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Abstract

Pre-trained models have been successful in
many protein engineering tasks. Most notably,
sequence-based models have achieved state-of-
the-art performance on protein fitness prediction
while structure-based models have been used ex-
perimentally to develop proteins with enhanced
functions. However, there is a research gap in
comparing structure- and sequence-based meth-
ods for predicting protein variants that are bet-
ter than the wildtype protein. This paper aims
to address this gap by conducting a compara-
tive study between the abilities of equivariant
graph neural networks (EGNNs) and sequence-
based approaches to identify promising amino-
acid mutations. The results show that our pro-
posed structural approach achieves a competitive
performance to sequence-based methods while be-
ing trained on significantly fewer molecules. Ad-
ditionally, we find that combining assay labelled
data with structure pre-trained models yields sim-
ilar trends as with sequence pre-trained models.

Our code and trained models can be found
at: https://github.com/semiluna/
partIII-amino—acid-prediction.

1. Introduction

In recent years, pre-trained models have garnered signifi-
cant attention in the field of protein representation. Notably,
models have been developed to deal with both the sequence
and structure modalities of proteins (Rives et al., 2021; El-
naggar et al., 2022; Zhang et al., 2023). These models have
demonstrated their potential in various applications such as
protein fitness prediction (Meier et al., 2021; Notin et al.,
2022) while being employed in a ’zero-shot” manner, with-
out the need for additional training data. Their success has
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also shown promising experimental results in protein engi-
neering (Shroff et al., 2020; Lu et al., 2022). Additionally,
Hsu et al. (2021) have observed that augmenting simple
models for assay labelled data with fitness predictions ex-
tracted from pre-trained sequence models can enhance their
performance.

Despite the experimental success of pre-trained structural
methods for protein engineering, particularly those based on
predicting residues given local atom environments (Torng
& Altman, 2017; Lu et al., 2022), several crucial aspects
remain unexplored. Firstly, these methods have not been sys-
tematically compared with sequence-based approaches us-
ing the same datasets. Secondly, their potential to augment
assay labelled data, when available, has not been evaluated.

This paper aims to fill this research gap by conducting a
study of the comparative performance of structure-based and
sequence-based methods on predicting variants that are bet-
ter than the wildtype protein. We compare representatives
of the most successful equivariant graph neural networks
(EGNNSs) on the task of residue identity prediction, namely
GVP (Jing et al., 2021) and EQGAT (Le et al., 2022), with
representatives of the most successful sequence-based ap-
proaches: Tranception (Notin et al., 2022), ESM-1v (Meier
et al., 2021) and the MSA Transformer (Rao et al., 2021).

By undertaking this comparative analysis, we aim to provide
insights into the performance and suitability of geometric
GNNss in protein engineering, specifically in the context of
predictions based on the local atomic environment. Our
contributions are as follows:

* We apply the most successful pre-training approach for
structural methods (Shroff et al., 2020) to equivariant
GNNs by using the ATOM3D RES dataset (Townshend
et al., 2022) for residue identity prediction (Table 1);

* We benchmark the resulting structure-based pre-trained
models with the most successful zero-shot sequence-
based approaches (Table 2). We observe that structure
does not trump sequence in downstream tasks when
used in this way, although the amount of available struc-
tures used during pre-training is significantly lower
than the number of sequences used in training large
language models;
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Table 1. Classification accuracies on the ATOM3D RES dataset.

MODEL REPORTED OUR

TEST ACCURACY  TEST ACCURACY
EQGAT 0.540 0.524
GVP 0.527 0.580

* We extend the simple combination approach for assay
labelled data and pre-trained model outputs (Hsu et al.,
2021) to the structure pre-trained domain. We find
the same general trends as with sequence pre-trained
models, as assay-labelled data quickly allows us to
surpass zero-shot pre-trained sequence-based models
with at few as 100 datapoints (Figure 2).

2. Methodology

We pre-train two equivariant graph neural networks on the
task of residue identity prediction, also known as the RES
task (Townshend et al., 2022). We choose the Geometric
Vector Perceptron (Jing et al., 2021) and the Equivariant
Graph Attention Network (Le et al., 2022). While Lu et al.
(2022) used 3D-CNNSs to engineer plastic enzymes, Jing
et al. (2021) benchmark 3D-CNNs on the RES task and
show that the GVP outperforms them, so we choose to
focus on this structural method instead.

Table 1 shows a comparison between the reported accura-
cies of the two models and the accuracies achieved in this
paper. We achieve a higher performance on the GVP model
than originally reported in Jing et al. (2021). This jump
in performance can be explained by the fact that Jing et al.
(2021) only use a third of the original training dataset to
train the GVP, possibly due to computational constraints.
More details on our training parameters can be found in A.9.

2.1. RES task formalism

We formalise the RES classification task as follows. For
a given point-cloud atomic graph G = (V, E') with nodes
i,7 € V and edges (i — j) € E. Givenanodet € V
representing the C,, of a residue in the atomic graph, we can
define the node classification function RES : V x G — R?°
that takes as input node ¢ and a masked atomic graph G,
from which we have removed the side-chain atoms of node ¢
and returns the likelihood scores of each of the 20 naturally
occurring amino-acids to be part of the side-chain of node ¢.
A more extended version of this formalism can be found in
A.l.

2.2. The scoring function

We now formalise the function we use to score each amino-
acid mutation in a sequence. For a wildtype protein se-

quence 1 ...z, withz; € A = {1,2,...,20} we asso-
ciate the point-cloud atomic graph G = (V, E) correspond-
ing to the protein’s structure. Edges are drawn between any
two atoms that are less than 4.5A apart.

Then, using the formalism defined in 2.1, the score associ-
ated with the presence of amino-acid a € A at position i
can be defined as:

S5(i,a) = [RES(g(i), G)la Q)

Where g : {1,2,...,n} — {1,2,...,|V|} is a mapping
function from positions to the index of the node representing
the central C,, of the amino-acid residue present at each
position. Here, G ;) denotes the masked graph from which
we removed the side-chain attached to node g(i).

Equation 1 essentially represents the score of amino-acid a
for target position 4, associated with node g(4) in the atomic
graph. Note that the true amino-acid at the same position is
denoted by x;.

2.3. Mutation generation

Once the equivariant models have been trained on the RES
task, we use them to inform the generation of single-point
mutations in monomers and homo-oligomers from the Pro-
teinGym substitutions dataset (Notin et al., 2022). For
each wildtype sequence we recover its structure, mask each
amino-acid residue in turn, and retrieve the scores generated
by the EGNN model for each of the 20 naturally occuring
amino-acids. These scores are then ranked according to
two strategies to determine the most promising single-point
mutations. Figure 1 illustrates this approach visually.
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mutation generation

Figure 1. For every sequence, we recover the structure from the
PDB and mask each amino-acid in turn. We pass the masked graph
through a pre-trained EGNN model to recover the score associated
with each amino-acid, which we then rank. The key idea is that
this pre-training allows the model to identify amino acids which
seem “‘unusual” given their local environment and propose better
fitting candidates instead.

Structure recovery. The ProteinGym substitutions
dataset contains 87 molecular sequences; for each of these
sequences, a number of experimentally tested mutations are
scored according to their fitness. We evaluate our methods



on a subset of the original dataset for which we could find
either monomeric or homo-oligomeric structures. For each
wildtype sequence, we recover the corresponding biological
assembly from the Protein Data Bank (Berman et al., 2000).
When multiple assemblies are available, we choose one at
random. When assemblies are incomplete, we instead use
the monomeric AlphaFold prediction (Jumper et al., 2021)
if available. Otherwise, we discard the sequence.

2.4. Mutation ranking

Our approach allows us to score every possible residue
mutation for each position in a sequence. Our goal is to
generate meaningful mutations that have a higher chance
of being bio-physically relevant, so we discard positions
where the equivariant model makes the wrong prediction. A
more detailed analysis of this design choice can be found in
Appendix A.4.

Global ranking. We rank the remaining mutations ac-
cording to two strategies: global and positional. When
performing global ranking, we sort mutations in descending
order of their score, regardless of their position. If we de-
note the single-point mutation to amino-acid a at position
i by m¢, then Vi, j and Va,b € As.t. a # z; and b # z;,
we say that:

my is better than m? — S(i,a) > S(5,b) (2
Positional ranking. The second approach follows when
we prioritise the positions we want to mutate instead of the
amino-acids we mutate to. Formally, this can be quantified
as:
b
J
— (S(i,xi) < S0, ;cj))v 3)

(St 2:) = S(,25) A S(ia) > S(.b))

Note that when we perform positional ranking, we only keep
the 3 top mutations for each position.

m; is better than m

2.5. Protein fitness prediction

The GVP and EQGAT trained on the ATOM3D RES task
can be thought of as unsupervised models that can suggest
amino-acid mutations. We extend our original approach to
perform fitness prediction using a ridge regression model
augmented with the positional scores generated by equiv-
ariant GNNS, in a similar manner to that introduced by
Hsu et al. (2021). For a given sequence of amino-acids
T1...0a;...%T, with a single-point mutation at position ¢,
we embed each amino-acid using either the one-hot en-
coding or AAIndex embeddings (Kawashima et al., 1999)
on which we perform PCA to render 19-dimensional fea-
tures per amino-acid. We flatten and concatenate these

encodings to render feature vectors hgpepnot € R2°%™ and
hapindex € R19%™. To this feature vector we concatenate
the score predicted by the GNN model for amino-acid a; at
position %:

Xone-hot — [hone—hot || S(i, ai)] “
Xaa-index — [haa—index || S(Za ai)] ©)

Here, S(i, a;) is the same scoring function defined in Equa-
tion 1. These features are then used to train a ridge re-
gression model to predict protein fitness using subsets of
single-point mutated sequences for each of the ProteinGym
DMS assays we have model scores for.

3. Results

3.1. Mutation generation

We generate single-point mutations for 49 out of the 87
DMS assays in the ProteinGym substitutions dataset (Notin
et al., 2022). When we generate mutations, we discard any
that we cannot find in the experimental dataset of the target
sequence. We are interested in understanding how good our
models are at suggesting mutations that are better than the
wildtype sequence, hence we propose three metrics through
which to perform comparisons: (1) Spearman’s rank corre-
lation restricted to better than wildtype sequences, (2) the
precision of the top 10 mutations, and (3) the recall of the
top 10 mutations. To compute the last two metrics we only
considered whether a mutation proposed by the model is
better than the wildtype, disregarding its actual score. Table
2 shows the performance of our models, depending on the
type of ranking used. We note that the equivariant mod-
els have a competitive performance to Tranception (Notin
et al., 2022) when ranking mutations that are better than
the wildtype, indicating that they represent a viable strat-
egy for aiding the discovery process in protein engineering.
Per-dataset performance metrics can be found in A.2.

EGNN models require a significantly smaller number of
protein structures during training in order to reach a similar
ranking correlation coefficient to Tranception for mutations
that are better than the wildtype. While Tranception is
trained on the UniRef100 database (Suzek et al., 2015),
which contains over 4 million source sequences, our models
are trained on the ATOM3D RES dataset (Townshend et al.,
2022), which contains fewer than 22k molecules from which
local environments are sampled.

Structure vs Sequence. We believe EGNNs may require
less training because structure is more informative than se-
quence for fitness prediction. While sequence-based models
attend the full protein and subsequently learn to focus on
the important bits, EGNNs attend only local environments,
thus learning to identify important atoms faster. Further ex-
periments could be run to compare the power of sequence-



Table 2. Ranking performance of the models across 49 DMS assays. Numbers in bold represent the highest score per column, while
numbers with an underline represent the second highest score per column. We note that two equivariant GNNs have the highest rank

correlation for better than wildtype mutations.

MODEL RANKING STRATEGY PI;FE(():E;SII(()) . gEOcPAi (i SPEARMAN’S RANK CORRELATION
AVERAGE WORSE THAN WT  BETTER THAN WT
EQGAT POSITIONAL 0.486 0.187 0.223 0.128 0.118
EQGAT GLOBAL 0.491 0.072 0.262 0.154 0.157
GVP POSITIONAL 0.462 0.419 0.106 —0.009 0.276
GVP GLOBAL 0.426 0.100 0.202 0.128 —0.011
TRANCEPTION 0.619 0.012 0.429 0.299 0.143
ESM-1v 0.618 0.018 0.407 0.288 0.135
MSA TRANSFORMER 0.638 0.018 0.434 0.327 0.135
and structure-based models when their level of training is 0.35 4 - A
. L. -O0 —— original tranception |
comparable. However, we point out that training EGNNs —— simple, one-hot I +
to the same level as present state-of-the-art sequence mod- -@- simple, aa-index i
els may be infeasible due to both data and computational & "7 —F— cagat, one-hot I
traints = -@- eqgat, aa-index :
cons . E} —+— gvp, one-hot : ++
T 0254 ~@- gvp, aa-index 1 [ 14
38 B 1
Correlation to sequence-based models. As part of our F —+— tranception, one-hot :
. . = =@~ tranception, aa-index
analysis, we also compute the correlation between the better 5 0.20 L
than wildtype predictions made by our EGNN models and :E
Tranception. Per-model and per-dataset statistics can be 5
. . . < 0.15 A
found in A.3; we note that the highest rank correlation . 019
we find is 0.212, in the case of the EQGAT model. Since a
these approaches seem to be weakly correlated, we believe E 0.10
there are improvements to be gained from ensembling both i
w0
structure- and sequence-based approaches. 0.05 -
The impact of design choices. As mentioned in Section 000

2.4, we discard mutations at positions where the EGNNs
make the wrong prediction, as we find that incorporating
these is detrimental to the overall performance (see A.4).
This indicates that these structure-based models are still
undertrained, with potential for improvement coming both
from larger datasets and more data engineering.

3.2. Protein fitness prediction

We train 4 types of ridge regression models on each of the
49 DMS datasets separately. The baseline non-augmented
model uses only features hope-hot OF hayingex defined in Sec-
tion 2.5; the remaining 3 models are augmented with single-
point mutation scores from GVP, EQGAT, and Tranception,
respectively. For each model type and each DMS array we
first set aside 20% of the single-point mutated sequences
for testing; We train the regression on increasingly larger
training subsets. We repeat the process 20 times with differ-
ent random subsets and report the average Spearman rank
correlation on better than wildtype sequences, as seen in
Figure 2. The performance on other metrics can be found in
AS.

T T T T T T
24 48 72 96 120 144 168 192 216 80/20
Training data size

Figure 2. Performance on mutations that are better than the wild-
type for four regression models using two types of embeddings.
Statistics are aggregated across 49 DMS assays. We note that we
can improve the fitness prediction performance above the Trancep-
tion baseline (in black) across all regression models by training on
as few as 144 data points.

Similar to the results reported by Hsu et al. (2021), the
augmented linear models allow us to surpass the baseline
zero-shot fitness prediction models with as few as 100 dat-
apoints in the case of the model augmented with EQGAT
scores. While the linear model augmneted with Tranception
scores performs best overall, we point out that Tranception
is fine-tuned to predict protein fitness, while the scores re-
trieved from our models merely represent the confidence in
a certain amino-acid for a target position.



4. Limitations and future work

We apply pre-trained EGNNs to both mutation generation
and protein fitness prediction, and find that structural ap-
proaches are a competitive approach to sequence-based
language models for the prediction of mutations that are
better than the wildtype, while also requiring 181x fewer
molecules to train.

While the results look promising, this comparison is limited
in scope, as our approach does not deal with more complex
(hetero-oligomeric) structures from the ProteinGym dataset.

Types of fitness. Additionally, the benchmarking dataset
contains a wide range of sequences for which “fitness” can
be interpreted in many different ways. DMS assays in the
ProteinGym dataset come from humans, viruses, prokary-
otes, and eukaryotes. In particular, in the subset of 49 DMS
assays used in this paper, 5 come from eukaryotes, 21 from
humans, 18 from prokaryotes, and 5 from viruses. Fitness,
in the case of viruses, is interpreted as infectivity or the
likelihood of mutation. In the rest of the cases, fitness can
range from stress resistance to efficiency. For example, in
their experimental paper, Lu et al. (2022) focused on im-
proving thermal stability. Hence, the fitness score used by
Notin et al. (2022) in the ProteinGym dataset represents
a “fuzzy” concept that is context-dependent. Future work
could focus more closely on identifying the types of fitness
structure-based approaches excel at.
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A. Appendix
A.1. Extended RES task formalism

For a given point-cloud atomic graph G = (V, £) with nodes ¢, j € VV and edges (i — j) € £ for which we have initial scalar
and vector node features H € RIVI*™ x RIVIX3%¥ a5 well as scalar and vector edge features E € RIEIx™ x RIEIx3xn,
we first consider a masked version of this graph, G; = (V, &), for which we have masked all the atoms of the side-chain
attached to the node ¢ (representing an C,, atom).

These features become the input to an EGNN model trained on the RES task, that returns the probability that the masked
residue ¢ is any of the 20 naturally occurring amino-acids. Formally, if we define the node classification function fﬁ :

RIVIX7 5 RIVIX3xv o RIEIXm o RIEX3x1 _ R20 with learnable parameters -, then the score of amino-acid a at position 4
in a wildtype sequence can be defined as: _
S(i,a) = [/ (H,E)], (6)

We then formally define the GNN model G, : RIVeI*m 5 RIVix3xv y RIEDxm o RIENx3xn _y RIViIX0 that takes as input
the node and edge features and returns final node features Hy:

Hou = Go, (He, Ey) @)

where H; and E; represent the node and edge features for all nodes and edges that exist in the masked graph G;.

Since we are interested in predicting the type of amino-acid corresponding to the masked side-chain of node ¢, we pass its
final features [Hoy; through a multi-layer perceptron MLPy, : R® — R20 to obtain the final scores associated to each of
the 20 naturally occuring amino-acids.

f(H,E) = MLPy, ([Gy, (H¢, E¢)];) ®)

Given a wildtype sequence 125 . . . ,, of length n with x; € A = {1,2,...,20} representing the index of amino-acid ¢,
we construct the atomic graph G = (V, £), and build a scoring function of the positions S : {1,2,...,n} x A — R that we
define by extending the formalism in Equation 8:

S(i,a) = [f¢(H,E)], ©)

Where g : {1,2,...,n} = {1,2,...,|V|} is a mapping function from positions to the index of the node representing the
central C,, of the residue at every position in the sequence.



A.2. Per-dataset performance of our ranking approach
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Figure 3. Spearman’s rank correlation on better than wildtype mutations per dataset for the EQGAT model.
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Figure 4. Spearman’s rank correlation on better than wildtype mutations per dataset for the GVP model.



A.3. Correlation to Tranception ranking

Table 3. Average Spearman rank correlation (for better than wildtype predictions) between Tranception and structure-based models.

Correlation to Tranception

Ranking

Model
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Figure 5. Spearman’s rank correlation between the ranking made by the GVP model and Tranception.
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Figure 6. Spearman’s rank correlation between the ranking made by the EQGAT model and Tranception.

A.4. Design choice: discarding wrongly predicted positions

As mentioned at the beginning of Section 2.4, we add an additional filter to our ranking techniques in order to increase the
quality of the mutations proposed by our models. More specifically, we discard the scores of all mutations at a position that
was classified incorrectly by the EGNN.

The reasoning behind this is that an incorrect classification of a residue may indicate that the models do not have a
good understanding of the biophysical properties of the residue’s local environment. This is particularly damaging to the
generation of meaningful mutations if the models assign similarly low confidences to all 20 amino-acids that are candidate
for a position, because they resort to random guessing.

We provide an ablation study to back up this design choice. Tables 4 and 5 show how all three types of Spearman rank
correlations are higher when discarding wrongly predicted positions.

Table 4. Model performance when performing global ranking using both wrongly and correctly predicted positions. Statistics averaged
across for 49 sequences.

SPEARMAN’S RANK CORRELATION

MODEL POSITIONS USED
AVERAGE WORSE THAN WT  BETTER THAN WT
EQGAT ALL 0.20 0.153 0.069
EQGAT CORRECT ONLY 0.262 0.154 0.157
GVP ALL 0.093 0.076 0.014
GVP CORRECT ONLY 0.202 0.128 -0.011
TRANCEPTION 0.429 0.299 0.143

We can get a better idea of the types of information that is learned by the EGNN models by looking at the confusion matrices
between the true labels and the predicted labels in the RES ATOM3D test dataset, illustrated in Figure 7.

The BLOSUMG62 matrix. We compare these two matrices to the BLOSUM62 matrix, a scoring matrix commonly used
in bioinformatics for sequence alignment. It stands for "BL.Ocks SUbstitution Matrix”” and was developed by Henikoff &



Table 5. Model performance when performing positional ranking using both wrongly and correctly predicted positions. Statistics averaged
across for 49 sequences.

SPEARMAN’S RANK CORRELATION

MODEL POSITIONS USED
AVERAGE WORSE THAN WT  BETTER THAN WT
EQGAT ALL 0.124 0.100 0.061
EQGAT CORRECT ONLY 0.223 0.128 0.118
GVP ALL 0.083 0.076 -0.018
GVP CORRECT ONLY 0.106 -0.009 0.276
TRANCEPTION 0.429 0.299 0.143
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Figure 7. Comparison between the confusion matrices of EQGAT and GVP to the BLOSUMG62 matrix.

Henikoff (1992). In the BLOSUM62 matrix, each cell represents the score for substituting one amino acid with another. The
matrix is symmetric, and the scores are typically positive integers. Higher scores indicate a higher degree of conservation or
similarity between the substituted amino acids.

We expect that model with meaningful inferred knowledge about the biophysical properties of molecules and amino-acids to
have a similar confusion matrix to the BLOSUMG62 matrix, yet we do not necessarily see this trend arising. We do, however,
notice that the confusion matrices of the EQGAT and the GVP look similar to each other, indicating that they must be
learning the same features from the training dataset.

A.S5. Design choice: experimental vs. AlphaFold structures

We expect the usage of AlphaFold structures to be detrimental to the overall performance of our models. To check whether
this is indeed the case, we perform on ablation study on 14 of the 49 sequences we use in this project. These sequences
have both a complete experimental structure and an AlphaFold structure, so we can compare the performance of our models
using either one or the other. Since the ablation study presented in Section A.4 makes it clear that mutations at wrongly
predicted positions are detrimental to our models, we perform this second ablation study by also discarding mutations for
positions that models get wrong.

As presented in Tables 6 and 7, we find that there isn’t a clear relation between using the AlphaFold structure and a decrease
in the “better than WT” Spearman correlation, as it seeems to depend on both the model and the ranking strategy used.
However, we do notice a clear trend for the models rank worse than wildtype mutations better when using the AlphaFold
structure.

A.6. Design choice: full structure vs. local environment

For the main results, we input the entire molecule in the GNN (with the exception of the masked amino-acid position we
wish to predict scores for). This may not necessarily be the best approach, because the models are trained on samples of
local environments, which contain on average 600 nodes, whereas a full molecular structure can have even 4000 nodes.



Table 6. Model performance when performing global ranking using either AlphaFold or experimental features. Statistics are averages
across 14 DMS assays.

SPEARMAN’S RANK CORRELATION

MODEL STRUCTURE
AVERAGE WORSE THAN WT  BETTER THAN WT
EQGAT ALPHAFOLD 0.311 0.177 0.136
EQGAT EXPERIMENTAL 0.262 0.154 0.157
GVP ALPHAFOLD 0.237 0.211 0.049
GVP EXPERIMENTAL 0.202 0.128 —0.011

Table 7. Model performance when performing positional ranking using either AlphaFold or experimental features. Statistics are averages
across 14 DMS assays.

SPEARMAN’S RANK CORRELATION

MODEL STRUCTURE
AVERAGE WORSE THAN WT  BETTER THAN WT
EQGAT ALPHAFOLD 0.235 0.097 0.149
EQGAT EXPERIMENTAL 0.223 0.128 0.118
GVP ALPHAFOLD 0.253 0.332 0.172
GVP EXPERIMENTAL 0.106 -0.009 0.276

Tables 8 and 9 show that the EQGAT model benefits from using the entire structure, while the GVP model benefits from
using the local environment.

Table 8. Model performance when performing positional ranking using either local environments or the full molecule. Statistics are
averaged across 49 DMS assays.

SPEARMAN’S RANK CORRELATION Top 10 Tor 10
PRECISION RECALL

MODEL  STRUCTURE

AVERAGE WORSE THAN WT  BETTER THAN WT

EQGAT FuLL 0.223 0.128 0.118 0.486 0.187
EQGAT LocAL 0.203 0.039 0.041 0.516 0.176
GVP FuLL 0.106 -0.009 0.276 0.462 0.419
GVP LocaL 0.203 0.104 0.311 0.451 0.382

Table 9. Model performance when performing global ranking using either local environments or the full molecule. Statistics are averaged
across 49 DMS assays.

SPEARMAN’S RANK CORRELATION Topr 10 Topr 10
PRECISION  RECALL

MODEL STRUCTURE

AVERAGE WORSE THAN WT  BETTER THAN WT

EQGAT FuLL 0.262 0.154 0.157 0.491 0.072
EQGAT LocaAL 0.254 0.149 0.134 0.491 0.047
GVP FuLL 0.202 0.128 -0.011 0.426 0.100

GVP LocAaL 0.216 0.233 -0.031 0.392 0.126




A.7. Summary of design decisions for mutation generation

Overall, our ablation studies suggest the following:

* Discarding positions where the models cannot correctly identify the true wildtype amino-acid increases the quality the
mutation ranking;

» Using the AlphaFold structure is not detrimental to the generation of better than wildtype mutations;

¢ The EQGAT model works best with the full molecular structure, while the GVP model works best with the a local
environment.

A.8. Performance metrics for the ridge regression models

Figure 8 summarises the performance of the ridge regression models.
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A.9. RES Task learning hyperparameters

We train two equivariant GNN models on the RES task using the ATOM3D RES dataset (Townshend et al., 2022). Both
models are trained using one NVIDIA A100 GPU.

Table 10 summarises the training configuration used for both models. Table 11 summarises the architectures of the EQGAT
and GVP.

Table 10. Training configuration for both models.

Hyperparameter Value

Learning rate le ™
Patience scheduler 10
Decay rate 0.75
Dropout 0.1
Batch size 64
Epochs 40

Table 11. Model architectures.

Model Hyperparameter Value

Message-passing layers 5
GVP Node features (scalar, vector) (100, 16)
Edge features (scalar, vector) 32,1

Message-passing layers 5

Node features (scalar, vector) (100, 16)
EQGAT RBF function Bessel

RBFs 32

RBF cutoff 45A




