
Graph Neural Networks for Metagenomic Binning

Andre Lamurias 1 2 Alessandro Tibo 1 Katja Hose 1 3 Mads Albertsen 1 Thomas Dyhre Nielsen 1

Abstract

Most methods for metagenomic binning rely
solely on the local properties of the individual
contigs. Because of this, these techniques are un-
able to take advantage of the connections between
contigs as established by the assembly graph. In
this paper, we explore Graph Neural Networks
(GNNs) to leverage the assembly graph when
learning contig representations for metagenomic
binning. We applied four different types of GNN
architectures, comparing their results on real and
synthetic datasets, demonstrating encouraging re-
sults and, therefore, a promising research direc-
tion to pursue and explore.

1. Introduction
Microbial communities have a direct impact on human
health and our environment. Being able to explore the mi-
crobial potential for the general good does, however, require
an astute understanding of the microbial world in terms
of, among others, diversity and function. Metagenomics
studies microbial communities at the DNA level, and in
theory, it is possible to recover the genomes of all the mi-
crobes in a sample. However, this is a complex task since
DNA sequencing technologies can only produce fragments
of the full genome, and, due to the incompleteness of cur-
rent reference databases, the full genome of most microbes
in environmental samples remains unknown (Pasolli et al.,
2019).

The process of recovering genomes from the fragmented
sequencing data is called binning. Binning can be consid-
ered a two-step process, where the first step defines a notion
of similarity between DNA sequences and the second step
consists of grouping these sequences into clusters, which are
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referred to as bins. 1 The input to the binning process is a set
of assembled contiguous DNA sequences (contigs). Contigs
are obtained by representing the fragmented sequences as
a graph, called an assembly graph, where each node rep-
resents a contig and the edges represent overlaps between
contigs. Most binners (Yang et al., 2021) only use local
features of the individual contigs, thus failing to take full
advantage of the relational information embedded within the
assembly graph. Since, by construction, connected contigs
share similar DNA sub-fragments, we hypothesize that the
assembly graph holds potentially important information that
can be exploited during the binning process.

Deep learning approaches have also recently been exploited
for metagenomic binning (Nissen et al., 2021; Lamurias
et al., 2023). In particular, (Xue et al., 2021) explores GNNs,
but fails to incorporate domain knowledge into the model,
thereby limiting its applicability to real-world datasets. On
the other hand, GraphMB (Lamurias et al., 2022) integrated
the assembly graph into its graph deep learning model, ex-
ploring only one type of GNN.

In this paper, we present a comparative study of Graph Neu-
ral Networks (GNN) (Kipf & Welling, 2017; Hamilton et al.,
2017; Velickovic et al., 2018) for metagenomic binning us-
ing assembly graphs. The contribution of this work is the
novel framework combining the advantages of existing bin-
ning approaches based only on local representations with
state-of-the-art GNN algorithms that can use the assembly
graph to improve the local representations. We show how
different types of GNNs perform on this task and on both
simulated and real-world metagenomics datasets. The code
and data used in the experiments are available at https://
github.com/MicrobialDarkMatter/vaegbin.

2. Related Work
In recent years, several binners have been proposed based
on k-mer composition and so-called abundance features (Lu
et al., 2017; Yu et al., 2018; Yang et al., 2021). Two of
the most well-established binners based on these features
are MetaBAT2 (Kang et al., 2019) and MaxBin2 (Wu et al.,
2016), where the SCGs associated with each contig are used

1In the remainder of this paper, the terms clusters and bins will
be used interchangeably.
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to estimate the number of bins. More recently, deep learning-
based methods have been used to improve metagenomic
binning. Deep learning models present an advantage over
other statistical methods since the former types of models
have the potential to learn more complex patterns in the data
that would be difficult to model with other standard methods.
An example is VAMB (Nissen et al., 2021), which is based
on a variational autoencoder (Kingma & Welling, 2014),
encoding k-mer composition and abundance features in a
low dimensional embedding, which is subsequently used
for clustering/binning.

Attempts have also been made to use the assembly graph
to improve metagenomic binning. The common assump-
tion is that contigs that are linked in the assembly graph
should also be binned together. For example, Graph-
Bin (Mallawaarachchi et al., 2020) refines bins from other
tools using information from the assembly graph by adopt-
ing a label propagation scheme, and CCVAE (Lamurias
et al., 2023) incorporates connectivity information from the
assembly graph directly in the loss function of a variational
autoencoder.

3. Methodology
In the following, we use x to denote vectors in Rn (including
scalars) and X for sets. In this study, the data is always
represented as an assembly graph G = (V, E), where V and
E represent the sets of nodes and edges, respectively. Each
node u ∈ V is associated with either a genome (categorical)
label yu or a set of single copy genes (SCGs) Ŷ(u) (up to
104) when genome labels are unavailable. SCGs appear
only once in the complete genome and are crucial for the
microbes’ functioning and reproduction. These SCGs are
identified using CheckM (Parks et al., 2015), a standard
metagenomic evaluation tool. It is important to note that our
framework remains entirely unsupervised in both scenarios
regarding the genome labels, which are solely utilized for
quantitative evaluations.

The set of edges (u, v) ∈ E represents pairs of nodes con-
nected by the assembly graph. This more concise notation
is adopted instead of a sparse adjacency matrix. The set of
edges (u, v) ∈ E represents the pairs of nodes connected by
the assembly graph. We adopt this more compact notation
instead of a sparse adjacency matrix.

Due to sequencing errors and the presence of genomes with
similar sequences, the existence of edges in the assembly
graph does not necessarily indicate that the corresponding
nodes should have the same label. This can lead to erroneous
edges in the assembly graph. To address this concern, a
weight w(u, v) ∈ [0, 1] is assigned to each edge (u, v) ∈ E ,
which signifies the multiplicity of the k-mer supporting
that particular edge. This weight can be interpreted as the

Figure 1. A Variational Autoencoder (top) is used to learn node
representations zℓ. The graph structure and zℓ are fed into a graph
neural network (bottom) which outputs features zg depending
on the graph structure. Finally, zℓ and zg are concatenated and
clustered.

confidence level of the edge. A value of 0 represents low
confidence, while a value of 1 indicates high confidence.
Nodes that are connected by edges with higher confidence
levels are more likely to belong to the same genome. As a
result, these nodes should share the same label.

Our framework, depicted in Figure 1, consists of a local
and a global feature extractor for the nodes in V . The lo-
cal features (contig-specific representations) zℓ are learned
with a Variational Autoencoder (VAE), while we adopt a
graph neural network (GNN) approach for learning global
features (graph representations). The GNN takes as input zℓ
and G and produces a global representation for each node,
zg. Finally, zℓ and zg are concatenated and used as the in-
put for a clustering algorithm to discover the bins. Below
we describe the graph representation learning, relying on
a standard variational autoencoder for the contig-specific
representations.

3.1. Graph representations

A GNN enables learning of node features that depend on
node neighborhoods. In particular, GNNs aggregate the
neighborhood information of a node through the following
generic graph convolutional layer:

zug = αu,uΘ1z
u
ℓ +Θ2

∑
v∈NG(u)

αu,vz
v
ℓ , (1)

where zuℓ and zvℓ are the feature vectors produced by the
VAE associated with nodes u and v, respectively. Θ1 and
Θ2 are learnable parameterized matrices and αu,v ∈ R
is a scalar for weighting the contribution of each node in
the neighborhood. Note that multiple layers, as defined
in Equation 1, can be stacked together in order to provide
representations that depend on nodes at larger depths in the
graph. Finally, each graph convolutional layer can also be
intermixed with standard neural network layers. We note
that our framework is generic with respect to the under-
lying GNN. In our experiments (see Section 4) we have
evaluated three classical GNN architectures: GCN (Kipf &
Welling, 2017), GraphSAGE (Hamilton et al., 2017), and
GAT (Velickovic et al., 2018).
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The key to our framework is the loss function used to train
the GNN, which is defined over pairs of GNN outputs,
which we adapted from Lamurias et al. (2023):

J(zug , z
v
g ; Θ) = w(u, v) log(σ(< zug , z

v
g >))

+ (1− w(u, v)) log(1− σ(< zug , z
v
g >))

+ I[|Ŷ(u) ∩ Ŷ(v)| > 0] log(1− σ(< zug , z
v
g >)),

(2)

where Θ are the GNN parameters, σ is the sigmoid function,
< ·, · > denotes the scalar product, and I is the indica-
tor function. The first two terms of the loss represent the
weighted binary cross-entropy between connected and dis-
connected nodes in the assembly graph. The last term in the
loss encourages different features for nodes with the same
SCGs. This is desirable because nodes with the same SCGs
should not be placed in the same clusters, since this would
increase its contamination.

For the sake of simplicity, we consider all edges to have
unitary weights. For GCNs, Equation 1 then becomes:

zug =
1

du
Θzuℓ +Θ

∑
v∈NG(u)

1√
dudv

zvℓ ,

where du = 1 + |NG(u)|, and Θ = Θ1 = Θ2. For Graph-
SAGE, Equation 1 takes the form:

zug = Θ1z
u
ℓ +Θ2

1

|N (u)|
∑

v∈NG(u)

zvℓ .

Note that in our experiment, following (Hamilton et al.,
2017), we also aggregate neighborhoods with LSTMs,
which was already tested in (Lamurias et al., 2022). In Sec-
tion 4 we denote with GRAPHSAGE-M and GRAPHSAGE-
L the versions that use average and LSTM aggregations,
respectively. For GATs, Equation 1 is specified as:

zug = αu,uΘzuℓ +Θ
∑

v∈NG(u)

αu,vz
v
ℓ ,

where

αu,v =
exp(L-RELU(aT (Θzuℓ ||Θzvℓ )))∑

k∈NG(u)∪{u}
exp(L-RELU(aT (Θzuℓ ||Θzkℓ )))

,

with a being a learnable parameter and L-RELU the leaky
ReLU activation function.

3.2. Clustering and evaluation

We employ the clustering algorithm used in Nissen et al.
(2021), which is an adapted form of the k-medoids algo-
rithm. Notably, this modified version of the algorithm elimi-
nates the need for an initial specification of the number of
clusters.

Table 1. Datasets used in the experiments. STRONG100 is a simu-
lated dataset, while the others are real-world datasets.

DATASETS # NODES # EDGES AVG. DEGREE

STRONG100 852 1,952 2.291

AALE 45,831 33,173 0.724
MARI 41,559 35,001 0.842
DAMH 38,578 34,186 0.886

To evaluate the quality of the clusters, we adopt the com-
pleteness and contamination criteria, commonly used in
metagenomic binning. Both criteria are domain-specific and
indicate the quality of the clusters, according to the Mini-
mum Information about a Metagenome-Assembled Genome
(MIMAG) standard set by the Genomic Standards Consor-
tium (Bowers et al., 2017). These two metrics are required
to submit a genome to public databases and to report it in
publications. Using these criteria, we can classify a bin as
a High Quality (HQ) bin if completeness > 0.9 and con-
tamination < 0.05, and as a Medium Quality (MQ) bin if
completeness > 0.5 and contamination < 0.12.

For simulated datasets, the genomes in the dataset are
known. It is therefore possible to map the node sequences
to those genomes and obtain the ground truth genome label
yu of each node. We will therefore calculate the (average)
precision, recall, and F1 score for these data sets. Similar to
the previous criterion, we considered as HQ bins those with
> 0.9 recall and > 0.95 precision, and as MQ bins those
with > 0.5 recall and > 0.9 precision.

We followed the evaluation criteria for simulated datasets
with ground truth labels as described in Meyer et al. (2018):
using the AMBER evaluation tool, we evaluate precision
and recall of each bin according to the labels of the nodes
that constitute the cluster.

4. Experiments
In this section we present the experimental setup we used to
evaluate our approach on simulated and real-world datasets,
as well as the results obtained using the metrics previously
introduced. The hyperparameters of the model are provided
in the appendix. The VAE hyperparameters are based on the
results obtained by Lamurias et al. (2023).

4.1. Data

We perform experiments on one simulated dataset and
three Wastewater Treatment Plant (WWTP) datasets (Ta-
ble 1). Since the benchmark simulated datasets used by

2HQ bins are also required to have the 5S, 16S and 23S rRNA
genes and 18 tRNA genes, however, we did not check for these
properties in this work.
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Table 2. Results on the simulated dataset.
MODEL AP AR F1 HQ MQ

METABAT2 0.905 0.592 0.716 26 37
VAMB 0.969 0.755 0.849 26 34
MAXBIN2 0.818 0.765 0.791 14 23
GRAPHBIN 0.848 0.613 0.712 23 34

GCN 0.964 0.804 0.877 25±1 32±2
GRAPHSAGE-M 0.960 0.839 0.895 24±2 31±1
GRAPHSAGE-L 0.969 0.765 0.855 26±1 34±2
GAT 0.950 0.863 0.904 18±3 25±4

other binners do not include the assembly graph, we sim-
ulated a new dataset (Strong100). The simulated dataset
was produced using the badread (Wick, 2019) tool (v0.2.0),
where we generated reads according to the methodology
proposed in (Quince et al., 2021); we simulate reads from
100 strains, corresponding to 50 species, with randomly
generated abundances. We then assemble the contigs with
the metaflye (Kolmogorov et al., 2020) tool (v2.9).

The WWTP datasets come from a previous study (Singleton
et al., 2021), where we have access to four samples for each
waste water treatment plant. Recall that the sample of each
treatment plant is associated with a set of contigs, hence the
abundance vector of each contig is of length four with one
entry for each sample.

4.2. Results

We compare the results of the GNNs with four competitors
(see Section 2) on the same datasets, using the default values
specified in the corresponding papers. All the methods take
as input the contig sequences and their abundances, except
for GraphBin, which takes into account the assembly graph.

4.2.1. SIMULATED DATA

Table 2 shows the results obtained on the simulated dataset,
where the metrics are calculated on the ground truth labels
of the contigs using the AMBER evaluation tool (Meyer
et al., 2018). In this scenario, the graph-based methods
outperform the established binners on almost all metrics.
Note that for downstream analyses, only the HQ bins can
be considered recovered genomes, while the others do not
have enough quality to be analyzed, because they are too
incomplete or too contaminated.

4.2.2. REAL-WORLD DATA

As shown in Table 3, we can see that most of the GNNs
outperform the other methods in terms of HQ bins recovered.
By combining a VAE with a GNN, we can consistently
obtain more HQ bins than all other baseline methods. In
particular, in terms of HQ bins, we outperform both VAMB
and MetaBAT2, both of which only rely on local contig

Table 3. Results on real-world datasets.

MODEL
AALE MARI DAMH

HQ MQ HQ MQ HQ MQ

METABAT2 53 175 41 155 50 219
VAMB 42 160 34 135 31 132
MAXBIN2 20 60 20 70 21 82
GRAPHBIN 16 133 21 123 23 176

GCN 55±1 175±3 46±1 154±3 54±1 190±4
GRAPHSAGE-M 55±0 175±1 44±1 148±2 51±1 187±2
GRAPHSAGE-L 52±1 184±4 46±2 147±3 51±1 190±4
GAT 53±1 174±3 45±1 147±2 50±1 184±3

features and thus fail to take advantage of the relational
contig information embedded within the assembly graph. In
terms of MQ bins, we obtain a higher or comparable number
of bins relative to the baselines on two out of the three
datasets. Different instantiations of the GNN model have
been tested on all three datasets, with the GCN approach
obtaining the largest number of high-quality bins. The other
instantiations obtain similar results on some datasets, but
not consistently. We hypothesize that this may partly be
due to the loss function not being a good proxy for the
quality metrics being used during the evaluation, hence
more complex models, such as the GAT, may fail to bring
consistent improvements. Also, the GraphSAGE-L model
imposes a specific order in the neighbors of a node, which
does not exist naturally.

5. Conclusion
This paper reports on interdisciplinary research between
data science and bioinformatics, addressing the problem of
metagenomic binning of contiguous DNA fragments (con-
tigs). We have studied the effectiveness of multiple GNN
architectures in leveraging the assembly graph for metage-
nomic binning. We observed that GCN tends to perform
better on real-world datasets. Datasets with higher edge
density seem to benefit the most from the GNN, as is the
case of Mari and DamH, which had larger improvements
compared to the other methods than AalE.

This work represents an exploration of graph learning meth-
ods for metagenomic binning and we believe that there are
several promising directions for further work. An end-to-
end approach that incorporates both representation learning
and clustering could bring further improvements to this task.
We expect that these approaches will have impact within
both the machine learning and the bioinformatics communi-
ties.
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A. Hyperparameters
Both the encoder and decoder of the VAE consist of two hidden layers with 512 nodes and leaky ReLU activations. µz and
log σ2

z have size 32 for the simulated and 64 for the real-world datasets. The VAE is trained using gradient descent for 500
epochs with a learning rate of 1e−3. We use GNNs with three graph convolutional layers for the real-world datasets and one
graph convolutional layer for the simulated dataset. In both cases, the hidden layers consist of 128 nodes and the output zu

has 64 nodes. The learning rate was set to 1e−2 and we performed 500 epochs of training.


