amounts of memory for one model replica of billions
of parameters performing forward and backward passes, and
gradient accumulation is used to raise effective batch size to
enhance large model training.

To scale up the model size, ZeRO-DP stage two (Rajbhan-
dari et al., 2020) and checkpointing (Chen et al., 2016)
techniques are experimentally tested in our setting. The
results verified that both strategies reduce the model and
residual state memory without expanding training time too
much.

A.3. scRNA-seq data collection and processing

Recently, scRNA-seq data is rapidly accumulated and
mostly has been uploaded to Gene Expression Omnibus
(GEO) repository (https://www.ncbi.nlm.nih.gov/geo/). We
major collected data from GEO and processed data with a
unified pipeline.

Downloading data and preparing raw count matrix. We
first search scRNA-seq related data sets in GEO with mul-
tiple keywords, including ”scRNA-seq”, ”single cell RNA-
seq”, ”single cell RNA-seq sequencing”. The search pro-
cesses return a list of GSE ID from different studies. After
removing duplicated GSE ID, we downloaded the particular
expression or count matrix. Most of the samples provide a
raw count matrix. For samples with normalized expression
matrices, we converted the matrix back to a count matrix.
The conversion strategy is as follows: the minimal non-zero
value in the whole normalized matrix is thought to have
raw count 1, then all the other normalized values can be
converted by scaling to this minimum value.

Matrix mapping to the reference gene list. After
preparing all the count matrices, we mapped the ma-
trix to our reference gene list. We downloaded the
human protein-coding gene list (about 19,000) from
the HUGO Gene Nomenclature Committee (HGNC,
https://www.genenames.org/download/archive/), plus com-
mon mitochondrial genes, jointly constitute our full refer-
ence list (n = 19,264). For each count matrix, values of
those genes not mapped in the reference list are filled with
zero.

Quality control. To filter low-quality samples, we only
keep samples with over 200 genes expressed (i.e., expres-
sion vector with non-zero value count greater than 200) for
subsequent training and analysis.
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Normalization. We followed the stan-
dard process in Scanpy (https://scanpy-
tutorials.readthedocs.io/en/latest/pbmc3k.html) (Wolf
et al., 2018) to obtain the normalized expression value.
There are two steps: (1) for each sample normalize the
library size to 10,000. (2) scale the values into a log space.

In summary, all the scRNA-seq data are collected from
Gene Expression Omnibus (GEO) repository with a key-
word searching and data retrieval process. Then the down-
loaded count matrices are processed with a unified pipeline,
including reference gene list mapping, quality control and
normalization. In total, we curated about 5 million scRNA-
seq data for training. The full data set is randomly split into
train, validation and test sets with ratio of 96:2:2.

A.4. Clustering task evaluation and data sets

Cell clustering is an essential task for single-cell research,
reflecting the ability of cell embeddings to remove noise and
preserve biological signals. In the ablation experiments, we
benchmarked the models’ clustering performance on two
cell-type annotated datasets.

PBMC This dataset is processed by Scanpy python library
(Wolf et al., 2018) and contains 2,638 cells. The cell types
are annotated by the human with known markers and cover
the major immune cells including B cells, CD4 &CD8 T
cells, Monocytes, Dendritic cells, Megakaryocytes and NK
cells.

Experiments and Evaluation Metric. For every single cell,
the expression values are fed into the model and the max
pooling layer is applied across all genes’ output embedding
to get a cell embedding. We then perform the usual single-
cell clustering analysis step on these embeddings: 1) build
the neighboring graph based on these embeddings 2) use the
Leiden algorithm to cluster the cell into groups. Since the
Leiden algorithm requires resolution rather than the number
of clusters, we used a dichotomy method to find an optimal
resolution reaching the number of cell types given in the
dataset.

Several evaluation metrics are applied to access the per-
formance of the clustering results in different aspects, in-
cluding: Adjusted Rand index (ARI), Normalized Mutual
Information (NMI), Homogeneity(HOMO), Completeness
(CP) and Silhouette Coefficient (SIL). All these metrics are
the higher the better. ARI and NMI measures the similarity
of the clustering results from the statistics and information
entropy theory view, respectively. HOMO and CP are in-
tuitive metrics using conditional entropy analysis. HOMO
measures how much the sample in a cluster are similar, and
CP measures how much similar samples are put together.
SIL measures the similarity of the embeddings to its cluster
member compared to other clusters.

A.5. Evaluation on downstream tasks

A.5.1. CELL TYPE ANNOTATION TASK

We downloaded the Zheng68K expression matrix dataset
from (Zheng et al., 2017) and mapped the matrix to our
reference gene list. Then, the dataset is split into training,
validation and test sets with a ratio of 8:1:1. All the methods
are trained on the training set and the best model is selected
according to the performance on validation set. Evaluation
metrics (macro F1-score and marco precision) are calculated
for individual testing set.

In training process, the expression matrix is fed into the
encoder of the xTrimoGene model and the gene embedding
is obtained. Then we used a max-pooling layer to aggregate
all gene embeddings into one cell embedding, and use a
single linear layer to predict cell types from the embeddings.

A.5.2. PERTURBATION EFFECT PREDICTION

The Norman dataset is downloaded from a previous
study (Roohani et al., 2022). The expression matrix
data is mapped to our reference gene list. We repro-
duced results of GEARS with original codes and settings
(https://github.com/snap-stanford/GEARS). All the data pro-
cessing are the same as GEARS, including data split, pre-
post sample pairing strategy and evaluation metrics calcula-
tion.

While training GEARS with xTrimoGene, the expression
matrix is fed into xTrimoGene and intermediate context
embedding is obtained. The context embedding is then
input to the co-expression graph network branch, all the
other parts remain unchanged.

A.5.3. DRUG COMBINATION PREDICTION

To test how xTrimoGene adapted to DeepDDS (Wang
et al., 2022) for synergistic drug combination prediction,
we first reproduced DeepDDS algorithm. Both data and
original codes are downloaded from Github repository
(https://github.com/Sinwang404/DeepDDs/tree/master). We
use data in ”new labels 0.csv” file for training and ”inde-
pendent set” for testing. The genomic expression data are
all mapped to our reference gene list. Models are trained
5 times and evaluated on the testing set. For all metrics,
the averaged value and the standard deviation are reported.
We keep the overall framework of DeepDDS while test-
ing xTrimoGene. The genomic expression matrix is fed
to xTrimoGene and the intermediate context embedding is
obtained. The embedding replaces raw expression profile
for MLP branch input.
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A.6. Website deployment of xTrimoGene model

xTrimoGene has been proven advantageous in gene repre-
sentation and cell context embedding extraction. To facili-
tate its wide application for single-cell RNA-seq data anal-
ysis, we deployed the xTrimoGene model within Biomap
corporation. On the website, the xTrimoGene is imple-
mented as a standard operator and serves multiple down-
stream tasks, including cell clustering, dimension reduction
and batch removal appendix (Figure 10). The interactive
page is user-friendly and feasible to evaluate performance
with rich visualizations.

B. Appendix tables

Table 3. Masking strategy for gene expression matrix. The gene
expression matrix is masked by selecting a predetermined number
of positions for prediction. ∼ 1,100 positions, including ∼600
non-zero and ∼540 zero expressions, are masked in a matrix with
∼20,000 genes. The performance of the model is evaluated using
Mean Squared Error (MSE) loss on these masked positions.

Value Masked Unmasked Total

̸= 0 600 1,400 2,000
= 0 540 17,460 18,000

sum 1,140 18,860 20,000
(5.7%) (94.3%) (100%)

C. Appendix figures

Figure 3. Performance of pre-trained models with different task
mode, including regression and classification setting. The cell clus-
tering task is evaluated. Detailed descriptions can be referred to the
main text. ARI for Adjusted Rand index, NMI for Normalized Mu-
tual Information, HOMO for Homogeneity, CP for Completeness
and SIL for Silhouette Coefficient. The details of the definition
and calculation for all metrics are referred to in appendix A.4.
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Figure 4. Comparison of performance for xTrimoGene model
trained with different masking strategy. percentage1, percentage2,
percentage3 denote corresponding replacing probability for three
types of tokens: percentage1 for [MASK] token, percentage2 for
random expression token and percentage for original token.
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Table 4. Size and hyper-parameters of the pre-trained models. All models are set to train on a 5 million datasets and for 5 epochs.

Model name Parameter Encoder Decoder
(M) depth heads dim depth heads dim

xTrimoGene-3M 3 4 2 128 2 2 128
xTrimoGene-10M 10 4 8 256 2 4 256
xTrimoGene-100M 100 12 12 768 6 8 512

10% 20% 30% 40% 50% 60% 70% 80% 90%
Non-zero value masking ratio
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Figure 5. Model performance under different mask ratios of non-zero values. The cell clustering task is evaluated.

ARI NMI HOMO CP SIL
Metric

0.0

0.2

0.4

0.6

0.8

Va
lu

e

With 0 Without 0

Figure 6. Cell clustering performance for xTrimoGene model considering masking zero (With 0) values or not (Without 0).
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Figure 7. Weight distribution across bins for various expression values. The auto-discretization strategy was applied to each expression
value in the range from 0 to 10, producing a corresponding weight vector with a length equal to the number of bins (100 in this case). The
weight vectors were normalized to sum to 1 and visualized as stacked plots.

Figure 8. Perofrmance comparison between auto discretization strategy and other binning methods for expression value projection. The
cell clustering task is evaluated and five metrics are displayed.

datasize: 5 million datasize: 0.5 million datasize: 1 million

Figure 9. The learning curve of pre-trained xTrimoGene models with different parameter scale. The loss curve measures MSE for masked
positions during the pre-training stage, and only the validation set is displayed.
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Figure 10. The deployment of xTrimoGene model on a website is depicted in this figure. Figure A shows the overall pipeline, which
includes the following steps: (1) User-uploaded raw input undergoes preprocessing and filtration through (2) quality control, (3) feeding
the processed data into xTrimoGene for (4) context embedding extraction. The model supports multiple downstream applications such
as (5) cell clustering, dimension reduction, and batch removal. The extracted expression profile can also be directly utilized by other
algorithms. Figure B provides a snapshot of a clustering task in action using xTrimoGene’s context embeddings.


