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Abstract
Spatial transcriptomic technologies profile gene
expression in-situ, facilitating the spatial char-
acterisation of molecular phenomena within tis-
sues, yet often at multi-cellular resolution. Com-
putational approaches have been developed to
infer fine-grained cell-type compositions across
locations, but they frequently treat neighbour-
ing spots independently of each other. Here we
present GNN-C2L, a flexible deconvolution ap-
proach that leverages proximal inductive biases
to propagate information along adjacent spots. In
performance comparison on simulated and semi-
simulated datasets, GNN-C2L achieves increased
deconvolution performance over spatial-agnostic
variants. We believe that accounting for spatial in-
ductive biases can yield improved characterisation
of cell-type heterogeneity in tissues.

1. Introduction
Analysing the spatial organisation of cells within a tissue
can shed light on fundamental biological processes, includ-
ing intercellular communication (Fischer et al., 2023) and
organogenesis (Lohoff et al., 2022), and mechanisms of
diseases like cancer, diabetes, and autoimmune disorders
(Solinas et al., 2007; Wang et al., 2013; Vlahopoulos et al.,
2015). Spatial transcriptomics technologies have recently
enabled gene expression profiling in situ, but they often lack
single-cell resolution, impeding fine-grained characterisa-
tion of cellular heterogeneity and effective reconstruction
of tissue architectures.

Computational approaches for cell-type deconvolution in
spatial transcriptomics offer a scalable solution to these
challenges. These strategies often identify resident cell
types from the RNA sequencing of dissociated single cells,
yielding cell-type-specific gene expression signatures, and
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Figure 1: Jensen-Shannon distance of cell-type proportions
by spot distance in Xenium dataset (breast cancer, convolved
spots of size 50µm). Closer spots tend to exhibit similar
cell-type composition.

then infer the cell-type composition of every profiled spot
(Elosua-Bayes et al., 2021; Cable et al., 2022; Dong &
Yuan, 2021). A cutting-edge method in this family is
Cell2Location (Kleshchevnikov et al., 2022), a Bayesian
deconvolution approach that captures cell-type relationships
through a hierarchical model and handles technical sources
of variation like differences in mRNA detection sensitivity.
Despite numerous benefits, however, existing deconvolution
approaches treat spots independently of each other.

In this study, we investigate whether incorporating spatio-
relational information leads to improved cell-type mapping.
Building on the observation that neighbouring spots often
exhibit similar cell-type compositions (Figure 1), we extend
Cell2Location (C2L) to incorporate spatial inductive biases.
Our approach, named GNN-C2L, propagates learnable mes-
sages on the proximity graph of spot transcripts, effectively
leveraging the spatial relationships between spots and ex-
ploiting the co-location of cell-types (Figure 2). We conduct
an extensive ablation study on synthetic and real spatial
transcriptomics datasets and show improved deconvolution
performance of GNN-C2L over spatial-agnostic variants.
Altogether, our work leverages proximal inductive biases to
facilitate enhanced reconstruction of tissue architectures.
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Figure 2: Neighbourhood enrichment analysis on the Xenium dataset (breast cancer). The color legend is given by the y-axis
of the neighbourhood heatmap. (left) Spatial transcriptomics data colored by cell-type. (right) Neighbourhood enrichment
z-scores (red and blue indicate enrichment and depletion in the neighbourhood of nearest neighbours, respectively). Cells
from the same cell-type tend to co-locate (e.g. breast cancer cells). Immune cells — including T cells, B cells, and
macrophages — work in conjunction to modulate the anti-cancer immune response (Gonzalez et al., 2018). Utilising
relational inductive biases could therefore enhance the effectiveness of spatial deconvolution models, thereby improving the
characterisation of tumor microenvironments at different stages of cancer progression.

2. Methodology
Problem formulation Let D ∈ RS×G denote a count
matrix of RNA reads captured at S spots for G genes, using
one or multiple batches (e.g. 10x Visium slides or Slide-seq
pucks). Let ds,g be the entry of this matrix with the number
of reads for gene g in spot s. Let C ∈ RF×G denote a
matrix of F reference cell-type signatures for the same set
of G genes (e.g. these signatures can be obtained from
dissociated single-cell RNA-seq, Appendix A). Denote by
cf,g the expression of gene g in signature f . Given the count
matrix D and cell-type signatures C, our goal is to infer the
cell-type composition X ∈ RS×F of every spot.

Cell2Location Our relational approach builds on
Cell2Location (Kleshchevnikov et al., 2022, Appendix
A), which models the per-spot read counts D as Negative
Binomial (NB) distributed:

ds,g ∼ NB(µs,g, αe,g)

where αe,g is an experiment- and gene-specific over-
dispersion parameter and the unobserved expression rate
µs,g is modelled as a linear function of the reference cell-
type signatures cf,g:

µs,g =
(
mg ·

∑
f

ws,fcf,g + se,g

)
· ys

where ws,f corresponds to the abundance of cell-type f at
location s, mg is a scaling parameter specific to gene g, se,g
is an experiment- and gene-specific additive shift, and ys is
the detection sensitivity at spot s.

GNN-C2L We propose a hierarchical model for cell-type
composition inference that incorporates proximal relation-
ships between spots. Let N (s) be the set of neighbour
indices for spot s. This set of neighbours can be adapted
to various spatial arrangements (e.g. hexagonal neighbour-
hoods for 10X Visium data) and k-hop neighbourhoods.
To account for the neighbourhood information, we intro-
duce a latent variable γs,f representing the neighbour-aware
cell-type abundances:

γs,f ∼ Gamma(κs,f , 1)

κs = ψ
(
ws, {{wj | j ∈ N (s)}}

)
where the shape parameter κs,f depends on the latent vari-
ables ws and {{wj | j ∈ N (s)}} of spot s and its neigh-
bours through a transformation ψ(·). Unlike Cell2Location,
this effectively adds graphical dependencies between the
neighbour-informed variables γs,f and the latent variables
ws,f (Appendix A). Importantly, computing γs,f as a func-
tion of ws allows capturing cell-type co-location patterns.

We then compute mean parameter µs,g of the Negative Bino-
mial NB(µs,g, αe,g) likelihood using the neighbour-aware
cell-type abundances γs,f :

µs,g =
(
mg ·

∑
f

γs,fcf,g + se,g
)
· ys

For all parameters, we utilise the validated hierarchical pri-
ors and hyperpriors of Cell2Location (Appendix A).

Incorporating spatial inductive biases The form of ψ(·)
determines the inductive biases of the model. In this study,
we construct a proximity graph of spatially localised spots,
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i.e. we consider physically adjacent spots, allowing for dif-
ferent spatial arrangements (e.g. hexagonal neighbourhoods
for 10X Visium data) and k-hop neighbourhoods. We con-
sider several graph neural network architectures for ψ(·),
starting with simple graph convolutional network (Wu et al.,
2019) to validate whether homophily (enacted by feature
propagation) is a useful inductive bias, and introducing other
GNN operators to allow for a more expressive use of the
available spatio-relational data. We also consider a standard
multi-layer perceptron as a baseline to assess whether perfor-
mance changes can be attributed to similarly parametrised
spatial-agnostic transformations. We next describe the alter-
natives for ψ in greater detail.

MLP-C2L As a spatial-agnostic control, we model ψ(·)
with an MLP, i.e. κs = MLP(ws), using a softplus activa-
tion function. This model does not utilise any spatial rela-
tionships between the spots and, alongside Cell2Location,
serves as a control for our hypothesis.

SGC-C2L We construct a GNN-C2L variant using Simple
Graph Convolutional (SGC) layers (Wu et al., 2019; Scherer
et al., 2019). Let ds = |N (s)| be the node degree of spot
s. A SGC layer computes the neighbour-aware features κs

using a weighted average of the latent variables ws in the
local neighbourhood:

κs = Linear(hs)

hs =
1

ds + 1
ws +

∑
j∈N (s)

1√
(ds + 1)(dj + 1)

wj

The feature propagation mechanism biases the representa-
tions κs of neighbouring spots to become more similar to
each other, using a degree-normalised adjacency matrix with
self-loops. Thus, this simple MLP extension encourages ho-
mophilous latent cell-type distributions. Optionally, we can
apply an activation function after the linear transformation
and stack several SGC layers to expand the receptive field.

GAT-C2L We increase the expressivity of ψ(·) by utilising
graph attention networks, specifically GATv2 (Brody et al.,
2022). Unlike the constant, degree-dependant neighbouring
contribution in the SGC-C2L model, the GATv2-C2L vari-
ant employs a learnable attention mechanism with increased
control of contribution strengths, allowing to capture both
homophilic and cell-type co-location patterns:

κs = αs,sϕ(ws) +
∑

j∈N (s)

αs,jϕ(wj)

where ϕ is an MLP with a softplus activation function. We
define the attention coefficient αs,j as:

αs,j =
exp e(ws,wj)∑

k∈N (s)∪{s} exp e(ws,wk)

e(ws,wj) = aT LeakyReLU(W [ws||wj ])

where || is the concatenation operation and a and W are
learnable parameters shared across spots, allowing the neu-
ral network to mix signals over the different cell types.

Training and inference We approximate the model pa-
rameters through variational inference. For every latent
variable, we use a univariate normal distribution to approxi-
mate the posterior and utilise a softplus activation to ensure
a positivity. Minimisation of the ELBO jointly trains the pa-
rameters of the model (and the incorporated GNNs) as well
as the variational distribution. After optimisation, we esti-
mate the cell-type abundances of every spot s by averaging
γs,f over 1000 samples of the variational distribution.

3. Experimental setup
We study whether incorporating spatial relationships via
graph neural networks leads to enhanced cell-type mapping.

Datasets To quantitatively benchmark the baselines, we
utilised a synthetic dataset introduced in Cell2Location
(Kleshchevnikov et al., 2022) for which we knew the “true”
cell-type abundances of each spot. The construction of this
dataset is detailed extensively in (Kleshchevnikov et al.,
2022). Moreover, we evaluated the methods using two real
datasets, MPOA (Moffitt et al., 2018) and Xenium (breast
cancer) (Janesick et al., 2022), that have single-cell resolu-
tion (yet fewer genes are profiled). To simulate real spots,
we divided the tissues into squared spots of size 100µm
and summed the expression of all cells within every square
(Appendix B). For the Xenium and MPOA datasets, we
constructed the cell-type signatures by averaging the read
counts of all cells from every given cell-type (Appendix C).

Hyperparameter settings We used the same hyperparam-
eters for every baseline where applicable. We set the hidden
dimensions of each layer to 64 and used a single GNN layer
(i.e. 1-hop receptive field). We conducted an ablation study
using more graph layers in Appendix D. We minimised the
variational lower bound using Adam (Kingma & Ba, 2014)
with learning rate of 0.001 for 25,000 epochs in all datasets.

Evaluation metrics For all datasets we assessed perfor-
mance using the average Pearson R correlation, Jensen-
Shannon Divergence (JSD), and the area under precision-
recall curve (AUPRC) (macro-averaged over cell-types) be-
tween the ground-truth and inferred cell-type proportions.
We computed Pearson R over the flat ground-truth and
inferred cell-type proportions. We calculated the Jensen-
Shannon Divergence between the per-spot ground-truth and
inferred cell-type proportions. We binarised the true cell
abundance matrix to show which cell types were present
in which locations, and then used the inferred cell-type
proportions to compute the AUPRC.
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Table 1: Average Pearson R, Avg. Jensen Shannon divergence (JSD), and AUPRC scores and standard deviation of 5 seeded
runs of each model over all spots. For the synthetic dataset, scores for subcategories of cell types exhibiting distinct cell
abundance patterns are also provided. Bold numbers indicate best-performing method for each category of cell types being
evaluated for each metric. Overall, the GNN-C2L spatial-aware variants attained equal or superior deconvolution scores
than spatial-agnostic baselines.

Simulated Semi-simulated

Method ALL UHCA ULCA RHCA RLCA MPOA Xenium Metric

Cell2location 0.683 ± 0.002 0.882 ± 0.001 0.519 ± 0.007 0.836 ± 0.004 0.422 ± 0.003 0.929 ± 0.001 0.928 ± 0.002

R
GNN-C2L (MLP) 0.672 ± 0.024 0.866 ± 0.008 0.661 ± 0.021 0.865 ± 0.007 0.404 ± 0.040 0.920 ± 0.005 0.929 ± 0.000
GNN-C2L (SGC) 0.699 ± 0.023 0.876 ± 0.008 0.708 ± 0.020 0.883 ± 0.006 0.439 ± 0.041 0.936 ± 0.001 0.928 ± 0.000
GNN-C2L (GAT) 0.737 ± 0.013 0.885 ± 0.018 0.695 ± 0.032 0.888 ± 0.004 0.492 ± 0.032 0.936 ± 0.001 0.928 ± 0.000

Cell2location 0.468 ± 0.001 0.202 ± 0.002 0.496 ± 0.001 0.421 ± 0.002 0.509 ± 0.001 0.204 ± 0.001 0.213 ± 0.005

Avg. JSDGNN-C2L (MLP) 0.457 ± 0.006 0.230 ± 0.012 0.473 ± 0.007 0.387 ± 0.006 0.503 ± 0.009 0.199 ± 0.004 0.211 ± 0.001
GNN-C2L (SGC) 0.446 ± 0.006 0.224 ± 0.011 0.460 ± 0.007 0.368 ± 0.005 0.493 ± 0.009 0.189 ± 0.001 0.211 ± 0.001
GNN-C2L (GAT) 0.435 ± 0.003 0.209 ± 0.021 0.458 ± 0.014 0.369 ± 0.001 0.482 ± 0.006 0.188 ± 0.001 0.212 ± 0.000

Cell2location 0.591 ± 0.003 0.932 ± 0.006 0.477 ± 0.005 0.783 ± 0.003 0.591 ± 0.003 0.956 ± 0.001 0.873 ± 0.003

AUPRCGNN-C2L (MLP) 0.675 ± 0.002 0.963 ± 0.006 0.590 ± 0.004 0.804 ± 0.004 0.675 ± 0.002 0.951 ± 0.001 0.883 ± 0.001
GNN-C2L (SGC) 0.719 ± 0.002 0.977 ± 0.004 0.646 ± 0.006 0.861 ± 0.001 0.719 ± 0.002 0.955 ± 0.000 0.884 ± 0.000
GNN-C2L (GAT) 0.722 ± 0.002 0.978 ± 0.004 0.664 ± 0.004 0.858 ± 0.003 0.722 ± 0.002 0.952 ± 0.001 0.884 ± 0.000

4. Results and discussion
We benchmark spatial-agnostic (Cell2location, GNN-C2L
MLP) and spatial-aware GNN-C2L (SGC, GAT) baselines
on simulated and semi-simulated (MPOA and Xenium) spa-
tial transcriptomics data (Table 1).

Results on simulated dataset We studied deconvolution
performance on the synthetic data over: 1) ALL: all cell
types, 2) ubiquitious high cell abundance (UHCA): 3 high-
abundance cell types spatially distributed in uniform manner
across the tissue, 3) ubiquitious low cell abundance (ULCA):
5 low-abundance cell types spatially distributed in uniform
manner across the tissue, 4) regional high cell abundance
(RHCA): 9 cell types with local distribution patterns, that
is, cell types are clustered in specific locations with high
abundance and exhibit 0 abundance elsewhere, 5) regional
low cell abundance (RLCA): 32 low-abundance cell types
that have local distribution patterns.

Overall, GNN-C2L consistently outperformed the spatial-
agnostic baselines on the synthetic data (Table 1). We ob-
served a marked increase in performance through the util-
isation of proximal relations across different metrics and
subtasks. Spatial-aware baselines achieved the best scores
in 13 out of 15 cases, especially for cell types with low
cell abundance (ULCA and RLCA). The performance dif-
ference was particularly apparent from the overall scores
of the MLP variant of GNN-C2L (ALL R: 0.672± 0.024,
JSD: 0.457 ± 0.006, AUPRC: 0.675 ± 0.002) and GNN-
C2L SGC (ALL R: 0.699 ± 0.023, JSD: 0.446 ± 0.006,
AUPRC: 0.719 ± 0.002) — both baselines utilised the
number amount of learnable parameters, yet only GNN-
C2L (SGC) propagates information across spots. It is also

worth noting that using additional parameters may result
in degraded performance, i.e. compared to Cell2Location
(ALL R : 0.683 ± 0.002), GNN-C2L (MLP) attained re-
duced Pearson R correlation and increased variance (ALL
R : 0.672 ± 0.024). Altogether, our results highlight the
superior ability of GNN-C2L to perform cell-type deconvo-
lution.

Results on semi-simulated datasets In performance
comparison on the semi-simulated datasets (MPOA and
Xenium), the spatial-aware GNN-C2L variants achieved
equal or better deconvolution performance than the spatial-
agnostic baselines (Table 1). On MPOA, all baselines per-
formed well — it is worth noting that this is a considerably
smaller dataset with larger spot sizes (per-spot average of 18
cells) compared to the synthetic (∼9 cells per spot) and Xe-
nium (∼10 cells per spot) datasets. This may have an effect
on the specificity of the transcript readings as well as the use-
fulness of local information considering the size of micro-
architectures in the tissue. We observed that GAT-C2L had
the best scores in 2 out of 3 metrics (R: 0.492 ± 0.032,
JSD: 0.188± 0.001), while Cell2Location was superior in
terms of AUPRC (0.956 ± 0.001). In the Xenium dataset,
all baselines attained comparable results (e.g. Cell2location
R: 0.928 ± 0.000, GAT R: 0.928 ± 0.000; Cell2location
AUPRC: 0.873±0.003, MLP AUPRC: 0.883±0.001, SGC
AUPRC: 0.884± 0.000).

Collectively, our results suggest that spatial deconvolution
can benefit from spatio-relational inductive biases, with
potential for enhanced reconstruction of tissue architectures.

Code availability GNN-C2L is publicly available at
https://github.com/paulmorio/GNN-C2L.

https://github.com/paulmorio/GNN-C2L
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Badia-i Mompel, P., Vélez Santiago, J., Braunger, J., Geiss,
C., Dimitrov, D., Müller-Dott, S., Taus, P., Dugourd, A.,
Holland, C. H., Ramirez Flores, R. O., et al. decoupler:
ensemble of computational methods to infer biological
activities from omics data. Bioinformatics Advances, 2
(1):vbac016, 2022.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F.,
Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Hors-
fall, P., and Goodman, N. D. Pyro: Deep Universal Prob-
abilistic Programming. Journal of Machine Learning
Research, 2018.

Brody, S., Alon, U., and Yahav, E. How attentive are
graph attention networks? In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=F72ximsx7C1.

Cable, D. M., Murray, E., Zou, L. S., Goeva, A., Macosko,
E. Z., Chen, F., and Irizarry, R. A. Robust decomposition
of cell type mixtures in spatial transcriptomics. Nature
Biotechnology, 40(4):517–526, Apr 2022. ISSN 1546-
1696. doi: 10.1038/s41587-021-00830-w. URL https:
//doi.org/10.1038/s41587-021-00830-w.

Dong, R. and Yuan, G.-C. Spatialdwls: accurate decon-
volution of spatial transcriptomic data. Genome Biol-
ogy, 22(1):145, May 2021. ISSN 1474-760X. doi:
10.1186/s13059-021-02362-7. URL https://doi.
org/10.1186/s13059-021-02362-7.

Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I., and Heyn,
H. SPOTlight: seeded NMF regression to deconvo-
lute spatial transcriptomics spots with single-cell tran-
scriptomes. Nucleic Acids Research, 49(9):e50–e50, 02
2021. ISSN 0305-1048. doi: 10.1093/nar/gkab043. URL
https://doi.org/10.1093/nar/gkab043.

Fischer, D. S., Schaar, A. C., and Theis, F. J. Model-
ing intercellular communication in tissues using spa-
tial graphs of cells. Nature Biotechnology, 41(3):332–
336, Mar 2023. ISSN 1546-1696. doi: 10.1038/
s41587-022-01467-z. URL https://doi.org/10.
1038/s41587-022-01467-z.

Gonzalez, H., Hagerling, C., and Werb, Z. Roles of
the immune system in cancer: from tumor initiation to
metastatic progression. Genes & development, 32(19-20):
1267–1284, 2018.

Hamilton, W. L. Graph representation learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
14(3):1–159.

Heumos, L., Schaar, A. C., Lance, C., Litinetskaya, A.,
Drost, F., Zappia, L., Lücken, M. D., Strobl, D. C.,
Henao, J., Curion, F., Aliee, H., Ansari, M., Badia-i
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A. Cell2Location and GNN-C2L model description
In order to describe our model we will first go over the construction of Cell2Location (Kleshchevnikov et al., 2022).
Cell2Location is a Bayesian inference model built in a hierarchical manner to account for different sources of confounding
experimental information.

Let D ∈ RS×G denote a mRNA count matrix with its entries corresponding to mRNA count at spot s ∈ {1, ..., S} from one
or multiple batches (i.e. 10x Visium slides or SlideSeq pucks) for genes g ∈ {1, ..., G}. Let C ∈ RF×G denote a matrix of
reference cell type signatures obtained from learning on the scRNA data (see Section A.1.1). Note that D and C need to
be aligned such that they cover the same set of genes G. Cell2Location models the elements of D as Negative Binomial
distributed (NB), given an unobserved expression level (rate) µs,g and a gene- and experiment- specific over-dispersion
parameter αe,g:

ds,g ∼ NB(µs,g, αe,g) (1)

This can be equivalently expressed as a Gamma-Poison mixture with a Poisson likelihood (count measurement model) and a
Gamma-distributed mean (expression dispersion model):

ds,g ∼ Poisson(Gamma(αe,g,
αe,g

µs,g
)) (2)

The expression level of genes µs,g in the mRNA count space is modelled as a linear function of the reference cell type
expression signatures:

µs,g =
(
mg ·

∑
f

ws,fgf,g + se,g

)
· ys (3)

• Herews,f denotes regression weight of each reference signature f at location s, which can be regarded as the abundance
or proportion of cells expressing reference cell type signature f at s. This is the latent variable that we care about and
intend to infer.

• mg denotes a gene-specific scaling parameter, which adjusts for global differences in expression estimates between
technologies.

• se,g captures gene specific additive shift (due to free-floating RNA).

• ys denotes a location-specific scaling parameter, which models variation in RNA detection sensitivity across locations
and experiments. This parameter scales the contributions of the cell types and the gene specific additive shift se,g .

We dive into the derivation of the prior distributions for each of the latent variables.

Cell abundance across locations ws,f This is Gamma distributed according to

ws,f ∼ Gamma(µw
s,fv

w, vw), (4)

where vw is a fixed hyperparameter denoting prior strength, the prior mean parameter is modelled in a hierarchical fashion,
decomposing the regression weights into R latent groups of cell types r = {1, ..., R} (by default Cell2Location uses
R = 50) accounting for linear dependencies in spatial abundance of cell types:

µw
s,f =

∑
r

zs,rxr,f (5)

Intuitively, R can be considered as the number of cellular compartments or zones in the tissue that are characterised by
shared cell type composition. The authors observed that the sensitivity of mapping cell types with small transcriptional
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difference increases when accounting for these dependencies. For our purposes we are not interested in this parameter and
utilise the default for all experiments.

zs,r and xr,f are prior distributions defined to control absolute scale of the cell type abundance estimates, guiding ws,f to
the scale of the number of the abundance of cells expressing reference cell type signature f at location s. These priors are
important because there is a non-identifiability between mg, ys, ws,f unless informative priors are constructed for each
of them. Moreover, the prior distributions help control the sparsity of how many cell types f are expected at each spot
s, facilitating application of Cell2Location to tissues and technologies with varying numbers of cells and cell types per
location. The hyperparameters controlling the ws,f prior can be estimated from a paired histology image or a literature
based estimate. The hyperparameters controlling ys can be estimated based on total RNA counts in the input data and the
quality of the experiment. The prior distribution zs,r is defined as follows:

zs,r ∼ Gamma(
Bs

R
,
1
Ns

Bs

) (6)

Ns ∼ Gamma(N̂ · vn, vn) (7)

Bs ∼ Gamma(B̂, 1) (8)

where Ns is associated to the latent average number of cells in each location, and Bs is the latent number of groups r
expected in each spot s. N̂ is a user-defined estimate of the expected number of cells per location (see end of this section).
B̂ is the expected average number of cellular components or zones per location; by default it is initialised to 7. vn denotes a
prior strength. The construction is done such that

∑
r zs,r ≥ Ns. In other words, the expectation of the sum over zs,r equals

the expected number of cells per location Ns and that on average each location has a high value of zs,r for Bs expected cell
type groups.

xr,f represents the contribution of each latent cell type group r to the abundance of each cell type f and is Gamma distributed
in the following manner:

xr,f ∼ Gamma(
Kr

R
,Kr) (9)

Kr ∼ Gamma(
Â

B̂
, 1) (10)

Kr represents the unobserved number of cell types for each group r. This prior controls the absolute values of xr,f such
that on average

∑
r xr,f = 1. Â and B̂ intuitively represent the expected number of cell types per spot, and the expected

number of cellular components per spot respectively. By default both Â and B̂ are initialised at 7, indicating the prior belief
that the spatial abundance of each cell type f is independent from other cell types. Conversely, each group r has have a
large value of xr,f for many cell types f when Â > B̂.

Gene specific multiplicative scaling factor mg This is modelled as Gamma distributed with hierarchical prior µm and
αm which provide regularisation:

mg ∼ Gamma(αm,
αm

µm
) (11)

αm =
1

(om)2
(12)

om ∼ Exponential(3) (13)
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µm ∼ Gamma(1, 1) (14)

The prior on detection efficiency ys per location This prior is selected to discourage over normalisation, such that unless
data has evidence of strong within-experiment variability in RNA detection sensitivity across locations, it is assumed to be
small and close to the mean sensitivity for each experiment or batch ye:

ys ∼ Gamma(αy,
αy

ye
) (15)

ye ∼ Gamma(10,
10

µy
) (16)

where αy is a user defined hyperparameter that regularises within experiment variation; and ye is a latent detection efficiency
for each batch or experiment e. muy is estimated using observed variables (ds,g and gf,g) and the hyperparameter N̂ in the
following manner:

µy =

∑
s

∑
g

ds,g
S

N̂∑
f

∑
g

gf,g
F

(17)

where we remind ourselves that S is the total number of spots, and F is the total number of cell types.

Overdispersion containment prior αe,g A containment prior (Simpson et al., 2017) is used to model the latent variance
of the negative binomial distribution modelling ds,g . This prior is intended to encourage simplicity of the NB model making
it closer to the Poisson distribution (via larger αe,g values producing bigger probability masses). Thus the prior expresses a
belief that most genes have low overdispersion:

αe,g =
1

o2e,g
(18)

oe,g ∼ Exponential(βo) (19)

βo ∼ Gamma(9, 3) (20)

where the constants 9 and 3 correspond to values of αe,g observed in previous modelling studies (Kleshchevnikov et al.,
2022; Lopez et al., 2018).

Additive shift bias se,g This latent variable accounts for confounding effects on RNA counts for every gene g for every
experiment e caused by phenomena such as free-floating RNA in the tissue sample. This additive shift is modelled using a
Gamma distribution again with hierarchical experiment specific priors αs

e and βs
e which provide regularisation:

se,g ∼ Gamma(αs
e,
αs
e

µs
e

) (21)

µs
e ∼ Gamma(1, 100) (22)

αs
e =

1

(oe)2
(23)

oe ∼ Exponential(βs) (24)
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βs ∼ Gamma(9, 3) (25)

The hierarchical priors αs
e and βs

e model the variation across experiments e. βs serves as a hyperparameter that allows the
model to learn αs

e rather than requiring a user to define it.

This leaves Cell2Location with two hyperparameters whose values have to be considered based on the dataset and how the
spatial transcriptomics experiment was performed:

1. N̂ : the expected number of cells per spot. This is a tissue-level global estimate, which can be derived from paired
histology images (see the H&E stained image in Figure 3). An estimate may be obtained by manually counting nuclei
in a set of random spots using the appropriate software from the measurement device (e.g. 10x Loupe Browser for
the Visium slides outputs). When this is not available one can also use the size of the captured regions relative to an
expected cell size.

2. αy: the regularising hyperparameter for within-experiment variation of RNA detection sensitivity. In the default setting
it is assumed that there is little variability in the RNA detection sensitivity so αy is set to αy = 200 which results in
values of ys close to the mean sensitivity for each experiment ye. A lower value would enforce a stronger normalisation
to the sensitivity, and a correspondingly lower regularisation toward the mean sensitivity.

A.1. Description of Cell2Location deconvolution pipeline

The desired cell type compositions of the spots in Cell2Location are obtained using two main steps:

1. Computing cell type specific gene expression signatures using reference single-cell RNA-seq data.

2. Using variational inference to sample latent posterior distributions for the cell type proportions.

A.1.1. COMPUTING REFERENCE CELL TYPE SIGNATURES

Cell type signatures are obtained by performing regularised Negative Binomial regression. The motivation behind using
this model is that it would robustly derive the reference expression values of cell types gf,g using input data composed of
different batches e = {1, ..., E} and technologies t = {1, ..., T} that may affect the results (though for our case studies this
is actually not utilised) (Kleshchevnikov et al., 2022). Here the expression count matrix J = {jc,g}, c ∈ C, g ∈ G follows a
Negative Binomial distribution with unobserved expression levels (rates) µc,g and a gene-specific over-dispersion αg:

Jc,g ∼ NB(µc,g,
1

α2
g

) (26)

µc,g is modelled as a linear function of the reference cell type signatures and the batch/technical effects:

µc,g = (gf,g + be,g)hept,g (27)

where he is a global scaling parameter between experiments e (for example difference in sequencing depth, or the number of
times a given nucleotide has been read in an experiment (Lopez et al., 2018)). pt,g accounts for multiplicative gene-specific
difference in sensitivity between technologies, be,g accounts for additive background shift of each gene in each experiment e
caused by free-floating RNA.

The priors of these variables are specified in hierarchical manner using similar constructions as we have seen previously
with Cell2Location:

gf,g ∼ Gamma(1, 1) (28)

he ∼ Gamma(1, 1) (29)
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pt,g ∼ Gamma(200, 200) (30)

The prior on the additive shift variable be,g is specified in the same manner as se,g (Equations 7.21-7.25). The prior on αg is
specified similarly to αe,g (Equations 7.18-7.20):

αg =
1

o2g
(31)

og ∼ Exponential(βo) (32)

βo ∼ Gamma(9, 3) (33)

All model parameters are constrained to be positive. A weak L2 regularisation of gf,g, be,g , and αg is set alonside a strong
penalty for deviations of he and pt,g from 1. The average for each cell type f is used to initialise gf,g. be,g is initialised at
the average expression of each gene g in each experiment e divided by 10 (Lopez et al., 2018; Kleshchevnikov et al., 2022).

A.1.2. INFERENCE

Stochastic variational Bayesian inference is used to approximate the posterior distributions, enacted through Pyro (Bingham
et al., 2018) and its autodiff variational inference framework (ADVI). Briefly, the latent posterior distributions of the model
are approximated using univariate normal distributions which are softplus transformed to ensure positive scaling. The
parameters of the variational distributions are chosen through minimisation of the KL divergence between the variational
approximation and the true posterior distribution. This is equivalently achieved by maximising the evidence lower bound
(ELBO objective).

After this optimisation, the posterior mean, standard deviation, 5% and 95% quantiles for each parameter are computed
using 1000 samples from the variational posterior distribution. The mean was used for all of the results we show in the
results section.

A.2. GNN-C2L: spatially aware spatial cell deconvolution

Our methods build upon the Cell2Location pipelines, introducing relational inductive biases enacted by different instances of
the message passing neural network framework. This primarily consists of two major additions. The first is the construction
of the underlying graph that establishes proximal relationships between each of the observations we are interested in: the
spots. The second is the augmentation of the Cell2Location generative model and the introduction of graph neural networks
into them.

A.2.1. CONSTRUCTING A SPATIAL PROXIMITY GRAPH ON THE SPATIAL RNA-SEQ OUTPUT

As with many GRL methods, the underlying graph is an important factor behind actualising the assumption we intend
to incorporate with relational inductive biases and obtaining performance gains (Hamilton). However, first and foremost
we explore the utilisation of proximity and the assumption that proximal spots exhibit similar cell type compositions or
specific cell type relationships between spots. To utilise this we want a graph neural network to operate on the proximity
graph of spots after they have been selected by standard preprocessing pipelines (Heumos et al., 2023; Lopez et al., 2018;
Kleshchevnikov et al., 2022). Depending on the positional arrangement of spots dictated by the spatial transcriptomics
technology used — for example, hexagonal arrangement in 10x Visium slides as seen in Figure 4, or the grid arrangement
found in our pseudo-synthetic dataset — a different number of neighbours is specified alongside the size of the local
perceptive field we want a single layer of a GNN to operate over.

A.2.2. GNN-C2L

We propose a hierarchical model for cell-type composition inference that incorporates proximal relationships between spots.
Let N (s) be the set of neighbour indices for spot s. This set of neighbours can be adapted to various spatial arrangements
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Figure 3: Visium slide of a human lymph node tissue publicly available at the 10x Genomics dataset portal, accessed through
scanpy (Wolf et al., 2018). In these images the circular spots are overlaid over the Hematoxylin and eosin stain (H&E)
image of the tissue sample. Note the non-uniform dispersion of the spots. The left figure highlights the total number of
counts read for every gene, and the right figure summarises the number of genes with at least 1 count in a cell, highlighting
the diversity of gene expression patterns spatially across the tissue.

Figure 4: An example of the proximity graph computed using 6 neighbours for each spot in the hexagonal arrangement
utilised in the 10X Visium protocol for a human lymph node sample (publicly available through the 10x Genomics dataset
portal, accessed through scanpy (Wolf et al., 2018)). On the left is the output of the spatial transcriptomics sequencing with
colouring of the spots based on the transcript counts for the gene PTPRC. The right shows the underlying proximity graph
between each of the spots with its 6 closest neighbours.
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(e.g. hexagonal neighbourhoods for 10X Visium data) and k-hop neighbourhoods. To account for the neighbourhood
information, we introduce a latent variable γs,f representing the neighbour-aware cell-type abundances:

γs,f ∼ Gamma(κs,f , 1)

κs = ψ
(
ws, {{wj | j ∈ N (s)}}

)
where the shape parameter κs,f depends on the latent variables ws and {{wj | j ∈ N (s)}} of spot s and its neighbours
through a transformation ψ(·). Unlike Cell2Location, this effectively adds graphical dependencies between the neighbour-
informed variables γs,f and the latent variables ws,f (Appendix A). Importantly, computing γs,f as a function of ws allows
capturing cell-type co-location patterns.

We then compute mean parameter µs,g of the Negative Binomial NB(µs,g, αe,g) likelihood using the neighbour-aware
cell-type abundances γs,f :

µs,g =
(
mg ·

∑
f

γs,fcf,g + se,g
)
· ys

For all parameters, we utilise the validated hierarchical priors and hyperpriors of Cell2Location (Appendix A).

Incorporating spatial inductive biases The form of ψ(·) determines the inductive biases of the model. In this study, we
construct a proximity graph of spatially localised spots, i.e. we consider physically adjacent spots, allowing for different
spatial arrangements (e.g. hexagonal neighbourhoods for 10X Visium data) and k-hop neighbourhoods. We consider several
graph neural network architectures for ψ(·), starting with simple graph convolutional network (Wu et al., 2019) to validate
whether homophily (enacted by feature propagation) is a useful inductive bias, and introducing other GNN operators to allow
for a more expressive use of the available spatio-relational data. We also consider a standard multi-layer perceptron as a
baseline to assess whether performance changes can be attributed to similarly parametrised spatial-agnostic transformations.
We next describe the alternatives for ψ in greater detail.

MLP-C2L As a spatial-agnostic control, we model ψ(·) with an MLP, i.e. κs = MLP(ws), using a softplus activation
function. This model does not utilise any spatial relationships between the spots and, alongside Cell2Location, serves as a
control for our hypothesis.

SGC-C2L We construct a GNN-C2L variant using Simple Graph Convolutional (SGC) layers (Wu et al., 2019; Scherer
et al., 2019). Let ds = |N (s)| be the node degree of spot s. A SGC layer computes the neighbour-aware features κs using a
weighted average of the latent variables ws in the local neighbourhood:

κs = Linear(hs)

hs =
1

ds + 1
ws +

∑
j∈N (s)

1√
(ds + 1)(dj + 1)

wj

The feature propagation mechanism biases the representations κs of neighbouring spots to become more similar to each other,
using a degree-normalised adjacency matrix with self-loops. Thus, this simple MLP extension encourages homophilous
latent cell-type distributions. Optionally, we can apply an activation function after the linear transformation and stack several
SGC layers to expand the receptive field.

GAT-C2L We increase the expressivity of ψ(·) by utilising graph attention networks, specifically GATv2 (Brody et al., 2022).
Unlike the constant, degree-dependant neighbouring contribution in the SGC-C2L model, the GATv2-C2L variant employs
a learnable attention mechanism with increased control of contribution strengths, allowing to capture both homophilic and
cell-type co-location patterns:

κs = αs,sϕ(ws) +
∑

j∈N (s)

αs,jϕ(wj)

where ϕ is an MLP with a softplus activation function. We define the attention coefficient αs,j as:

αs,j =
exp e(ws,wj)∑

k∈N (s)∪{s} exp e(ws,wk)

e(ws,wj) = aT LeakyReLU(W [ws||wj ])
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where || is the concatenation operation and a and W are learnable parameters shared across spots, allowing the neural
network to mix signals over the different cell types.

Training and inference We approximate the model parameters through variational inference. For every latent variable,
we use a univariate normal distribution to approximate the posterior and utilise a softplus activation to ensure a positivity.
Minimisation of the ELBO jointly trains the parameters of the model (and the incorporated GNNs) as well as the variational
distribution. After optimisation, we estimate the cell-type abundances of every spot s by averaging γs,f over 1000 samples
of the variational distribution.

B. Dataset details
B.1. Purely synthetic dataset

Briefly, this simulated spatial transcriptomic dataset introduced in Cell2Location (Kleshchevnikov et al., 2022) consists
of 2,500 spots by sampling cells from 49 reference cell types, using a combination of ubiquitous abundance patterns and
cell types distributed according to regional tissue zones as observed in semi-simulated data (Kleshchevnikov et al., 2022).
Reference cell type signatures were adapted from a mouse brain scRNA-seq dataset sequenced by Kleshchevnikov et al.
(2022). The dataset reflects diverse cell abundance patterns across ubiquitous and spatially restricted cell types, which allow
us to evaluate our methods within different cell abundance scenarios in addition to just overall accuracy. The paired reference
scRNA-seq dataset consists of 8,111 cells exhibiting 12,080 genes whose expression is measured (recall this number is an
intersection of the set of transcripts measured in the scRNA-seq and spatial transcriptomic experiments). This dataset is
preprocessed and utilised to compute reference cell type signatures matrix C as detailed in Appendix C.1. More information
on the construction of this dataset is detailed extensively in Section 5 of the supplementary materials in (Kleshchevnikov
et al., 2022).

B.2. MPOA

Briefly, the MPOA dataset is a simulated spatial transcriptomic dataset constructed by aggregating the gene expression of
cells from single-cell resolution multiplex error robust fluorescence in situ hybridisation (MERFISH) data of the mouse
medial preoptic area (Moffitt et al., 2018). The availability of both single-cell resolution gene expression in-situ makes it
an ideal candidate for creating simulated spatial transcriptomic data. It contains measurements of 135 genes selected to
distinguish between major non-neuronal cell types as well as neuronal subtypes. Transcriptional clustering analysis on the
scRNA-seq measurements identified 9 major cell types which are used to form the underlying target proportions we wish to
infer. To simulate the multi-cellular spatial transcriptomic data, the single-cell resolution MERFISH data is aggregated into
100µm2 pixels which we proxy as spot transcripts. More information on this dataset and its availability can be found in the
supplementary materials in (Miller et al., 2022).

B.3. Xenium

The Xenium breast cancer dataset (Janesick et al., 2022) jointly profiled the expression and spatial location of 167,885 cells
(313 genes) from a formalin-fixed, paraffin-embedded (FFPE) human breast cancer section. We utilised squidpy (Palla
et al., 2022) to download, process the data, and detect Leiden communities (https://squidpy.readthedocs.io/
en/stable/external_tutorials/tutorial_xenium.html). We then employed decoupler-py (Badia-i
Mompel et al., 2022) to perform overrepresentation analysis (Figure 5), using breast cancer marker genes (Janesick et al.,
2022). In total, we identified 8 broad cell types including immune cells (e.g. T cells, B cells, and macrophages) and breast
cells (e.g. grandular cells, myoepithelial cells, and cancer cells). We aggregated (i.e. summed) the single-cell resolution
Xenium data into 100µm2 pixels as a proxy for convolved spot transcripts.

C. Additional experimental setup details
C.1. Inference of cell type signatures

As in Cell2Location (Kleshchevnikov et al., 2022), two approaches can be taken to compute cell type signatures matrix
C ∈ RF×G:

https://squidpy.readthedocs.io/en/stable/external_tutorials/tutorial_xenium.html
https://squidpy.readthedocs.io/en/stable/external_tutorials/tutorial_xenium.html
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Figure 5: (left) UMAP plot of Xenium colored by Leiden clusters. (right) Overrepresentation analysis scores for each
Leiden cluster.

1. Inference using Negative Binomial regression Given the raw untransformed and unnormalised count matrix J ∈
R|C|×|G| of the reference scRNA-seq data, several preprocessing steps were taken before it is input to the NB regression to
find cell type signatures. The data is filtered at 2 cut-offs: i) selecting genes detected that have more than 0 mRNA counts
for at least 5% of the cells, and ii) selecting genes with a mean expression greater than 1.1 and a greater than 0 mRNA count
in at least 0.05% of the cells. Subsequently it is given to the NB regression algorithm to infer the cell type signatures.

To infer the cell type signatures, the variational parameters of the Negative Binomial regression model were trained with
stochastic gradient descent on the ELBO objective using a batch size of 1024 cells and an Adam optimiser with a learning
rate set at 0.001 for 500 epochs. The posterior cell signature values were sampled 1000 times and the mean values were
used. To control and simplify comparison between the deconvolution models, the cell type signatures are shared between
each of the methods we evaluate.

This approach is used in the purely synthetic dataset, and is typically the recommended approach in Cell2Location as the
regression model is robust to different technology and batch effects.

2. Using mean counts of genes for each cell type Given the raw untransformed and unnormalised count matrix
J ∈ R|C|×|G| of the reference scRNA-seq data, we compute the average count of genes g ∈ G for each of the cell types in F
to construct C ∈ RF×G. This approach is computationally efficient and can provide good mappings when the scRNA-seq
data is obtained from a single batch or better yet is paired with the spatial transcriptomic data, as is the case in the MPOA
and Xenium datasets. This approach was utilised in our evaluation for MPOA and Xenium.

D. Effect of increasing neighbourhood size
The increased performance through the utilisation of the 1-hop proximal neighbourhoods begs the question of how the size
of the receptive field can influence performance. Recall from Section 2.4.2 that this is as simple as adding more layers
to the graph neural network layers. We present the table of results examining increase of receptive field with SGC-C2L
and GAT-C2L in Tables 2, 3 and 4. Whilst all of the models still consistently outperform the original Cell2Location and
MLP-C2L, we can see certain performs patterns that are in line with GNN theory. Specifically, in all but the average JSD
metric for ULCA we see that the best performing models exist in the first models exhibiting up to 3 layers, exhibiting a drop
in performance after the best performance. This pattern is common GNN based methods due to the oversmoothing and
oversquashing phenomenon (Alon & Yahav, 2020) that prevents GNNs from effectively incorporating information from
distant neighbours as the aggregation of messages into fixed size vectors creates an information bottleneck. In addition to
the mechanical limitation of the GNNs, we also have to consider the relationship between the growing receptive field and its
absolute distance away from the target spot we want to influence in terms of the sizes of cell colocation patterns. Depending
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Table 2: Average Pearson R correlation and standard deviation of 5 seeded runs of each model over all spots. Correlation
values for subcategories of cell types exhibiting distinct cell abundance patterns are also provided. Bold numbers indicate
best performing method for each category of cell types being evaluated.

Methods ALL UHCA ULCA RHCA RLCA

SGC-C2L1 0.699 ± 0.023 0.876 ± 0.008 0.708 ± 0.020 0.883 ± 0.006 0.439 ± 0.041
SGC-C2L2 0.711 ± 0.036 0.890 ± 0.015 0.682 ± 0.027 0.878 ± 0.01 0.458 ± 0.050
SGC-C2L3 0.684 ± 0.063 0.897 ± 0.019 0.689 ± 0.030 0.883 ± 0.006 0.421 ± 0.086
SGC-C2L4 0.704 ± 0.025 0.883 ± 0.022 0.673 ± 0.043 0.881 ± 0.009 0.445 ± 0.043
SGC-C2L5 0.701 ± 0.016 0.884 ± 0.015 0.665 ± 0.032 0.882 ± 0.007 0.443 ± 0.034
SGC-C2L6 0.701 ± 0.016 0.884 ± 0.015 0.665 ± 0.032 0.882 ± 0.007 0.443 ± 0.034

GAT-C2L1 0.737 ± 0.013 0.885 ± 0.018 0.695 ± 0.032 0.888 ± 0.004 0.492 ± 0.032
GAT-C2L2 0.722 ± 0.022 0.879 ± 0.020 0.710 ± 0.042 0.889 ± 0.004 0.473 ± 0.029
GAT-C2L3 0.679 ± 0.039 0.872 ± 0.021 0.723 ± 0.016 0.887 ± 0.007 0.425 ± 0.052
GAT-C2L4 0.709 ± 0.047 0.878 ± 0.016 0.695 ± 0.024 0.883 ± 0.004 0.474 ± 0.070
GAT-C2L5 0.713 ± 0.050 0.857 ± 0.015 0.698 ± 0.027 0.878 ± 0.009 0.478 ± 0.082
GAT-C2L6 0.715 ± 0.050 0.858 ± 0.016 0.699 ± 0.025 0.878 ± 0.009 0.480 ± 0.082

on the cell-types, tissue architecture, and fidelity of the spatial transcriptomic technology, differing receptive field sizes over
spots will be biologically relevant to capturing cell colocation patterns.



Spatio-relational inductive biases for spatial cell type deconvolution

Table 3: Average of average Jensen-Shannon divergence (JSD) along with standard deviation of 5 seeded runs of each model.
JSD values for subcategories of cell types exhibiting distinct cell abundance patterns are also provided. Bold numbers
indicate best performing method for each category of cell types being evaluated.

Methods ALL UHCA ULCA RHCA RLCA

SGC-C2L1 0.446 ± 0.006 0.224 ± 0.011 0.460 ± 0.007 0.368 ± 0.005 0.493 ± 0.009
SGC-C2L2 0.443 ± 0.007 0.208 ± 0.021 0.467 ± 0.010 0.371 ± 0.009 0.489 ± 0.007
SGC-C2L3 0.447 ± 0.011 0.199 ± 0.017 0.463 ± 0.006 0.369 ± 0.007 0.499 ± 0.015
SGC-C2L4 0.448 ± 0.006 0.216 ± 0.019 0.472 ± 0.014 0.375 ± 0.008 0.494 ± 0.009
SGC-C2L5 0.448 ± 0.005 0.207 ± 0.022 0.473 ± 0.010 0.375 ± 0.007 0.493 ± 0.008
SGC-C2L6 0.448 ± 0.005 0.207 ± 0.022 0.473 ± 0.010 0.375 ± 0.007 0.493 ± 0.008

GAT-C2L1 0.435 ± 0.003 0.209 ± 0.021 0.458 ± 0.014 0.369 ± 0.001 0.482 ± 0.006
GAT-C2L2 0.438 ± 0.006 0.223 ± 0.017 0.458 ± 0.014 0.363 ± 0.002 0.486 ± 0.005
GAT-C2L3 0.447 ± 0.008 0.222 ± 0.025 0.450 ± 0.009 0.356 ± 0.004 0.496 ± 0.011
GAT-C2L4 0.441 ± 0.010 0.215 ± 0.018 0.452 ± 0.010 0.358 ± 0.004 0.487 ± 0.013
GAT-C2L5 0.445 ± 0.015 0.243 ± 0.017 0.448 ± 0.009 0.362 ± 0.007 0.492 ± 0.020
GAT-C2L6 0.444 ± 0.015 0.242 ± 0.017 0.448 ± 0.009 0.362 ± 0.007 0.491 ± 0.020

Table 4: Average AUPRC scores and standard deviation of 5 seeded runs of each model over all spots. Scores for
subcategories of cell types exhibiting distinct cell abundance patterns are also provided. Bold numbers indicate best
performing method for each category of cell types being evaluated.

Methods ALL UHCA ULCA RHCA RLCA

SGC-C2L1 0.719 ± 0.002 0.977 ± 0.004 0.646 ± 0.006 0.861 ± 0.001 0.719 ± 0.002
SGC-C2L2 0.716 ± 0.003 0.978 ± 0.001 0.644 ± 0.006 0.860 ± 0.001 0.716 ± 0.003
SGC-C2L3 0.710 ± 0.002 0.979 ± 0.002 0.649 ± 0.005 0.852 ± 0.001 0.710 ± 0.002
SGC-C2L4 0.701 ± 0.004 0.972 ± 0.003 0.639 ± 0.007 0.845 ± 0.005 0.701 ± 0.004
SGC-C2L5 0.701 ± 0.007 0.975 ± 0.003 0.633 ± 0.009 0.848 ± 0.005 0.701 ± 0.007
SGC-C2L6 0.701 ± 0.007 0.975 ± 0.003 0.633 ± 0.009 0.848 ± 0.005 0.701 ± 0.007

GAT-C2L1 0.722 ± 0.002 0.978 ± 0.004 0.664 ± 0.004 0.858 ± 0.003 0.722 ± 0.002
GAT-C2L2 0.726 ± 0.001 0.977 ± 0.003 0.665 ± 0.007 0.865 ± 0.001 0.726 ± 0.001
GAT-C2L3 0.721 ± 0.003 0.970 ± 0.003 0.679 ± 0.006 0.870 ± 0.002 0.721 ± 0.003
GAT-C2L4 0.710 ± 0.003 0.968 ± 0.002 0.670 ± 0.006 0.867 ± 0.001 0.710 ± 0.003
GAT-C2L5 0.700 ± 0.002 0.959 ± 0.001 0.652 ± 0.010 0.865 ± 0.001 0.700 ± 0.002
GAT-C2L6 0.702 ± 0.003 0.961 ± 0.003 0.652 ± 0.009 0.865 ± 0.001 0.702 ± 0.003


