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Abstract

Macroscopic properties of molecules and protein
complexes are described by statistical ensembles
of the systems i.e. the binding free energy, which
are generally intractable to compute making inte-
gral over this space in need of good approxima-
tions. Generative models particularly have found
great potential in obtaining tractable densities and
samples. In order to study interesting partitions
of the state-space it becomes desireable to sample
states that satisfy constraints either because we
have prior structural knowledge or only certain
subsets of the state-space are of interest. Here
we propose a method that allows one to gener-
ate samples that satisfy any number of geometric
constraints in Euclidean spaces, i.e. distances,
torsions, or dihedrals, by integrating a constraint
projection operator into the formalism of Denois-
ing Diffusion Probabilistic Models.

1. Introduction
Infinitesimal Dynamics in classical mechanics is commonly
formalized by lagrangians. By solving for functionals that
extremize the lagrangian one obtains equations of motion. In
molecular systems, e.g. Molecular Dynamics, the EOM are:
M d2x

dt2 = −∇U −
∑
a λa∇σa, where M is the diagonal

mass matrix, x the cartesian coordinates, t is time, and
U is the potential energy. The σa are a set of holonomic
constraints and λa are the Lagrange multiplier coefficients.
To generalize from holonomic to nonholonomic constraints,
one can use slack variables to transform the latter into the
first. For example, we can add a slack variable y ≥ 0 and
define dj as the boundary of a nonholonomic constraint.
Then, we can express the constraint as:

σa := ||xaj−xak||22−dj ≤ 0 → ||xaj−xak||22−dj+y = 0.
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Starting with zx, zh = f(x, h) = [x(0), h(0)] +∫ 1

0
ϕ(x(t), h(t))dt with z being a latent vector sampled

from gaussians and the indexes x and h indicate the latent
variables associated to the coordinates of each particle and
the vector embedding of each particle, ϕ is the parameter-
ized transformation defined by a equivariant graph neural
network. This defines a Neural ODE [Che+18] which gen-
eralizes Denoising Diffusion Probabilistic Models[HJA20].
This form of transformation has the same infinitesimal na-
ture as our previous EOM which makes it acceptable to
apply sets of constraints via Langrange’s Multipliers, analo-
gous to solving our EOM and thus one can insure the con-
tinual satisfaction of a set of constraints using the SHAKE
algorithm from Molecular Dynamics.

In the following, we will give a summary of the SHAKE
algorithm and segments of the Denoising Diffusion neces-
sary to elaborate on how to combine them. Next, it will be
elaborated that the spaces of latent embeddings and output
samples are generally of very different nature, and con-
straints defined in one space will not necessarily be useful
in the other. We suggest a continuous transformation of the
constraints such that they are always satisfied in the latent
space, and become more restrictive throughout the integra-
tion. Further, we formalize the incorporation of Shake-like
projection operators in the Denoising Diffusion Probabilistic
Models on graphs.

2. Previous Research
Generative models of molecules and proteins have been a
subject of interest in recent years. A number of different
approaches have been proposed in the literature. [HN19]
introduced a method for generating valid Euclidean dis-
tance matrices. This method is important for the generation
of molecules, as it ensures the resulting molecular struc-
tures are physically realistic. In the work by [Noé+19],
Boltzmann Generators were proposed to sample equilib-
rium states of many-body systems with deep learning. This
method is particularly useful for generating molecular con-
figurations that obey the laws of thermodynamics.

[SHW21] proposed Equivariant Graph Neural Networks,
which can be applied to model molecules and proteins. The
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equivariance property of these networks ensures that their
predictions are consistent under different orientations and
permutations of the molecule.[Hoo+23] further extended
the concept of equivariant networks to the diffusion pro-
cess for 3D molecule generation. Their method maintains
the advantages of equivariance, while allowing more flex-
ibility in the generation process. [Cor+23] applied similar
modelling techniques to diffusion models on protein ligand
complexes. Lastly, [Jin+23] devise a method of protein
generation models that diffuse over harmonic potentials.

The shake algorithm, described in a parallelized fashion
by [ERH11], enforces constraints on molecular dynamics
simulations of chemicals and biomolecules. This algorithm
is conventionally used in simulations to get rid of high fre-
quency motions, i.e. those seen in bonds between atoms.
By incorporating the shake algorithm, our constraint de-
noising diffusion method effectively models more complex
constraint sets. These works together provide a solid founda-
tion for the development of generative models for molecules
and proteins. They highlight the importance of incorpo-
rating physical principles and mathematical structures into
these models.

3. Constrained Generative Processes
3.1. Geometric Constraints in Shake

First, we define the constraint functions for the pairwise dis-
tance (not necessarily between bonded atoms), bond angle,
and dihedral angle. We can additionally create nonholo-
nomic constraints via slack variables as described below.

σdij = (dij − dij,0)
2
= 0 (1)

σθijk = (θijk − θijk,0)
2
= 0 (2)

σψijkl
= (ψijkl − ψijkl,0)

2
= 0 (3)

These constraint functions compare the current pairwise
distance, bond angle, and dihedral angle with their target
values, and the goal is to minimize the difference.

Next, modify the constraint matrix in the SHAKE algorithm
to include pairwise distance, bond angle, and dihedral an-
gle constraints seen in equation 4, where ij, ijk, and ijkl
sum over the pairwise, bond angles, and torsion constraints
indicating the number of atoms in each type of constraint
type. The constraint matrix now accounts for the pairwise
distance, bond angle, and dihedral angle constraints by in-
cluding their second-order derivatives with respect to the
Cartesian coordinates by including their contributions to
the Lagrange multipliers. After solving for the Lagrange
multipliers, update the coordinates using the adjusted coor-
dinate set equation like before. It is also possible to try to

optimize the coordinates via other optimization algorithms
like ADAM or SGD.

In this section, we discuss the methods needed to under-
stand how constraints can be represented, and define a novel
diffusion process which projects the dynamics onto the sub-
manifold defined by arbitrary sets of geometric constraints.

3.2. Shake Algorithm

The SHAKE algorithm takes as input a set of coordinates
x of a molecular system and a set of constraints σ. At
each time step the coordinates are updated according to
the equations of motion (EOM) at hand (without constraint
terms) and subsequently are corrected. In general, the EOM
will lead to dynamics that do not satisfy the constraints, and
thus this correction is mandatory.

Assuming masses of all the particles and delta time are unit
we have the following equation for updating xi iteratively
until the constraints are satisfied.

x
(n)
i = x

(n−1)
i −

∑
b

λ
(n−1)
b ∇σb(xi) (5)

where x(n)i is the updated coordinate after n iterations of
satisfying constraints at each time step, xi is the initial
coordinates at each time step, and λ(n−1)

b is the lagrange
multiplier for each constraint σa. The equation to solve at
each iteration of each time step is∑

β

λ
(n−1)
β A

(n−1)
αβ = σα(x

(n−1)
i ) (6)

with

A
(n−1)
αβ = ∇σα(x(n−1)

i )∇σβ(xi). (7)

The matrixA(n−1)
αβ is a symmetric matrix that describes how

changes in particle positions affect both potential energy
and constraint violations. The elements of the matrix are
given by:

A
(n−1)
αβ =

∂2U

∂xα∂xβ
+

Nc∑
k=1

λ
(n−1)
k

∂2σk
∂xα∂xβ

(8)

where Nc is the number of constraints. The matrix A(n−1)
αβ

is used to solve for the Lagrange multipliers λ(n)β , which
are then used to adjust particle positions.

3.3. Constraint-Induced Diffusion Process

Suppose we want to incorporate a constraint, such as a
distance constraint between two atoms. Let’s denote this
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A
(n−1)
αβ =

∂2U

∂xα∂xβ
+
∑
ij

λ(n−1)dij
∂2σdij
∂xα∂xβ

+
∑
ijk

λ(n−1)θijk
∂2σθijk
∂xα∂xβ

+
∑
ijkl

λ(n−1)ψijkl
∂2σψijkl

∂xα∂xβ
(4)

constraint by f(x) = 0 for simplicity. We can modify the
diffusion process to satisfy this constraint by projecting
the noise term onto the nullspace of the gradient of the
constraint function, analagous to the A matrix in SHAKE.
This gives us:

dx =
√
2D(I −∇f(x)(∇f(x))T )dB −D∇ log pt(x)dt

where D is the diffusion constant, B is a standard Brow-
nian motion, and ∇ log pt(x) is the gradient of the log-
probability density, which is equivalent to the negative of
the potential energy function of the system. Here, I is the
identity matrix, and ∇f(x)(∇f(x))T is the outer product
of the gradient of the constraint function, which represents
the direction in which the constraint is changing. This pro-
jection ensures that the noise term does not push the system
out of the constraint-satisfying space.

The covariance matrix of the perturbed Gaussian distribution
of the denoising process can be understood formally using
the Schur complement method, not discussed for space. The
key takeaway is the relation between constraints and corre-
lations via projecting out the constraints in the Covariance
matrix of a Multivariate Gaussian. This modified covari-
ance matrix then defines the perturbed Gaussian distribution
from which we can sample at each time step of the diffusion
process. This is a good approximation when the constraints
are nearly linear or when the changes in the variables are
small. One note is that in general, the order of projection
and sampling does matter, but since we deal with linearized
constraints or small changes this is negligible as seen in the
original SHAKE formalism.

3.4. Nonholonomic Constraints

We are more interested in nonholonomic constraints where
each constraint has possibly a lower and upper bound. As
we mentioned earlier, by adding a slack variable one can
translate the nonholonomic constraints to holonomic ones.
To formalize this, one sees that a constraint having a lower
and upper bound will either be completely satisfied or fail
to satisfy a single boundary. Thus, we only have to consider
at most one holonomic constraint at each call to SHAKE
meaning each constraint with a lower and upper bound
may be replaced by a lower, upper, or no bound for each call.

To calculate the slack variable y from σjk := ∥xli−xlj∥−djk
which is ≤ or ≥ 0, one has

y =

{
max(0, ||xli − xlj || − dujk), if ≤
max(0, dljk − ||xli − xlj ||), if ≥ (9)

Algorithm 1 Pseudo-Code for Training

t ∼ U(0, T ), ϵ ∼ N(0, I)
Subtract center of gravity from ϵ: ϵ̂ = [ϵ(x), 0]− [x, 0]
Compute zt = αt[x, h] + σtϵ̂
Update zt → x+ ϵs, where ϵs = shake(zt)− αtx
Compute ϵ′s = shake(φ(zt) + zt)− zt
Minimize Lc = |ϵs − ϵ′s|22

where djk is the lower or upper bound in case of nonholo-
nomic constriants and the defined constraint value for holo-
nomic constraints.

In the generative process, we define the initial values of djk
such that the constraints have little effects. The constraints
are then linearly interpolated throughout the ODE until the
predetermined boundary values of djk are reached.

3.5. Training and Sampling Algorithms

3.5.1. TRAINING PROCESS

During training, in Algorithm 2, we first sample a time step
t and noise vector ϵ from uniform and Gaussian distributions
respectively. Then subtract the center of gravity from the
noise vector to ensure that it lies on a zero center of gravity
subspace. Then compute the latent variable zt by scaling
and adding the input coordinates [x, h] with the noise vec-
tor. Finally, minimize the difference between the estimated
noise vector and output of the neural network to optimize
EDM. For each molecule between 5 and 15 constraints are
sampled from x for each batch element. The constraints are
uniformly sampled from the pairs, triples, and quadruplets
of the atom set of each molecule. This adds an extra layer
of complexity due to the constraint distribution which we
need to sample from the true data distribution.

3.5.2. GENERATIVE PROCESS

In this algorithm, first sample a latent variable zT from a
Gaussian distribution. Then iterate backwards through time
and sample noise vectors ϵ at each step. Subtract the center
of gravity from the noise vector to ensure that it lies on a
zero center of gravity subspace. Then compute the latent
variable zs by scaling and adding the input coordinates with
the noise vector and previous latent variable. Finally, sample
the input coordinates [x, h] from a conditional distribution
given the initial latent variable z0. The shake algorithm
enforces the constraints, as in training, at each sampling
step during generation.
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Figure 1: Molecules generated with 6 atom cyclic constraints between 1.3-1.5 Angstroms each with bounds of .1 Angstrom.
Atom types are generated as well, so we can not arbitrarily encode constraints between specific types of atoms in our current
implementation, but this will be possible in further developments.

4. Experiments
In the experimental section of our study, we evaluate our
proposed method by generating molecules with cyclic con-
straints in Figure 1. The cyclic constraints impose specific
geometric relationships among atoms in a molecule, such
as the bond distances, bond angles, and torsional angles,
which are essential for maintaining the chemical stability
and physical plausibility of the generated molecules.

During the training phase, constraints are sampled from the
dataset. This approach encourages the model to learn the dis-
tribution of constraints inherent in the training data, which
reduces the Kullback-Leibler (KL) divergence between the
data distribution and the model distribution. Consequently,
the KL divergence during training is always minimized,
promoting the model to generate molecules that closely
resemble those in the training set.

For the practical implementation of this training procedure,
we began with a pre-trained model provided by Welling et
al.Our methodology then fine-tuned this pre-existing model
using our constraint projection method. Due to time con-
siderations and simplicity, our training and experiments
focused on molecules consisting of 21 atoms.

5. Discussion
Our method serves as a potent tool for incorporating com-
plex constraints in denoising diffusion processes, specifi-
cally when dealing with multi-constraint specifications. Its
iterative nature allows it to address nonlinear constraint
problems and extends the power of denoising diffusion prob-
abilistic models to work with constraints. Thus allowing
these models to leverage the structure inherent in many
physical systems. Indeed, many of these systems come with
prior structural knowledge, including geometric information
like distances, torsions, bond angles, and generalizeable
to other piece-wise polynomial terms. Such information
can significantly enhance the training process and enable
explicit sampling of subsets of the state space.

Although constraints can guide generation towards more
physically plausible structures, there can be potential insta-
bility in the generation process. This instability may orig-
inate from discrepancies between constraints used during
training and those applied during generation. It underlines
the need for further work to establish robust training proce-
dures that align more closely with the generation constraints.
Especially, with application focused studies like generating
peptides or ligands with specific interaction profiles with a
given protein.
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