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Abstract

High-throughput screens (HTS) are widely uti-
lized to profile transcriptional states across mul-
tiple cell types and perturbations, and are often
the first step on the bridge to the patient. How-
ever, their representative capacity to encompass
all the cellular contexts encountered in a patient is
limited. Thus, we present PerturbX, a novel deep
learning model that leverages the rich information
obtained from HTS to predict transcriptional re-
sponses to chemical or genetic perturbations in
unobserved cellular contexts, and demonstrate its
effectiveness in an experimental setting. Further-
more, we show that the model is able to uncover
interpretable genetic signatures associated with
the predicted response, which can ultimately be
translated into the clinical setting.

1. Introduction
Information-rich phenotypes provide a detailed picture of
the cellular consequences of chemical or genetic perturba-
tions which, in specific contexts, may have a downstream
effect on cellular fitness. In particular, gene expression
profiles provide a robust and informative phenotypic mea-
sure of cellular responses to perturbations. High-throughput
screens (HTS) are utilized to profile transcriptional states
across various cellular contexts under different perturbations
(McFarland et al., 2020). However, their representative ca-
pacity remains limited relative to the vast combinatorial
landscape of all cells and perturbation pairs. This highlights
the need to utilize machine learning tools to predict the
outcome of unseen experiments.

Moreover, as the availability of diverse pre-clinical and
clinical datasets for precision oncology is expanding, an
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important unresolved question remains as to how best to in-
tegrate insights gained between the pre-clinical and clinical
settings. One component will involve leveraging the infor-
mation richness of high-throughput perturbational screens
to identify and validate signatures which can be effectively
generalized to different contexts. The ultimate goal will
be to predict the phenotypic impact of treatment (i.e. per-
turbation) in a patient based on markers obtained from the
pre-clinical realm.

To this end, we propose PerturbX, a novel deep learning
model trained to predict the transcriptional effect of a given
perturbation in a range of cellular contexts (e.g. different
cell types), in which the perturbational response has not
been experimentally observed. PerturbX is based on an en-
coder - decoder architecture that learns a mapping between
the unperturbed state representation of cells to the transcrip-
tional effect of a given perturbation. The unperturbed state
is represented by the unperturbed gene expression profiles
of cell lines, and the transcriptional effect is represented
by the vector of differential expression. We show that the
model effectively uncovers interpretable factors of varia-
tion within the unperturbed state which are associated with
the observed patterns of transcriptional response. These
“biomarkers” of response could ultimately be mapped be-
tween the pre-clinical and clinical settings, bridging the gap
between the two domains.

Our main contributions are:

1. We introduce PerturbX and demonstrate its ability to
successfully predict transcriptional responses to pertur-
bations in unseen cellular contexts using data readily
available in the public domain.

2. We show that PerturbX can learn biologically meaningful
and interpretable representations of cell types.

3. We propose a method for identifying the predictive fea-
tures, or biomarkers, of response captured by PerturbX.

2. PerturbX
PerturbX is a deep learning model trained to predict the tran-
scriptional effect of a perturbation across cellular contexts
by learning a perturbation-specific cell type representation.
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This representation captures the complex transcriptional
similarities between different cell types in response to a
specific compound or genetic perturbation, and is inferred
from features of the unperturbed state of a cell. The pro-
posed method allows for generalization on experimentally
unobserved cell types.

Figure 1. Schematic of the PerturbX model architecture. Given K
single cells from a specific cell type and a perturbation encoding
as input, the model’s encoder selects a subset of the input genes
using the concrete selector layer and maps each of the cells into
the latent space. The K different embeddings are aggregated
to summarize the latent representation for that cell type. The
aggregated representation is then mapped by the decoder into a
prediction of the post-perturbation differential expression.

The input to the model consists of the population of unper-
turbed (DMSO-treated) single cells from a specific cell type
along with a perturbation encoding. The target is the aver-
age differential expression (DE) of that cell type in response
to the given perturbation.

More formally, denote the sets of cell types and perturba-
tions by C and P , respectively. For each (c, p) ∈ C×P , let
X(c,p) be the subset of the training data consisting of gene
expression profiles of single cells of type c, that have been
perturbed using the perturbation p. Also, let X(c) be the
subset of unperturbed single cells of type c. Denote their
respective averages by x̄(c,p) and x̄(c).

The input to the model consists of the pair (
(
X(c), ep

)
,

where ep, the perturbation encoding, is a one-hot vector
representing the perturbation p.

The target is the mean differential expression vector

d̄ := x̄(c,p) − x̄(c)

Note that our formulation falls in the category of multiple
instance learning, where for each cell type-perturbation pair,
(c, p), we have a set of instances (unperturbed expression
of K single-cells) as the input, and a single target vector
(namely, the DE) associated with this set. By utilizing the
entire single-cell population as input, the model is able to
benefit from the distributional information of expression

profiles for the prediction of transcriptional response. In
the sequel we often omit specific mention of (c, p) if no
confusion arises.

Bootstrap To simplify the training and induce stochastic-
ity, on each epoch we replace X(c, p) and X(c) by two i.i.d.
samples (

x
(c, p)
1 , . . . , x

(c, p)
K

)
,
(
x
(c)
1 , . . . , x

(c)
K

)
drawn uniformly from from X(c,p) and X(c), respectively.

2.1. Architecture

The model architecture, shown in Figure 1, is based on
an encoder-decoder network. However, unlike classical
autoencoders, we do not reconstruct the input, but rather
predict a high-dimensional response vector (i.e., the DE).

Formally, the encoder ϕ maps each pair (xi, ep) for i =
1, . . . ,K into a latent vector zi. The latent vectors are then
aggregated using zagg = fagg({zi}Ki=1) (see discussion be-
low on the choice of the aggregation function fagg). Finally,
the decoder ψ maps the pair (zagg, ep) into a prediction, d̂,
of the post-perturbation differential expression.

A key component in the encoder’s architecture is the con-
crete selector layer (Balın et al., 2019) on which we elabo-
rate in section 2.2.1.

Aggregation Strategies We explore two aggregation
strategies: 1) mean aggregation, where we simply take the
average over the latent embeddings in the set, and 2) at-
tention-based aggregation (Ilse et al., 2018), in which we
compute a weighted average over the latent embeddings
where weights are determined by a learnable function. For
both of these choices, our model can be written as

(x1, . . . , xK) 7→ d̂ := ψ

(
K∑
i=1

ϕ(xi)

)
,

where the aggregation weights are absorbed into the encoder
ϕ. This ensures that the model is permutation-invariant
(Zaheer et al., 2017) .

Loss The loss w.r.t. a single pair of input and target is

ℓ((ϕ, ψ)) = ∥d̄− d̂∥2 + β

K∑
i=1

∥ϕ(xi)∥2 ,

where β is a hyperparameter controlling the complexity of
the latent representation.1

1In our experiments, rather then using the standard Euclidean
norm, we used the norm ∥d̄− d̂∥2w :=

∑n
j=1 wj(d̄j − d̂j)

2, where
w ∈ Rn

≥0 is a fixed weight vector assigning larger weights to more
dominant genes.



Learning Cell Representations for Prediction of Transcriptional Response across Cellular Contexts

2.2. Model Explainability

A key aspect of the perturbation response prediction is the
ability to explain the predicted outcome. This can be done
by identifying the factors of variation in the input which
contribute the most to the predicted outcome. In our case,
this corresponds to identifying the genes whose up- or down-
regulation has a strong effect on the model’s response pre-
diction, or equivalently, on the latent representation of the
different cell types.

Our approach consists of two steps. First, we narrow down
the feature space using a differentiable feature selection
layer, trained end to end with the rest of the model, and sec-
ond, we rank the selected features based on their importance
for the response prediction.

2.2.1. CONCRETE SELECTOR LAYER

We use Concrete random variables (Maddison et al., 2016;
Jang et al., 2016) to select the important input genes in a
differentiable way which is jointly optimized with the rest
of the model parameters for the response prediction task.
Similarly to Balın et al. (2019), we use samples from a
Gumbel-Softmax distribution over input features, which
are smoothly annealed into one-hot categorical variables
throughout model training. The choice of annealing sched-
ule should allow for exploration of different gene selections
in the early phases of training, and converge to an informa-
tive set of genes towards the end of training.

Whilst this approach contributes to model explainability,
ablation studies also demonstrate improvement in model
performance relative to a fully-connected network.

2.2.2. GENE RANKING

To gain better insight on the relative importance of the se-
lected genes (with respect to a specific perturbation p), we
examine their effect on the aggregated latent representation
zagg, as changes in zagg reflect axes of variation along the
manifold of predicted differential expression.

Denote by Z ∈ R|C|×d the matrix whose rows correspond
to aggregated latent representations of the different cell
types under the perturbation p. We decompose Z into its
principal components, and quantify the effect of the input
genes in a specific principal axis by projecting Z onto this
axis, and estimating gene importance using Shapley values.

Ultimately, the set of genes recovered by this process can
be utilized to construct a complex biomarker of response to
p, which is transferable to other domains (e.g., complex cell
models, patients).

It is important to note that by inspection of the variability
along a chosen principal component, one can associate a
subset of input genes with specific changes in the response.

3. Experiments
To demonstrate the performance of PerturbX, we used the
pooled single cell RNA sequencing data generated by Mc-
Farland et al. (2020). The data consists of post-perturbation
single cell gene expression profiles for 24 cell lines un-
der various compounds, including DMSO treatment as a
negative control. We excluded perturbations for which the
single-cell populations were too small to reflect their under-
lying distribution. The expression data was normalized and
log(1 + x)-transformed. Finally, we subsetted the expres-
sion profiles to 5000 highly-variable-genes.

For detailed exploration, we focus our analysis here on the
small molecule inhibitor, idasanutlin, as a representative
compound. This is due to the selective and heterogeneous
nature of the responses it induces across different cell lines,
which makes the prediction task more challenging.

3.1. Predicting the Response to Idasanutlin

Idasanutlin blocks the interaction of MDM2 with p53 (Ding
et al., 2013). p53 is an established tumor suppressor (Baker
et al., 1989). MDM2 binds to p53 resulting in the enzymatic
degradation of p53 (Momand et al., 1992). Idasanutlin binds
directly to MDM2, blocks the MDM2-p53 interaction and
thereby restores the tumour suppressive properties of p53
(Ding et al., 2013). TP53 is the gene encoding the p53
protein. Many cancer cell lines have inactivating mutations
in TP53 which prevent them from responding to idasanutlin
(Michaelis et al., 2011). Of the 24 cell lines in our dataset,
17 cell lines are TP53-mutated and show a weak response
to idasanutlin. In contrast, a pronounced transcriptional
response is observed in the TP53 wild-type (WT) cell lines.

Our encoder, ϕ, consists of a concrete selector layer that
selects 64 genes, followed by two fully-connected layers to
produce an 8-dimensional latent embedding. The decoder,
ψ, consists of two fully-connected layers.

For evaluation, we split the data into 6 folds, each consists
of 4 different cell lines, stratified according to TP53 mu-
tational status. We hold out each single fold and train the
model on the remaining folds. Finally, we report the R2 and
MSE between the measured and predicted post-perturbation
expression profiles, averaged over the folds. Since most
genes do not vary significantly in response to perturbation,
we evaluate our metrics on the top 100 differentially ex-
pressed genes (DEGs). This ensures that we capture the
prediction quality of the actual effect, without being masked
by noise from unresponsive genes. However, for a complete
evaluation of model performance, we also report the MSE
on the entire gene set.

We benchmarked the predictive performance of PerturbX to
1) a baseline model that discards cell line information and
predicts the average effect (DE) over all the training cell
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lines, and 2) scGen (Lotfollahi et al., 2019), which utilizes a
conditional VAE and latent space arithmetics to predict the
perturbed single cell distribution in unseen cell types.

Whilst there are more recent models designed for perturba-
tion response prediction (e.g., Hetzel et al. (2022), which
is designed to genralize to unseen compounds), we chose
scGen since it is specifically aimed for generalizing to unob-
served cellular contexts. Additionally, we note that scGen
is a generative model that predicts the post-perturbation
single-cell distribution whereas PerturbX is focused on the
average effect. Hence, for comparison purposes, we only
use the mean expression predicted by scGen.

Figure 2 shows a scatter-plot of the true vs predicted dif-
ferential expression profiles of response to idasanutlin gen-
erated by PerturbX (left), the baseline model (center), and
scGen (right) in two unobserved cell lines from one of the 6
folds - NCIH226 (TP53 WT) and BICR6 (TP53 mutated).
It demonstrates the model’s ability to distinguish respon-
sive and non-responsive cell lines and to make accurate
predictions of the transcriptional effect. scGen, by design,
averages the effect in the latent space over all observed cell
lines and performs comparably with the baseline.

Averaged R2 and MSE over the folds are shown in Table
1. Noticeably, the improvement in prediction accuracy ob-
tained by PerturbX over the other models is more significant
in the TP53-WT cell lines which are more responsive, and
consequently, harder to predict. Furthermore, as the base-
line model predicts the mean DE, taken uniformly over the
training cell lines, the improvement over this baseline is at-
tributed to our model’s ability to exploit cell line similarity.

Figure 2. PerturbX successfully predicts differential gene expres-
sion in cell lines which do (NCIH226) and do not (BICR6) respond
to idasanutlin. The top 100 DEGs (indicated by large dots) were
chosen based on the response across all cell lines. The data points
highlighted in red indicate the top 10 DEGs.

To investigate how PerturbX can capture a biologically rep-
resentative latent embedding, we next examined the 2D
UMAP of the trained latent representation Z. The UMAP

Table 1. Performance metrics for PerturbX, scGen and the baseline
model. R2 results are reported on all cell lines, and separately for
TP53-WT and TP53-mutated cell lines. All metrics are measured
over the top 100 DEGs unless stated otherwise.

MODEL E[R2] E[R2]
(WT)

E[R2]
(MUT)

MSE MSE -
ALL GENES

PERTURBX 0.947 0.868 0.98 0.05 0.004
SCGEN 0.872 0.631 0.972 0.126 0.0068
BASELINE 0.89 0.711 0.964 0.108 0.0056

plot, shown in Figure 3a, confirms that cell lines, in both
train and test sets, are mapped into different clusters in the
latent space in accordance with their TP53 mutational status.

We next determined the contribution of the input genes on
the predicted outcome (see section 2.2.2). Decomposition
of Z using PCA reveals that the first principal component,
w1, captures the distinction between responsive and non-
responsive cell lines. Therefore, to identify the genes which
are indicative of cell response, we compute gene importance
scores with respect to w1 by assessing the Shapley values of
the function X → ϕ(X) · w1. The top 10 genes are shown
in Figure 3b. 6 of these genes are known TP53 targets:
CCL2 (Tang et al., 2012), MDM2 (Momand et al., 1992),
SERPINE1 (Akula et al., 2020), RPS27L (He & Sun, 2007),
IGFBP7 (Chen et al., 2011), and C1QL1 (Mei et al., 2008).

(a) (b)

Figure 3. (a) UMAP visualization of the trained embedding Z.
Each dot is the aggregated representation of a single cell line. (b)
Genes contributing to the predicted expression upon perturbation
of p53 signaling are enriched for known p53 targets.

4. Discussion
We present PerturbX, a deep learning model which predicts
the transcriptional response to perturbation based on the
unperturbed state representation of a given cellular context.
It learns a low-dimensional representation of cell types that
reflects the similarity in response to a given perturbation,
and is able to capture a diverse and heterogeneous response
landscape. In addition, PerturbX identifies genetic features
from the unperturbed state which most significantly con-
tribute to the predicted output in a manner aligned with a
priori domain-specific knowledge.
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