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Abstract
As large language models (LLMs) continue to
gain attention as foundation models in numerous
domains, it is intriguing to consider their poten-
tial impact on functional genomics. Specifically,
we aim to determine whether existing genomic
LLMs have reached the esteemed “foundation”
status and can effectively encode meaningful rep-
resentations that address a diversity of cell-type
specific prediction tasks in regulatory genomics,
such as enhancer activity, non-coding variant ef-
fect predictions, and RNA stability. Our study
reveals that current LLMs fall short of the perfor-
mance achieved by more specialized supervised
models. These findings underscore the lack of
versatility of existing genomic LLMs and raise
potential avenues moving forward, including how
to train them effectively, understanding what in-
formation they encode, and how this knowledge
can be leveraged for functional genomics.

1. Introduction
Large language models (LLMs) have showcased exceptional
achievements in natural language processing (Devlin et al.,
2018; OpenAI, 2023) and have also made significant strides
in the field of protein sequence analysis (Rives et al., 2019;
Madani et al., 2020; Elnaggar et al., 2021). These models,
often referred to as ”foundation models” acquire highly ef-
fective embeddings or representations of input data through
self-supervised learning, which proves immensely valuable
across various downstream prediction tasks. Notably, LLMs
trained on protein sequences have been leveraged to pre-
dict protein structures from a single sequence (Lin et al.,
2023; Chowdhury et al., 2022; Wang et al., 2022; Wu et al.,
2022) and facilitate protein design (Madani et al., 2023; Fer-
ruz & Höcker, 2022), among numerous other applications.
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The representations learned by protein LLMs encompass
biochemical features (Vig et al., 2020) and incorporate evo-
lutionary information (Rao et al., 2020; Bhattacharya et al.,
2021; Hie et al., 2022; Lupo et al., 2022), such as conserved
motifs, covariation associated with protein contacts, and
phylogenetic relationships.

The objective of masked-language modeling (MLM) facili-
tates the acquisition of contextual embeddings by the LLM.
In the case of sequence data, each element is assigned a
vector representation that captures not only its own charac-
teristics but also the information pertaining to other elements
in the sequence and their interdependencies. In contrast, the
conventional one-hot encoding approach treats each ele-
ment independently, employing identical representations for
identical characters (such as amino acids for proteins or nu-
cleotides for DNA) regardless of their respective positions.
Consequently, the responsibility of learning contextual in-
formation falls solely on the machine learning model.

In the field of genomics, there has been a recent emergence
of LLMs, including BERT-style models like DNABERT
(Ji et al., 2021) and Nucleotide Transformers (NT) (Dalla-
Torre et al., 2023), among others (Zaheer et al., 2020; Chen
et al., 2022; 2023), as well as convolution-based models
like Genomic Pre-trained Network (GPN) (Benegas et al.,
2022). These models have exhibited the ability to capture
gene features in their representations and can be utilized to
predict single-nucleotide variant effects. Since most LLMs
are trained on reference genomes, it remains unclear to
what extent they are able to learn cell-type specific informa-
tion, which is crucial for comprehending cell-type specific
regulatory genomics. Consequently, to achieve improved
performance on regulatory genomics prediction tasks, it is
often necessary to fine-tune the LLM weights on the de-
sired downstream task (Mo et al., 2021; Yamada & Hamada,
2022; Yang et al., 2022). This reliance on fine-tuning poses
challenges, as foundation models are typically large and
fine-tuning on individual tasks demands substantial GPU
resources, which may not be readily available to many aca-
demic labs. Therefore, the extent to which existing LLMs
can genuinely serve as foundation models for functional
genomics, without necessitating additional fine-tuning, re-
mains an open question.
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Figure 1. Experiment overview. Comparison of LLM embeddings versus one-hot representations for functional genomics prediction
tasks.

Here we assess the potential of genomic LLMs as founda-
tion models, with a particular emphasis on comparing the
informativeness of their learned sequence embeddings with
traditional one-hot representations. We performed three sys-
tematic experiments to gauge the predictive abilities of LLM
embeddings: 1) functional characterization of regulatory ele-
ments, 2) zero-shot non-coding variant effect generalization,
and 3) RNA pol II elongation potential. Our results indicate
that present LLMs exhibit significantly lower performance
than supervised models in human functional genomics pre-
diction tasks and zero-shot variant effect prediction, thus
demonstrating their lack of versatility.

2. Experiment 1: functional characterization
of cis-regulatory elements

Cis-regulatory elements (CREs) are vital regions in the
genome that are hot-spots for transcription factor binding
and this, in turn, plays a crucial role in transcriptional reg-
ulation. Given their ubiquitous presence throughout the
genome, one would anticipate that LLMs trained on genome-
wide data should learn essential characteristics of CREs.
Consequently, LLMs are expected to encode representations
that are informative for predicting CRE activity, but the
extent to which they do remains unclear.

To assess the effectiveness of LLM embeddings in predict-
ing cell-type specific CRE activity, we utilized experimental
lentiMPRA data for K562 and HepG2 cell lines (Agarwal
et al., 2023). Each lentiMPRA dataset consists of over 100k
sequences each 230 nt long paired with a target scalar value
that represents the transcriptional activity of the sequence
(see Appendix A). In this initial experiment, we evaluated
the performance of two models: the Nucleotide Transformer
and a custom Genomic Pre-trained Network (GPN). The Nu-

cleotide Transformer is a 2.5 billion parameter BERT model
that was trained on 3,202 diverse human genomes from the
1000 Genomes Project and exhibited the best performance
in variant effect performance in humans (Dalla-Torre et al.,
2023). The GPN model is a convolution-based model that
was originally trained on the Arabidopsis genome (Benegas
et al., 2022). We trained a custom GPN model on the hu-
man reference genome following a similar procedure as the
original study (see Appendix A for details).

As there is no principled strategy to harness the predictive
power of LLM embeddings, we trained a linear regression, a
ridge regression, and a multi-layer perceptron (MLP) using
either the classification(CLS) token or the mean embed-
ding generated by each layer of Nucleotide Transformer.
This involved acquiring the representations for each training
sequence to be used as input data in lieu of the standard
one-hot sequence. Additionally, we trained a basic convolu-
tional neural network (CNN) that incorporated the complete
embedding as input (see Appendix A). As the GPN model
follows a pure convolution-based structure, we only consid-
ered the penultimate embeddings as input to basic CNN. To
benchmark the performance against models trained on one-
hot data, we trained three additional models: 1) the basic
CNN trained directly on one-hot data, 2) a re-impelmented
MPRAnn originally designed for the lentiMPRAs dataset
(Agarwal et al., 2023), and 3) a Residualbind model (Koo
et al., 2021) to represent performance achievable by a more
sophisticated model.

Our results demonstrate that models trained on LLM embed-
dings generally under-perform compared to one-hot based
models (Fig.2a). For Nucleotide Transformer, we observed
variation in performance across layers, suggesting that the
penultimate layer is not necessarily optimal for feature ex-
traction. Moreover, analyzing the full embeddings led to
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Figure 2. Test set performance on (a) LentiMPRA and (b) INSERT-seq for downstream models trained using different input features
generated by nucleotide Transformer (NT) and GPN. Downstream model used is shown in parenthesis.

better overall performance, albeit with GPN achieving com-
parable performance as one-hot models. The performance
gap indicates that LLM embeddings are not more infor-
mative than one-hot sequences for cell-type specific gene
regulation, in fact, BERT-based LLMs seem to lose valuable
information.

3. Experiment 2: zero-shot single-nucleotide
variant effect generalization

A major use case of highly accurate sequence-function mod-
els is in helping to understand how genomic variation leads
to functional changes. These models are not directly trained
on the variants, making it a case of zero-shot variant effect
generalization. Previous studies have indicated that LLMs
have a certain degree of predictive capability for variant
effects (Benegas et al., 2022; Dalla-Torre et al., 2023). How-
ever, it is not intuitive how LLMs could yield good zero-shot
predictions of cell type specific variant effects since they are
trained without any cell-type information.

To assess zero-shot variant effect generalization, we fo-
cused on single-nucleotide variants of regulatory elements
characterized through a saturation mutagenesis MPRA as
part of the Critical Assessment of Genome Interpretation 5
(CAGI5) (Shigaki et al., 2019), considering only cell lines
that match the lentiMPRA dataset: 1 MPRA experiment for
K562 and 3 experiments for HepG2.

To evaluate the single-nucleotide variant effect predictive

capabilities of each LLM, we followed the procedures out-
lined in their respective studies (see Appendix A). Our study
extends to all Nucleotide Transformer models, which vary
in size and training data scale. This includes a 2.5 billion
parameter BERT model trained on 3,202 diverse human
genomes as well as 850 genomes from various species. We
also examined a custom GPN model solely trained on the
human reference genome. Additionally, we assessed the
variant effect predictions of the best-performing embedding-
based models for GPN and Nucleotide Transformer on the
lentiMPRA dataset. For comparison, we also included one-
hot models trained on the lentiMPRA dataset as a baseline.

Notably, our findings revealed that all LLMs exhibited poor
performance in zero-shot variant effect generalization (Table
1). This suggests that, unlike the original studies, LLMs
may not be as effective in capturing variant effects across all
genomic regions, particularly in non-coding regions where
they struggle to capture cell-type specific variant effects.

Interestingly, CNNs trained on lentiMPRA data using LLM
embeddings demonstrated improved variant effect general-
ization, with GPN approaching performance levels surpass-
ing certain CNNs trained directly on one-hot data. Nonethe-
less, the ResidualBind model (Koo et al., 2021), trained on
one-hot lentiMPRA data, and the original Enformer model
(Avsec et al., 2021), trained on a multitude of epigenomic
tracks, yielded substantially better performance. Thus, spe-
cialized supervised models might serve as a better founda-
tion model compared to current LLMs.
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Table 1. Zero-shot variant effect generalization on CAGI5 dataset.
The values represent the average Pearson correlation of predictions
with experimental values (1 experiment for K562; 3 for HepG2).

INPUT MODEL HEPG2 K562

ZERO-SHOT

NT (2B51000G) -0.0167 -0.0234
NT (2B5SPECIES) -0.0003 -0.0625
NT (500MHUMAN) -0.0486 0.0324
NT (500M1000G) 0.0270 0.0539
GPN (HUMAN) -0.0034 0.0390

EMBEDDING
GPN (CNN) 0.3774 0.4567
NT (CNN) 0.1798 0.3875

ONE-HOT
CNN (LENTIMPRA) 0.3128 0.4257
RESIDUALBIND (LENTIMPRA) 0.4860 0.5510
MPRANN (LENTIMPRA) 0.3014 0.3686
ENFORMER (DNASE) 0.5104 0.6845

4. Experiment 3: RNA elongation potential
While LLMs exhibited subpar performance in non-coding
regions, they have shown some aptitude for learning gene
definitions and splice sites. Hence we now focus on pre-
dicting RNA pol II elongation potential measured via IN-
tegrated Sequences on Expression of RNA and Translation
using high-throughput sequencing (INSERT-seq) (Vlaming
et al., 2022). This dataset is relatively small, consisting of
10,774 sequences each 173 nt long, and primarily encom-
passes gene elements such as 3’ untranslated regions. Given
the modest size of the dataset, training large models in a
supervised manner can easily result in overfitting.

Pretrained LLMs have the potential to acquire a diverse
range of generalizable features that can be applied to vari-
ous downstream tasks. In cases where the dataset is large,
such as the lentiMPRA dataset, which consists of over 100k
sequences, standard CNNs can directly learn predictive fea-
tures from one-hot representations, rendering pretrained
LLMs less advantageous. To investigate the validity of this
assumption with smaller datasets, we conducted systematic
downsampling of the INSERT-seq dataset in incremental
steps of 10%. For each down-sampled dataset, we system-
atically trained identical CNNs but using different input
representations: one-hot encoding, embeddings from GPN,
and embeddings from Nucleotide Transformer (trained on
1000 Genomes Project), both from the penultimate layer
and layer 10, the top performer in the lentiMPRA study.

Interestingly, GPN displayed superior performance across
all downsampling factors, whereas Nucleotide Transformer
models exhibited lower performance compared to one-hot
based CNN (Fig. 2b). The improved performance by GPN
suggests that LLMs can specialize in some genomic regions
better than others. In this dataset, capturing 5’ splice sites is
a critical feature (Vlaming et al., 2022). Thus, understanding
what features LLMs learn well can help to identify suitable
downstream tasks for which they can thrive.

5. Discussion
Here we assessed the predictive capabilities of LLM repre-
sentations trained on whole genomes via masked language
modeling. Our findings reveal that LLMs generally fail to
capture crucial features of cell-type specific cis-regulatory
activity in humans and may even result in the loss of valu-
able information. Furthermore, their zero-shot prediction
performance significantly lags behind that of supervised
models. These observations indicate that despite the achieve-
ments of LLMs in various domains, they still have a long
way to go before unlocking their potential in genomics.

The success of LLMs in defining gene features and capturing
certain motifs in previous studies raises a crucial question:
how can we reconcile these achievements with their limited
performance in capturing cell-type specific information?
Although the human genome is a blueprint for all cells in the
body, each cell possesses a unique regulatory code, which
is projected onto a single DNA sequence. This inherent
complexity makes it challenging to disentangle cell-type
specific information through a masked language modeling
objective. Nevertheless, gene definition remains relatively
consistent across cell types. Thus, basic tasks requiring
RNA features may bode well for LLMs. Also, LLMs have
demonstrated considerable success in simpler organisms
like yeast, bacteria, and Arabidopsis. However, our findings
indicate that the extension of these models, such as GPN, to
human genomes does not yield comparable results.

One question that arises is how to reconcile the performance
gap of LLMs with previous studies that have shown compa-
rable performance with supervised models (Ji et al., 2021;
Dalla-Torre et al., 2023). In those studies, LLMs were
fine-tuned for a specific downstream task, meaning that the
pretraining strategy was simply an initialization. While this
can still be effective, it remains unclear whether it provides
a more effective initialization or transfer learning strategy
compared to pretrained models that are trained in a multi-
task setting with supervised learning. Without fine-tuning,
it is not clear what specific prediction tasks LLMs excel at.

Although LLMs have demonstrated promise across diverse
domains, their potential in regulatory genomics is still un-
certain. A crucial factor that will shape their applicability is
model interpretability (Toneyan et al., 2022). Understanding
what features are encoded in the learned representations will
provide valuable insights into the specific tasks for which
they are most suitable. Moreover, rethinking masked lan-
guage modeling in non-coding regions may catalyze a path
forward to thinking about how to deal with the seemingly
dense regions of random DNA with low-order statistical
properties, i.e. dinucleotide frequencies, and motifs that
carry high information content but are sparsely located.
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A. Methods
A.1. Experiment 1

lentiMPRA. The lentiMPRA dataset was generated using lentivirus-based massively parallel reporter assays to measure
the regulatory activity of candidate CREs in K562 and HepG2 cell lines (Agarwal et al., 2023). The HepG2 library consists
of 139,984 sequences, each 230 nucleotides long, and the K562 library contains 226,253 sequences. We split the dataset
into train, valid and test sets randomly, the same split was applied to all experiments using this dataset.

GPN. The original GPN model is a convolutional neural network trained on Arabidopsis genome sequences via masked
language modeling with an input size of 512 nucleotides (Benegas et al., 2022). It consists of 25 convolutional blocks, where
each convolutional block includes a dilated convolutional layer followed by a feed-forward layer, connected by intermediate
residual connections and layer normalization. The dilation rate for each convolutional layer was increased exponentially
from 1 up to 32 and then cycled. The embedding dimension was kept fixed at 512 throughout the layers.

For our custom GPN (human) model, we created training datasets using the human reference genome (hg38). The genome
was split into contigs and filtered for a minimum length of 512 nucleotides, with chromosome 8 held out as test set. We
trained the GPN structure on the human genome dataset using the same set of training hyper-parameters and masked
language modeling task as the original study (Benegas et al., 2022).

MLP. A multi-layer perceptron model was used to train on CLS token embeddings or the average embedding across
sequences for Nucleotide Transformer models. The model is constructed by two fully connected blocks. The first block
includes a fully-connected layer with 512 units and ReLU ativation, followed by batch normalization and a dropout rate of
0.5. The second block consists of a fully-connected layer with 256 units and the same activation, batch normalization, and
dropout layers. The model was trained on lentiMPRA dataset with Adam optimizer, learning rate of 0.0001, learning rate
decay patience of 5 epochs with a decay factor of 0.2, and early stopping patience of 10 epochs.

Basic CNN. We designed a baseline CNN model with the following structure:

1. batch normalization
2. convolution (196 filters, size 1)
3. convolution (196 filters, size 7, batch norm, exponential)

dropout (0.2)
max-pooling (size 5)

4. convolution (256 filters, size 7, batch norm, relu)
dropout (0.2)
max-pooling (size 4)

5. fully-connected (512 units, batch norm, relu)
dropout (0.5)

6. fully-connected (256 units, batch norm, relu)
dropout (0.5)

7. output layer (1 unit, linear)
We trained this CNN model with Adam optimizer, mean squared error loss function, learning rate of 0.0001 with a learning
rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-hot
sequence and language model embedding-based training on the lentiMPRA dataset.

A.2. Experiment 2

CAGI dataset. The CAGI5 challenge dataset was used to evaluate the performance of the models on zero-shot single-
nucleotide variant effect generalization (Shigaki et al., 2019). Among all the experiments, we only included the ones executed
in HepG2: LDLT, SORT1, F9; and K562: PKLR. We extracted 230 nucleotide sequences from the reference genome
centered on each regulatory region of interest. Alternative alleles are then substituted correspondingly to construct the CAGI
test sequences. Pearson correlation was calculated between the model prediction scores and experimentally measured effect
size per experiment. For HepG2 performances, we report the average Pearson’s r across the three experiments.
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Zero-shot variant effect prediction methods. For Nucleotide Transformer models, we derived the zero-shot predictions
using cosine similarity as suggested in the original study (Dalla-Torre et al., 2023). For each variant, we passed the sequences
with the centered reference allele and the alternative allele through the model to extract embeddings. The cosine similarity
between the two sequence embeddings was calculated and used as the zero-shot score. A negative correlation is expected
between the score and effect size. Since this distance based zero-shot score only reflects the magnitude, not the direction, of
function change, we calculated the Pearson correlation using the absolute value of the effect size.

For the GPN models, we input sequences with the center variant loci masked, following similar procedure as the original
study (Benegas et al., 2022). From the predicted allele probabilities for the masked loci, we calculate the zero-shot prediction
score as the log-likelihood ratio between the alternate and reference alleles. Again, since the likelihood ratio doesn’t reflect
the direction of function change associated with the variants, we calculated the correlation score using the absolute value of
effect size.

Finally, for the embedding-based and one-hot based models, we used the difference in predictions between the alternative
and reference allele sequence as the zero-shot prediction score. For Enformer, we use the cell-type agnostic approach
of averaging the effect size across all DNase-seq tracks. To reduce predictions to scalars, we summed across the profile
predictions.

A.3. Experiment 3

INSERT-seq. The INSERT-seq was executed in mouse embryonic stem cells investigated the impact of transcribed
sequences on the RNA polymerase II enlongation potential and expression. We used the 173 nucleotides long insert
sequence as the model input to predict the totalRNA output, which measures the relative abundance in RNA relative to
genomic DNA.

Model Structure. For the RNA pol II elongation potential dataset, we developed a residual convolutional network structure
and used it for all embedding and one-hot-based models. The model was trained using mean square error loss function,
Adam optimizer, learning rate of 0.0001, learning rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping
patience of 10 epochs.

1. convolution(48 filters, size 1)
2. convolution (96 filters, size 19, batch norm, exponential)

dropout (0.1)
3. dilated residual block (96 filters, size 3, relu)

convolution (batch norm)
dropout (0.1)
convolution (batch norm, dilation rate 2)
dropout (0.1)
convolution (batch norm, dilation rate 4)
residual connection to block input
relu activation
max-pooling (size 10)
dropout(0.1)

4. convolution (128 filters, size 7, batch norm, relu)
global average-pooling
dropout (0.1)

5. fully-connected layer (128 units, relu)
dropout (0.5)
6. output layer (1 unit, linear)


