
GGeraPHF: Graph Generative Poisson Hierarchical Factorization

Mingxuan Zhang * 1 Kevin Hoffer-Hawlik * 2 Benjamin Izar 3 Elham Azizi 2

Abstract
Gene regulatory network (GRN) models provide
insight into mechanisms underlying cellular func-
tion. While previous methods have attempted
to infer GRNs from single cell RNA sequenc-
ing (scRNA-seq) data, they are limited in inter-
pretability, and do not explain how GRNs impact
cell state transitions and plasticity. We developed
Stochastic Block Graph Generative Poisson Hier-
archical Factorization, or GGeraPHF, to identify
regulons, defined as communities of genes, driv-
ing cell plasticity. GGeraPHF combines tasks of
community detection, graph structure learning,
matrix factorization, and low rank estimation to
learn an interpretable, joint cell and gene latent
space from scRNA-seq and GRN data. We ap-
plied GGeraPHF to a simulated dataset and real
tumor scRNA-seq data. GGeraPHF faithfully re-
constructs expression matrices, refines GRNs as
densely connected communities, and successfully
associates them to heterogeneous cell populations.

1. Introduction
Single-cell RNA sequencing (scRNA-seq) has enabled the
characterization of cell heterogeneity and plasticity at high
resolution in complex diseases such as cancer. scRNA-seq
also provides unique opportunities to study the role of gene
regulatory circuitry at a fine scale, as alteration of gene regu-
latory relationships are often driving forces behind cell func-
tion and fate. Gene regulatory networks (GRNs) are popular
models for disentangling interactions between transcription
factors (TFs) and target genes in dynamic biological sys-
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tems, and an active field of research is reverse-engineering
GRNs from scRNA-seq (Mercatelli, 2020). Identification
of regulons, or jointly co-regulated genes, driving cell plas-
ticity would be a boon for uncovering mechanisms involved
in therapeutic response, such as cancer and immune cell
plasticity during/after immunotherapy in melanoma (Mad-
hamshettiwar, 2012; Marusyk, 2012). However, biological
and technical noise and sparsity from high drop-out rates
cause poor performance for most GRN inference methods,
which were originally designed for bulk RNA sequencing
data. More importantly, current methods are not capable of
pinpointing regulatory mechanisms that drive cell plasticity
(Mercatelli, 2020; Iglesias-Martinez, 2021; Osorio, 2020;
Keyl, 2023). In particular, identifying topological struc-
tures of GRNs (e.g., hubs, communities) associated with
heterogeneous and altered cell states in disease can reveal
novel drug targets for reversing abnormal cell plasticity. We
propose a novel framework with joint Bayesian modeling of
scRNA-seq and GRN data, to identify GRN structures and
regulons explaining cell state transitions.

We present Stochastic Block Graph Generative Poisson
Hierarchical Factorization, or GGeraPHF, a Bayesian hi-
erarchical model to achieve both goals of generating re-
fined GRN structure using scRNA-seq and associating GRN
topologies to cell sub-populations to identify interpretable
regulons driving cell plasticity. Novelly, GGeraPHF com-
bines tasks of community detection, graph structure learning,
and matrix factorization and low rank estimation. Matrix
factorization allows the model to learn joint gene and cell
factors. A stochastic block graph is used to leverage the
joint factors in defining community structures of genes, in-
terpretable as regulons. Densely-connected communities
are then assigned to sub-populations of cells, for which up-
regulation of key regulons may drive cell plasticity. Finally,
inter-community edges are penalized and intra-community
edges are rewarded, thus preserving only meaningful com-
munity interactions and refining expected network topology.
We apply GGeraPHF to both a simulated scRNA-seq dataset
with pre-defined ground-truth co-expression patterns as well
as a clinical dataset from melanoma patients treated with
immunotherapy. We show GGeraPHF holds promise in dis-
entangling GRN and cell fate dynamics from scRNA-seq.
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2. Methods
2.1. The GGeraPHF Model

Suppose we have a scRNA-seq dataset with C cells and
G genes, unique molecular identifier (UMI) counts X is
a C×G matrix with integer entries. We also consider an
input GRN N = {E, V } representing prior knowledge on
possible regulatory links, where E represents the set of
genes and V represents edges connecting pairs of genes
that regulate each other. We define ‘factors’ as sets of co-
expressed genes associated with clusters of cells. If we have
k factors, our objective is to learn a cell loading W ∈ RC×k

and a gene loading H ∈ RG×k where the low-rank count
matrix X̂ = WHT resembles the input matrix X . We also
aim to jointly learn a refined GRN AG ∈ RG×G where the
factors correspond to community structures of the graph and
the weights indicate the probability of two genes regulating
each other.

We regularize the model to preserve the topological struc-
ture of the input graph. To achieve this, we designed the
following generative model inspired by the ideas of hierar-
chical Poisson factorization (Gopalan, 2015) and stochastic
block models (Lee, 2019) (Fig. 1):

βi ∼ Gamma(a′, b′), βg ∼ Gamma(c′, d′)
Wik ∼ Gamma(a, βi), Hgk ∼ Gamma(c, βg)

xig|Wik, Hgk ∼ Poisson(WikH
T
gk)

πk ∼ Dirichlet(Eg[Hgk]), zgk ∼ Categorical(πk)
ηkk ∼ Beta(α, β)

Λ = zgkηkkz
T
gk,Λ ∈ RG×G

AG|Λ ∼ Bernoulli(Λ)

a′, b′, c′, d′, a, c, α, β are hyperparameters. Wik are cell
weights across k factors based on cell budget βi. Hgk are
gene weights across k factors based on gene budget βg. π
is the factor membership assignment probability parameter-
ized by a Dirichlet distribution with Gamma prior given by
the mean gene weights in each factor. z is the per-gene factor
membership sampled from a Categorical distribution. η is
the block matrix sampled from Beta distributions where the
diagonal entries represent the probability of within-factor
connections, and the off-diagonal entries represent the prob-
ability of cross-factor connections, to capture cascades of
TFs between communities. z and η jointly determine the
edge probability between pairs of genes, and the generated
GRN AG is sampled from a Bernoulli distribution.

2.2. Hyperparameter Initialization and Regularization

We choose to initialize hyperparameters b′ and d′ to preserve
the variance-to-mean ratio of total UMI counts per cell
or gene in the sampling distributions of gene/cell budgets
(Mendes Levitin, 2019). Specifically, we set b′ and d′ as:

b′ =
Var[

∑
g xig]

E[
∑

g xig ]
, d′ = Var[

∑
i xig ]

E[
∑

i xig]

Figure 1. Graphical representation of the model. Circles represent
latent variables. Colored circles represent observations.

where xig are individual entries of count matrix X . To en-
force sparsity, we initialize the Gamma shape parameters
a′, c′ and a, c as 1.0 and 0.3, respectively. The Beta distribu-
tion parameters α, β for η are initialized to non-informative
values 1.0 and 1.0. Since we expect the generated GRN to
have densely connected communities and loose connections
between communities, we learn a sparsity regularizer ρ and
construct a mask M ∈ Rk×k. Assuming ρ ∼ Beta(γ, 5γ),
the mask matrix is constructed as:

Mij =

{
1, if i = j

ρ, if i ̸= j

Then, the regularized Bernoulli rate is given by Λ =
z(η⊙M)zT . This regularization method only allows strong
signals of cross-community connection to be preserved,
which prunes the input GRN and refines the graph’s topo-
logical structure according to observed phenotypic states.

2.3. Model Inference

Inference is conducted by Markov Chain Monte Carlo
(MCMC) sampling. The traditional Metropolis-Hasting
(MH) algorithm does not scale well for high dimensional
distributions due to the random walk nature of its move-
ment. Therefore, we perform parameter inference under
the Hamiltonian Monte Carlo (HMC) framework, where
gradient information of the target distribution is used to
guide the sampler movement and make distant proposals
with high acceptance probabilities. Our model contains both
discrete and continuous latent variables, which renders tradi-
tional HMC-based algorithms such as No U-Turn Sampling
(NUTS) ineffective. To overcome the mixed nature of the
latent space, we apply Gibbs sampling at discrete sites and
NUTS at continuous sites to sample from the target distribu-
tion. The models are trained with 4 chains with a warm-up
distance of 100 and a sampling distance of 400. The sam-
pling converged with an R̂ value less than 1.05, indicating
that the chains are well-mixed.
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2.4. Data Preparation
2.4.1. SIMULATED SCRNA-SEQ DATA

We simulated an scRNA-seq dataset with known co-
expression patterns and a known set of gene factors associ-
ated with cell grouping patterns, to test GGeraPHF perfor-
mance in learning and reconstructing interpretable joint cell
and gene latent spaces. We used ESCO (Tian, 2021) which
simulates scRNA-seq by incorporating variation in expres-
sion from cell heterogeneity (i.e., differentially expressed
genes or DEGs), intrinsic variation in gene expression be-
tween similar cell types, technical noise, and co-expression
patterns using a Gaussian copula. We generated data for
2000 cells and 200 genes with global DEG probability of 0.5
(for 100 DEGs total) and group-specific DEG probability
of 0.3. Cells were divided into three groups with 60% of
cells in group 1 and 20% in groups 2 and 3. To create GGer-
aPHF input, we filtered the count matrix for the 100 DEGs
and constructed a GRN by calculating empirical correlation
between gene pairs for the 100 DEGs.

2.4.2. MELANOMA CLINICAL SCRNA-SEQ DATA

We also tested GGeraPHF on a recently published clinical
dataset consisting of scRNA-seq of tumor samples from
melanoma patients treated with immunotherapy (Wang,
2023). Data are from biopsies from a single patient before
and while receiving immunotherapy (about 8,000 cells total).
We performed feature selection on the union of the top 3,000
highly variable genes (HVGs) across both samples and a list
of about 1,900 known TFs in humans. The unnormalized
count matrix was input into GGeraPHF. After normalizing
and log transforming counts, we attempted GRN inference
with GRNBoost from the SCENIC pipeline (Aibar, 2017),
but the result GRN was densely connected with no local
structure. Subsequently, we constructed a filtered covari-
ance matrix between each HVG pair (binarized by non-zero
covariance interactions and only keeping TF-involved in-
teractions) as the initial GRN for GGeraPHF. Alternative
graph inputs to GGeraPHF can be obtained using other GRN
inference methods (Lachmann, 2016; Passemiers, 2022) or
causal graphs (Squires, preprint; Lopez, preprint).

3. Results
3.1. Simulated scRNA-seq Data

GGeraPHF correctly reconstructed input scRNA-seq counts
and the structure of the ground-truth GRN, while recovering
factors representing densely-connected communities. Re-
constructed counts and GRN were sampled from GGeraPHF
following its generative process with parameters that are
posterior means. Reconstructed and original counts had
tight linear fit with slope close to 1 (R2 = 0.990, regression
line y = 0.984x + 0.066), confirming that GGeraPHF ac-

curately reconstructs UMI counts. The ground-truth GRN
contained three densely-connected modules representing
three sets of DEGs across three distinct cell groups, which
GGeraPHF recovered with high fidelity and refined structure
(Supp Fig. 6).

Additionally, GGeraPHF summarized groups of genes from
densely-connected modules into factors describing cell het-
erogeneity, and it correctly assigned factors to distinct sub-
groups of cells (Fig. 2). The simulated dataset was designed
such that specific cell groups were defined by sets of DEGs.
Hence, we computed co-expression of genes within fac-
tors and observed selective enrichment in their respective
cell group (Fig. 2), indicating that learned factors estimate
ground truth DEG sets defining cell heterogeneity.

Figure 2. Left: UMAP of ESCO simulated scRNA-seq data based
on 100 DEGs, visualizing pre-defined cell groups. Top right:
GGeraPHF correctly associates learned factors to the ground truth
cell groups. Cells are colored by the cell weights normalized by the
cell capacity. Bottom right: GGeraPHF learns factors that resemble
ground truth DEG sets. Cells are colored by co-expression scores
given by the sum of gene expression values of genes in each factor.

3.2. Melanoma Clinical scRNA-seq Data

To investigate the effect of GGeraPHF on real scRNA-seq
data, we tested the model on the melanoma clinical dataset
and compared the performance to a naive Hierarchical Pois-
son Factorization (HPF) model (Mendes Levitin, 2019).
GGeraPHF achieved better reconstruction performance
(R2 = 0.775, regression line y = 0.677x + 0.113) than
HPF (R2 = 0.734, regression line y = 0.605x + 0.152).
GGeraPHF also generated a GRN capturing both global and
local topology of the input network (Fig. 3 left, middle).

The melanoma dataset contained cells with no clear prior re-
lationship between gene modules and cell groupings across
samples. Nonetheless, GGeraPHF uncovered interpretable
factors and associated them to distinct groups of cells, while
HPF failed on these tasks (Fig. 4).

To further interpret factors learned by GGeraPHF, we exam-
ined tumor clonality predicted by InferCNV (Patel, 2014).
The factors were associated with clones 1 and 3, which are
two clones that exist across both samples. Factor 1 asso-
ciated with on-treatment clone 1 cells, which retained its
rough size. Factor 2 represented both clone 1 and clone 3
pre-treatment cells. Factor 3 was enriched in on-treatment
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Figure 3. Left: Hierarchically sorted binary adjacency matrix of
the original GRN from melanoma scRNA-seq data. Two genes
can be connected if their empirical covariance is non-zero and at
least one is a TF. Middle: Adjacency matrix of the generated GRN,
with genes ordered as in the left figure and weights corresponding
to learned edge probabilities. Right: Adjacency matrix of the gen-
erated GRN, with genes sorted by corresponding learned factors.

Figure 4. Top: Correlations between factors identified by HPF
model on melanoma dataset, and enrichment of HPF factors across
melanoma cells. Bottom: Correlations between factors identified
by GGeraPHF model on melanoma dataset, and enrichment of
GGeraPHF factors across melanoma cells.

clone 3 cells, which expanded significantly between pre- and
on-treatment sample timepoints (Fig. 5). Genes in the fac-
tors also displayed different regulatory patterns correspond-
ing to respective clonal dynamics. Factor 1 represented a
set of TFs with global regulation effect. Factor 2 was a
self-regulating gene module but had weak regulatory effect
on Factor 3 genes. Factor 3 genes were most likely targets
with no interactions between each other (Fig. 3 right).

Finally, we performed gene set enrichment analysis (GSEA)
on the factors to support that the learned modules charac-
terizing tumor heterogeneity were also biologically relevant
(Subramanian, 2005; Fang, 2023). Most factors had sig-
nificant enrichment for gene sets with false discovery rate
(FDR) below 0.250, including genes from both well-profiled
(e.g., IL-6/JAK/STAT3, PI3K/AKT/mTOR signaling) and
under-studied pathways (e.g., cholesterol homeostasis) in
melanoma (Gu, 2022) (Supp Fig. 7). Taken together, when
applied to the melanoma dataset, GGeraPHF links gene reg-
ulation to tumor heterogeneity using interpretable factors,
and these factors represent regulons driving cell plasticity
through various pathways in melanoma.

Figure 5. Top left: UMAP of melanoma scRNA-seq data after
feature selection, visualizing patient samples before and on im-
munotherapy. Top right: Tumor clonality, inferred using InferCNV.
Bottom: GGeraPHF factor association to heterogenous cell groups.
Each factor correspond to a row of the learned cell weight matrix,
and cells are colored by the cell weights normalized by the learned
cell capacity.

4. Conclusion and Applications
GGeraPHF shows promise in disentangling gene regulatory
elements and their role in transcriptional fate. We tested the
model on simulated and real tumor sample scRNA-seq data.
We showed that on both datasets, GGeraPHF learned inter-
pretable factors corresponding to GRN neighborhoods and
mapped topological structures to heterogenous cell groups.
Future work includes fine-tuning the graph learning process
to work on directed causal graphs, and further interpreting
network structures within learned communities. Addition-
ally, we are working to expand this model to additional pa-
tient tumor and immune cell data. By expanding our focus
to both tumor and immune cells, we hope to gain a com-
prehensive understanding of mechanisms associated with
melanoma progression and effector cell heterogeneity driv-
ing patient response or resistance to cancer immunotherapy.
Especially as clinical scRNA-seq datasets become increas-
ingly available across cancer types and treatment conditions,
GGeraPHF and its ability to identify key cell state-specific
regulons can bolster the importance of well-characterized
pathways as well as uncover understudied biological mech-
anisms, towards improving cancer therapeutics and patient
outcomes.
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A. Supplementary Figures

Figure 6. Left: Binary adjacency matrix of original GRN from simulated scRNA-seq data, hierarchically sorted. Right: Binary adjacency
matrix of reconstructed GRN, with unchanged sorting.
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Figure 7. Top enriched pathways from gene set enrichment analysis (GSEA) performed for each GGeraPHF factor. Cells were assigned to
Factor 0, 1, or 2 based on learned cell weights, and signal-to-noise ratio was used to rank genes from cells, using factor membership as the
condition. Gene enrichment was identified using hallmark gene sets, and false discovery rate cutoff of 0.25 was used to select for enriched
gene sets.


