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Abstract
T cells are adaptive immune system cells that
develop in mammalian organisms and protect
against foreign pathogens. Through their receptor
proteins, T cells bind to infected cells and neu-
tralize or kill them. Determining the specificity
of these receptors is of crucial medical and bio-
logical importance, as it can help reveal disease
pathogenesis and aid in early disease detection.
In this work, we present extensive analyses of the
structural information of T cell receptors (TCRs)
and show how it can be used to aid their epitope
specificity prediction. We determine the struc-
tures of TCRs using the state-of-the-art protein
structure prediction, AlphaFold 2 and highlight
the main challenges of this approach in the con-
text of TCRs.

1. Introduction
TCRs are protein complexes that form through the recom-
bination of the variable (V), diversity (D), and joining (J)
gene segments. Along with B cells, T cells form the adap-
tive immune system, and they identify cells infected by
foreign pathogens. In turn, infected cells will present anti-
gen fragments (epitopes) on their surface through the major
histocompatibility complex (MHC). T cells may then rec-
ognize that a cell has been infected through the interaction
between the TCR and the peptide-MHC (pMHC) complex
(Alberts et al., 2015). Subregions of the TCR proteins called
complementarity determining regions (CDR) determine the
binding affinity to certain pMHCs. CDR1 and CDR2 re-
gions generally bind the MHC protein, while the CDR3
interacts with the epitope (Krogsgaard & Davis, 2005).
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The total number of possible unique configurations of TCRs
in a single organism is very large, with αβT cells having
an estimated number of 1015 unique TCR sequences (Davis
& Bjorkman, 1988). Furthermore, the vast array of poten-
tial epitopes that need to be recognized by the adaptive
immune system cells incurs the necessity that TCRs are
cross-reactive, and a given pMHC complex may be bound
by multiple unique TCRs with various degrees of affinity
(Sewell, 2012). These facts motivated the development of
a plethora of machine learning methods, in the attempt to
solve the epitope specificity classification (into one or more
known epitopes) (Tong et al., 2020; Jokinen et al., 2021;
2022) and the more challenging task of directly predicting
the TCR-pMHC binding, for any given TCR and pMHC
complexes. (Springer et al., 2021; Bradley, 2023).

TCR and pMHC binding is determined not only by their
primary structure (amino acid composition) but also by the
specific position and orientation of each amino acid in the
two protein complexes (Rossjohn et al., 2015; Singh et al.,
2017). Motivated by this, research attempting to tune the
multimer version of AlphaFold 2 (Evans et al., 2022) for
TCR-pMHC geometric structure prediction has been done
with some degree of success (Bradley, 2023).

Using multiple sequence alignments (MSA) and structural
frameworks, AlphaFold 2 (Jumper et al., 2021) demon-
strated that deep learning methods can benefit from align-
ment methods to produce highly accurate protein structures.
We use this structural information, along with the sequence
information of TCRs, and analyze how much it can aid epi-
tope specificity classification. Using properties of TCRs
(which we describe in Section 2) we are able to efficiently
extract these structure predictions, without the need to com-
pute the MSAs for all of our queries, which is by far the
most time-consuming step. We analyze the degree to which
structures computed using AlphaFold 2 improve the epitope
specificity prediction in the context of deep, contextual pro-
tein embeddings (Elnaggar et al., 2022), and highlight the
main challenges of using this type of structure prediction
tool in the context of TCRs.

2. Data
We use three data sets created by Jokinen et al. (2022) which
contain annotated TCR sequences that interact with specific
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pMHCs collected from VDJdb (Bagaev et al., 2019). The
first dataset contains 1977 unique TCR sequences for 21
epitopes with confidence scores of at least 1 (we denote
this small dataset as Ds), the second contains 30503 unique
TCRs for 51 epitopes with all confidence scores (denoted
Dl), and the third dataset contains both α and β chain infor-
mation, resulting in 20200 sequences for 18 unique epitopes
(denoted Dαβ). Each TCR in the three datasets has one or
more assigned epitopes (known to bind), and we consider all
other epitopes negative (not binding) for that TCR. For all
sequences, we utilize either one-hot residue information or
residue representations extracted from ProtBERT (Elnaggar
et al., 2022), a language model (LM) trained on 216 million
protein sequences.

We extract structures for the Ds sequences using the full
databases employed by AlphaFold 2 during the MSA extrac-
tion process. For Dl and Dαβ sequences, we use the fact that
the amino acids outside the CDR3 regions are highly con-
served, whereas the CDR3 region can differ even between
TCRs encoded by identical gene segments. Therefore, we
extract two sets of TCRs that cover all unique V and J gene
pairs (covering most of the TCR diversity outside the CDR3
regions) found in Dl and Dαβ , which contain about 600 and
1800 β and α TCR sequences, respectively. For these two
TCR sets, we utilize AlphaFold 2 with the full MSA search
and create reduced databases of approximately 40 thousand
proteins, which we call DBβr and DBαr. Finally, we run
the MSA search for all the remaining TCR sequences (from
Dl and Dαβ) using only DBβr and DBαr. The MSA fea-
ture extraction step is now computed in seconds (compared
to minutes for the full databases), and the whole structure
prediction for one sequence was five to six times faster.

We conduct 10-fold cross-validation experiments on all three
datasets. During training, we leave out a validation subset
at random (from the nine remaining training subsets) and
perform early stopping based on the validation area under
the receiver operating characteristic curve (AuROC). The
test performance from all 10 folds is used to compare various
models with and without AlphaFold 2 computed structures.
We report the relative average precision (AP) improvements
(on all the test folds) resulted from structural information
features. The average AuROC and AP scores for all our
experiments can be found in Appendix B.

3. Structure analysis
We first assess the performance of AlphaFold 2 on TCRs that
have experimentally annotated structures from (Gowthaman
& Pierce, 2019). For a quantitative measure of the structural
prediction quality, we use the root-mean-square deviation
(RMSD), defined as the square root of the average squared
euclidian distances between all amino acids’ αC positions
of aligned predicted and experimentally verified sequences
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Figure 1. AlphaFold 2 structural prediction performance analysis
on CDR regions: a The RMSD (in Å) between the experimental
structures and AlphaFold predictions is plotted for various TCR
regions. b Six pairs of aligned experimental and predicted struc-
tures are visualized, where blue and purple lines are the CDR3
subregions of the true and predicted structures, respectively, and
green contains residues from the rest of the TCRs.

(measured in Å). We compute the RMSD between sequence
pairs after we align them using the alignment tool from
PyMOL (Schrödinger, LLC, 2015), which minimizes the
RMSD. We align the sequences based on the TCR residues
within the framework regions (FR) of the TCRs. More
specifically, the RMSD between residues (αC atom posi-
tions) within FR regions of experimentally determined and
AlphaFold 2 predicted structures is minimized.

CDR3 regions of TCRs can differ even between identical en-
coding gene segments (making the MSA of AlphaFold 2 less
useful) and usually have multiple valid folding conforma-
tions (Reiser et al., 2003). Therefore, the CDR3 predictions
are considerably more challenging than other TCR subre-
gions, as shown in Figure 1. Still, structural similarity can
be observed in some cases, and we determine to what degree
these structures can still aid epitope specificity predictions
throughout this work.

We consider the epitope specificity classification task, where
we define (xn,yn, sn) triplets of sequences, label vectors,
and structural features derived from AlphaFold 2. The label
vectors yn are binary vectors, having yn,c = 1 if the TCR
n recognizes epitope c, and 0 otherwise. We train classifiers
with and without sn, and determine the resulted epitope-
specific relative improvements.
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3.1. Invariant structural features analysis

We now describe and assess the utility of various features
extracted from AlphaFold 2 structural predictions. Here-
after, we refer to structural information that is invariant to
translation and rotation as invariant structural features. Our
first experiments use the invariant structural features through
graph neural networks, and we continue with the same type
of features in the context of CNN architectures.

Graphs are defined by their vertices vi ∈ V and edge infor-
mation ei,j ∈ E . Undirected binary graphs consider each
edge as ei,j = 1, if nodes vi and vj are connected, and
ei,j = 0 otherwise. We construct TCR graphs by attributing
each node vi a one-hot vector of the amino acid at position
i in the protein sequence and determine the node’s binary
connections to all other amino acids j ̸= i by thresholding
αC atom distances with various thresholds t.

Motivated by the previous success of structural informa-
tion usage in protein function prediction (Gligorijević et al.,
2021), we employ graph convolutional networks (Kipf &
Welling, 2017) as our first model choice. We compare the
epitope specificity performance considered from training
three-layered GCN networks, with 4, 5, and 6Å distance
thresholds t. In addition, all amino acids that are adjacent
in a sequence are always considered connected.

In Figure 2, we illustrate the utility of the invariant structure
information. Previous success in protein function prediction
using protein structure-derived contact maps (Gligorijević
et al., 2021) most likely relied on the very high diversity
in the input contact maps. In contrast, the possible folding
diversity is highly limited in CDR3 sequences, mainly due
to their limited size (the average CDR3 length in Ds is 14,
and the longest one is 22). We plot the relative improve-
ments obtained when contact maps are derived from the
structural predictions, compared to GCNs that have connec-
tions only between adjacent residues, indicating that the use
of structure predictions provides no improvement.

Next, we use one of the best-performing CNN architectures
for TCR epitope classification, TCRconv (Jokinen et al.,
2022), and test three types of invariant structural features.
For sequences of length N , we define loop distance as the
distance from the first to all other CDR3 residues’ αC atoms,
ld ∈ R1×N , the euclidian similarity between all residue
pairs’ αC atom coordinates, es ∈ N× N, and the cosine of
the angles between every residue pair, ϕ ∈ RN×N (please
refer to Appendix A for a more detailed description). We
compare the results using invariant structures to the model
using only the one-hot residue information (Figure 3). We
note a consistent improvement for most epitopes when using
euclidian similarity, and a larger improvement for epitopes
with fewer positive TCRs in the data.
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Figure 2. Invariant feature analysis: a Epitope-specific AP score
difference between GCNs trained with contacts resulted from var-
ious thresholds t and a GCN trained using only adjacent residue
contacts on Ds. The mean performance difference is reported for
three epitope categories, based on their number of positive TCRs in
the data Ne. b Average αC contact maps (31 sequences from Ds

for each length) derived from AlphaFold 2 predicted structures for
various CDR3 lengths and a threshold of t = 5Å. c Visualization
of the CDR3 3D shapes after aligning the TCRs to a reference
TCR sequence (chosen randomly) using PyMOL

3.2. Coordinate analysis

We now attempt to use most of the information available
in the AlphaFold 2 structural predictions, by using the 3D
coordinates of four atoms in each residue within the TCRs.
Doing so allows us the maximum amount of flexibility in
constructing structural features for our models, and we hy-
pothesize that both the backbone position of the TCRs, as
well as the orientation of all residues in the sequences con-
tribute to the higher performance increase resulting from
coordinate information compared to the invariant features.

The main challenge when dealing with 3D coordinate struc-
tures is training a model which identifies the same sequence
patterns irrespective of global translations and rotations ap-
plied to a sequence. To a large extent, we show that this
issue can be mitigated in the context of TCRs, by aligning
the highly conserved framework regions of all train and test
sequences to those of a randomly chosen reference TCR Sr.
To do this, we use the align algorithm developed by PyMOL
(Schrödinger, LLC, 2015), with which we reposition all se-
quences s.t. the RMSD between them and Sr is minimized
on the framework regions.

We analyze the epitope-specific predictive performance dif-
ference when we add the structural information in the form
of three-dimensional coordinates of N in the amino group,
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Figure 3. Loop distance (ld), loop distance and residue angles
(ld, ϕ), and euclidian similarity (es) are concatenated with one-
hot residue representations, and TCRconv’s performance using
these invariant structures (APs) is subtracted from TCRconv’s per-
formance trained only on one-hot for each epitope (AP).

the αC, and the carboxyl group C and O atoms, for each
amino acid in a sequence. We pre-process the positional in-
formation using an MLP (with dimension R12×12) and then
concatenate along the d-dimensional input representation of
each residue, the atoms’ position representations forming
Rd+12 valued amino acid input features.

In Figure 4, we show the relative improvements when adding
coordinate information for all three datasets. For Ds, we
report the improvements for both one-hot and ProtBERT
encoded residues. We also add information about the rest
of the TCR in the model by adding the corresponding en-
coding genes as categorical features (”TCRconvV J”) and
alternatively using the whole TCRs (”TCRconvTCR”). This
ensures the improvements are not only artifacts of the V and
J gene information being encoded within the structures we
input to the model.

Notably, when TCRs are encoded with one-hot vectors, the
relative improvement added by structural information is
larger compared to ProtBERT residue-encoded embeddings.
This is in accordance with (Vig et al., 2021), which showed
that protein LMs intrinsically learn protein structure, as
their attention weights are correlated with contact maps.
Although slightly larger, the improvements on Ds, when
using one-hot and coordinate information (Figure 4), are
similar to those obtained using euclidian similarity and one-
hot information (Figure 3), which indicates that the most
predictive information contained in AlphaFold 2-predicted
structures is the pairwise proximity between residues, and
that is likely already captured by ProtBERT representations.

Furthermore, the structural performance prediction of Al-
phaFold 2 significantly deteriorates in the absence of MSAs
(Lin et al., 2022) and the MSA corresponding to the CDR3
subregion is significantly less useful, as the V(D)J recombi-
nation produces CDR3 sequences in a quasi-random manner.
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Figure 4. Performance difference between models with and with-
out structure. For Ds, we report both one-hot and ProtBERT-
embedded amino acids results. For the one-hot experiments, we
also add the V and J genes as categorical information and use all
residues from the TCRs (denoted TCRconvV J and TCRconvTCR).
For the Dαβ experiment, we use the structures from both chains.

Therefore, the ProtBERT-encoded residue improvements in
Figure 4, rely on the ability of AlphaFold 2 to predict struc-
tural information which is both missing from ProtBERT, and
is accurate enough, considering that the produced MSAs for
the most crucial region (CDR3) will not be useful.

Similar consistent but small improvements are shown for
Dl and Dα,β datasets, as the TCRs are ProtBERT-encoded
in these cases for the results shown in Figure 4.

4. Conclusion
We provided an extensive analysis of TCR structural infor-
mation derived from AlphaFold 2. The structural templates
and MSAs can provide valuable input features, but in the
context of highly variable immune cell configurations, struc-
ture prediction becomes more challenging. Although the di-
versity of CDR3 stable configurations (for a fixed sequence)
makes it difficult to obtain an exact number quantifying the
structural prediction accuracy, our experiments indicate the
necessity of further improvements in structural prediction
methods in this context. We postulate that the enormous
TCR and antibody diversity will always impair accurate
structural prediction by extrapolation of similar (genetically
related organism) proteins. This would either require very
large amounts of annotated TCR and antibody structures
or modeling the physicochemical properties driving protein
folding.
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A. Invariant structural features

For an n-length CDR sequence, we extract various relative distances and similarities between all residue pairs
i, j ∈ {1, 2, . . . , n}, forming A ∈ Rn×n. Since the convolutional architectures will require a fixed-dimensional input, we
concatenate the resulting invariant feature information matrices to form A′ ∈ RN×Nb , with N being the global maximum
sequence length (s.t. the channel dimension always has the same length), and Nb is the current minibatch maximum
sequence length.

Given the three-dimensional coordinates of the N in the amino group, the αC, and the carboxyl group C atoms, we form the
vectors

−−→
CαC and

−→
CN. For two amino acids with vector pairs (

−−→
CαCi,

−→
CNi) and (

−−→
CαCj ,

−→
CNj), we form their plane equations

Aix+Biy + Ciz +Di = 0, and Ajx+Bjy + Cjz +Dj = 0 and extract the cosine of the angles between them:

ϕ = Aij =
|AiAj +BiBj + CiCj |√

A2
i +B2

i + C2
i

√
A2

j +B2
j + C2

j

= cos(ri, rj) (1)

The main drawback of this approach is that there is no sensible padding, which makes this analysis imperfect. The predictive
influence of residue angles measured by this analysis might, therefore, be underestimated.

Next, we use euclidian similarity, defined as:

es =
1

1 + ||ri − rj ||2
, (2)

where ri and rj are the three-dimensional coordinates of αC atoms of residues i and j. Compared to relative residue angle
information, this method has sensible padding (0 padding corresponds to 0 similarity between a given residue and a padding
token). This is likely the main reason why euclidian similarity is the best-performing invariant structural feature.

Loop distance ld is defined as the distance between a reference residue (chosen as the first residue in the CDR3
sequence), to all other residues, forming a R1×Nb feature vector (with Nb being the sequence length). The motiva-
tion behind this simple feature information is based on the assumption that the tip of the CDR3 loops should most
often come in contact with the epitope, and therefore the highest ld values should indicate the most likely contacting residues.

B. Epitope prediction performance

Table 1. Performance analysis on Ds, for one-hot encoded sequences. Performance reported for various epitope frequencies Ne.
Structure additional AuROC AP

type features Ne ∈ (40, 60] Ne ∈ (60, 122] Ne ∈ (122, 244] Ne ∈ (40, 60] Ne ∈ (60, 122] Ne ∈ (122, 244]

no struct - 0.77 ± 0.15 0.8 ± 0.13 0.82 ± 0.07 0.38 ± 0.22 0.44 ± 0.26 0.61 ± 0.14
coord. values - 0.81 ± 0.13 0.82 ± 0.12 0.84 ± 0.06 0.42 ± 0.23 0.47 ± 0.26 0.63 ± 0.13

ld - 0.79 ± 0.13 0.8 ± 0.13 0.83 ± 0.07 0.39 ± 0.22 0.44 ± 0.26 0.61 ± 0.12
ld, ϕ - 0.78 ± 0.15 0.8 ± 0.12 0.82 ± 0.07 0.37 ± 0.23 0.42 ± 0.24 0.59 ± 0.14
es - 0.8 ± 0.14 0.82 ± 0.12 0.83 ± 0.07 0.41 ± 0.23 0.46 ± 0.25 0.62 ± 0.13

no struct V J 0.8 ± 0.13 0.83 ± 0.11 0.83 ± 0.07 0.42 ± 0.23 0.5 ± 0.26 0.62 ± 0.14
coord. values V J 0.82 ± 0.13 0.83 ± 0.13 0.84 ± 0.07 0.45 ± 0.22 0.51 ± 0.27 0.63 ± 0.13

no struct TCR 0.85 ± 0.11 0.85 ± 0.12 0.86 ± 0.07 0.45 ± 0.23 0.54 ± 0.25 0.65 ± 0.12
coord. values TCR 0.85 ± 0.11 0.85 ± 0.13 0.87 ± 0.07 0.47 ± 0.22 0.55 ± 0.25 0.66 ± 0.12
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Table 2. Performance analysis on Ds,Dl, and Dab for ProtBERT encoded sequences. Performance reported for various epitope frequencies
Ne.

Structure Dataset AuROC AP
type Ne ∈ [40, 60] Ne ∈ (60, 122] Ne ∈ (122, 244] Ne ∈ [40, 60] Ne ∈ (60, 122] Ne ∈ (122, 244]

no struct Ds 0.86 ± 0.12 0.85 ± 0.13 0.86 ± 0.07 0.5 ± 0.22 0.55 ± 0.25 0.66 ± 0.12
coord. values Ds 0.87 ± 0.11 0.86 ± 0.12 0.86 ± 0.07 0.51 ± 0.22 0.57 ± 0.25 0.67 ± 0.11

Ne ∈ (52, 101] Ne ∈ (101, 202] Ne ∈ (202, 12693] Ne ∈ (40, 60] Ne ∈ (60, 122] Ne ∈ (122, 244]
no struct Dl 0.78 ± 0.13 0.77 ± 0.11 0.72 ± 0.13 0.23 ± 0.2 0.24 ± 0.2 0.3 ± 0.28

coord. values Dl 0.79 ± 0.13 0.78 ± 0.11 0.73 ± 0.13 0.25 ± 0.21 0.24 ± 0.2 0.3 ± 0.27

Ne ∈ (40, 60] Ne ∈ (60, 122] Ne ∈ (122, 244] Ne ∈ (40, 60] Ne ∈ (60, 122] Ne ∈ (122, 244]
no struct Dab 0.79 ± 0.11 0.82 ± 0.13 0.78 ± 0.13 0.21 ± 0.19 0.47 ± 0.25 0.6 ± 0.28

coord. values Dab 0.79 ± 0.12 0.83 ± 0.13 0.78 ± 0.12 0.22 ± 0.18 0.47 ± 0.26 0.6 ± 0.28

Table 3. Performance analysis on Ds for GCN models using adjacency matrices based on AlphaFold 2 structural information (contacts
determined based on thresholds t = 4, 5, 6Å). Here, ”no struct” refers to a GCN trained using adjacency matrices that only consider
amino acids directly adjacent in the sequence as being in contact (no structural information is used).

Structure AuROC AP
type Ne ≤ 60 Ne ∈ (60, 122] Ne > 122 Ne ≤ 60 Ne ∈ (60, 122] Ne > 122

no struct 0.74 ± 0.13 0.74 ± 0.12 0.77 ± 0.09 0.26 ± 0.2 0.32 ± 0.21 0.47 ± 0.16
t = 4 0.74 ± 0.14 0.76 ± 0.11 0.77 ± 0.08 0.26 ± 0.2 0.31 ± 0.2 0.48 ± 0.15
t = 5 0.75 ± 0.14 0.76 ± 0.11 0.77 ± 0.08 0.27 ± 0.21 0.31 ± 0.2 0.48 ± 0.16
t = 6 0.71 ± 0.16 0.74 ± 0.13 0.76 ± 0.09 0.26 ± 0.19 0.3 ± 0.2 0.45 ± 0.16


