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Predicting 3D genome folding from DNA sequence
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Abstract
In interphase, the human genome sequence folds
in three dimensions into a rich variety of locus-
specific contact patterns. Here we present a deep
convolutional neural network, Akita, that accu-
rately predicts genome folding from DNA se-
quence alone. Representations learned by Akita
underscore the importance of CTCF and reveal
a complex grammar underlying genome fold-
ing. Akita enables rapid in silico predictions
for sequence mutagenesis, genome folding across
species, and genetic variants.

Preprint available at: https://www.biorxiv.org/
content/10.1101/800060v1. Trained models,
open-source code, and documentation for Akita avail-
able at: https://github.com/calico/basenji/
tree/master/manuscripts/akita.

1. Introduction
In interphase, the human genome sequence folds in three
dimensions into a rich variety of locus-specific contact pat-
terns. Recent research has advanced our understanding
of the proteins and sequences driving 3D genome folding,
including the interplay between CTCF and cohesin and
their roles in development and disease (Merkenschlager
& Nora, 2016). Still, predicting the consequences of per-
turbing any individual CTCF site, or other regulatory ele-
ment, on local genome folding remains a challenge. While
disruptions of single bases can alter genome folding, in
other cases genome folding is surprisingly resilient to large-
scale deletions and structural variants (Despang et al., 2019;
Rodriguez-Carballo et al., 2017). Convolutional neural net-
works (CNNs) have emerged as powerful tools for mod-
elling genomic data as a function of DNA sequence, directly
learning DNA sequence features from the data. CNNs now
make state-of-the-art predictions for transcription factor
binding, DNA accessibility, and transcription (Alipanahi
et al., 2015; Zhou & Troyanskaya, 2015; Kelley et al., 2016).
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2. Main
Here we present Akita, a CNN that accurately predicts
genome folding from DNA sequence alone. Akita takes
1Mb (220 bp) of DNA sequence as input and predicts con-
tact frequency maps for all pairs of 2kb (2048bp) bins
within this region. Crucially, this allows Akita to predict
the effect of mutating single base pairs. We trained Akita
with five of the highest-quality Hi-C and Micro-C datasets
as targets, focusing on the locus-specific patterns evident in
log(observed/expected) maps, minimizing the mean squared
error (MSE) between predictions and targets. The Akita
architecture consists of a ‘trunk’ based on the Basenji (Kel-
ley et al., 2018) architecture to obtain 1D representations of
genomic sequence, followed by a ‘head’ to transform to 2D
maps of genome folding (Fig. 1a).

Akita learned a predictive representation of genome folding
from DNA sequence, as evaluated on the held-out test set
(0.61 Pearson R), approaching the limit set by noise between
experimental replicates. On a region-by-region basis, Akita
captured the variety of patterns seen experimentally (Fig.
1b). In silico mutagenesis and inversions of CTCF motifs
indicated that Akita learned an orientation-specific grammar
of the CTCF sites most crucial for genome folding (Fig. 1c),
consistent with experimental results.

Leveraging Akita’s ability to make rapid predictions for
single-base pair perturbations, we studied the influence of
fine-mapped eQTLs from GTEx on genome folding. We
calculated the predicted disruption to local 3D folding for
eQTLs at varying causal posterior probability (PP) thresh-
olds. We observed significantly larger predicted disruptions
for single nucleotide variants (SNPs) with greater causal
eQTL PP, both for SNPs overlapping and outside of CTCF
motifs. Akita also displayed predictive utility for larger
genetically engineered structural variants. At the Lmo2 lo-
cus in HEK293T cells (Hnisz et al., 2016), two domains
are separated by a boundary positioned at a cluster of three
CTCF-bound sites (Fig. 1d). In cells with a 25kb deletion
encompassing this boundary, the two domains merge. Mak-
ing the same deletion in silico recapitulated this effect in the
predicted Hi-C map.

https://www.biorxiv.org/content/10.1101/800060v1
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Predicting 3D genome folding from DNA sequence

Figure 1. a. Akita consists of a ‘trunk,’ based on the Basenji architecture, followed by a ‘head’ to transform 1D DNA sequence into
2D maps of genome folding. b. Predicted and experimental (Krietenstein et al., 2020) log(observed/expected) contact frequency for a
representative region in the test set. c. In silico mutagenesis around a strong CTCF motif revealed high disruption scores in flanking regions.
Core motif shown in grey. Disruption computes the L2 norm of the difference between contact maps. Motif positions from JASPAR
(Khan et al., 2018) d. Top: Experimental (Hnisz et al., 2016) 5C data in HEK293T cells for wild-type (left) and a CRISPR/Cas9-mediated
deletion of a 25kb boundary region (right) at the Lmo2 locus. In wild-type cells (left), this region displays a peak at the boundary
(circle) between two 130kb domains that are insulated from each other (rectangle), separated by a boundary that overlaps a cluster of
three CTCF-bound sites. In cells where this boundary has been deleted (right), the two domains merge and display a flare of enriched
contact frequency (thin rectangle). Bottom: Computational predictions for WT (left) and deletion (right) of the boundary, showing similar
changes.

3. Outlook
In the future, end-to-end sequence-to-genome-folding ap-
proaches will advance our ability to design functional
screens, model enhancer-promoter interactions, prioritize
causal variants in association studies, and predict the im-
pacts of rare and de novo variants.
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