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Abstract
Recent advances on single-cell RNA-sequencing
(scRNA-seq) technologies have enabled paral-
lel transcriptomic profiling of millions of cells.
However, existing scRNA-seq clustering meth-
ods are lack of scalability, time-consuming and
prone to information loss during dimension re-
duction. To address these concerns, we present
SHARP, an ensemble random projection-based al-
gorithm which is scalable to clustering 10 million
cells. By adopting a divide-and-conquer strategy,
a sparse random projection and two-layer meta-
clustering, SHARP has the following advantages:
(1) hyper-faster than existing algorithms; (2) scal-
able to 10-million cells; (3) accurate in terms
of clustering performance; (4) preserving cell-
to-cell distance during dimension reduction; and
(5) robust to dropouts in scRNA-seq data. Com-
prehensive benchmarking tests on 20 scRNA-seq
datasets demonstrate SHARP remarkably outper-
forms state-of-the-art methods in terms of speed
and accuracy. To the best of our knowledge,
SHARP is the only R-based tool that is scalable
to clustering 10 million cells.

1. Introduction
To characterize novel cell types and detect intra-population
heterogeneity, scRNA-seq has been widely applied in biol-
ogy and medicine by enabling parallel transcriptomic profil-
ing of millions of cells. To cluster high dimensional scRNA-
seq data, dimension reduction algorithms such as principal
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component analysis (PCA), t-distributed stochastic neigh-
bor embedding (t-SNE), or uniform manifold approximation
and projection (UMAP) are often used to process and to
visualize high dimensional scRNA-seq data. However, these
algorithms either require considerable computational time
or are susceptilbe to losing original cell-to-cell distances in
the low-dimensional space.

2. Algorithm
To effectively handle very large-scale scRNA-seq data with-
out excessive distortion of cell-to-cell distances, we de-
veloped SHARP (Wan et al., 2020) (https://github.
com/shibiaowan/SHARP), a hyper-fast clustering algo-
rithm based on ensemble random projection (RP) (Fig. 1A).
SHARP employed a divide-and-conquer strategy followed
by RP to accommodate effective processing of large-scale
scRNA-seq data (Fig. 1A). SHARP processes scRNA-seq
data in 4 interconnected steps: (1) data partition, (2) RP
based clustering, (3) weighted ensemble clustering and (4)
similarity-based meta-clustering. During data partition, the
scRNA-seq data is divided into small blocks (random size).
The divide-and-conquer strategy enables SHARP to upload
and process more than 1 million cells. The divided data
blocks are further processed by RP followed by a hierarchi-
cal clustering algorithm. Because the performance of an in-
dividual RP-based clustering is volatile, ensemble of several
runs of RPs is used. A weighted-ensemble clustering (i.e.,
wMetaC) algorithm merges individual RP-based clustering
results. Finally, a similarity-based ensemble clustering (i.e.,
sMetaC) approach is to integrate clustering results of each
block (Fig. 1A).

3. Advantages of SHARP
3.1. SHARP is faster than other predictors

We performed comprehensive benchmarking of SHARP
against existing scRNA-seq clustering algorithms using 20
scRNA-seq datasets whose cell number ranges from 124 to
10 million cells (Fig. 1B-C). The computing cost of SHARP
was substantially lower than other clustering algorithms
(Fig. 1B). The required computing cost of SHARP rose
roughly linearly even with the very large size of the datasets.

https://github.com/shibiaowan/SHARP
https://github.com/shibiaowan/SHARP
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Figure 1. The framework of SHARP. (A) SHARP has 4 steps for
clustering: divide-and-conquer, random projection (RP), weighted-
based meta clustering, and similarity-based meta-clustering. (B)
Running time and (C) clustering performance of SHARP in 20
single-cell RNA-seq datasets with numbers of single cells ranging
from 124 to 10 million (The last 3 datasets were generated by
randomly oversampling the dataset with 1.3 million single cells).
For the datasets with >1 million cells, only SHARP can run and
only the running time was provided due to lack of the ground-truth
clustering labels. Refer to (Wan et al., 2020) for details of the
datasets.

SHARP clustered the scRNA-seq with 1.3 million cells in
42 minutes when using a multi-core system (Fig. 1B). Due
to the data loading problem (and potential exhaustive mem-
ory use), we could not show the running time of other ap-
proaches for 1.3 million cells. The running time of SHARP
for 1.3 million cells is even 2 times (42 mins vs 96 mins)
faster than that of Seurat for 66,255 cells. We expect far
superior performance of SHARP against its competitors in
case data loading is feasible.

3.2. SHARP is scalable to 10 million cells

To demonstrate the scalability of SHARP, we performed
random over-sampling of the mouse brain dataset of 1.3
million cells so that we were able to construct even larger
sizes of scRNA-seq datasets, e.g., 10 million cells. The
running time of SHARP was simply linearly increased with
the increasing of cell numbers from 1 million to 10 million.
In our system using 16 cores, SHARP just needed around
8 hours (i.e., 482.8 minutes) to cluster 10 million cells into
1175 clusters (Fig 1B).

3.3. SHARP is accurate in terms of clustering
performance

For almost all datasets we tested, SHARP showed better per-
formances (Fig. 1C). The performance of other algorithms
became generally worse for large datasets (>40,000 single
cells). In contrast, SHARP showed an ARI (adjusted Rand
index) larger than 0.7 regardless of the size of the datasets,
demonstrating its robustness(Fig. 1C).

3.4. SHARP preserves cell-to-cell distance

We investigated the degree of distortion caused by dimen-
sion reduction and compared the correlation of cell-to-cell
distances after reducing dimension using SHARP, PCA and
t-SNE, respectively. SHARP showed almost perfect simi-
larities in cell-to-cell distance with correlation coefficient >
0.94 even in a dimensional space which is 74 times lower
(from 20862 to 279) than the original one whereas cell-
to-cell distances for PCA and t-SNE were distorted when
dimension reduction was performed to the same number of
dimensions (Fig. 2A of (Wan et al., 2020)).

3.5. SHARP is robust to dropouts

scRNA-seq suffers a high frequency of dropouts where
many of the true expressions are not captured. To eval-
uate the robustness of SHARP against dropouts, we tested
SHARP while artificially increasing dropout rates in a
scRNA-seq dataset (Fig. 2B of (Wan et al., 2020)). We
found that SHARP is robust to the added dropouts, while
we observed poorer performance for the added dropouts in
general for other methods (Fig. 2B of (Wan et al., 2020)).

3.6. Clustering 1.3 million cell data using SHARP

Of note, SHARP provides an opportunity to study the
million-cell-level dataset. Using SHARP, we identified a
total of 244 clusters from this 1.3 million dataset (17 clus-
ters with more than 1,000 cells). The top 4 clusters among
them were found to have clear different expression patterns
(Fig. 2E of (Wan et al., 2020)). Gene Ontology (GO) anal-
ysis show that Cluster 2 is associated with dendrites and
Cluster 3 is with axon. We also identified a cluster (Cluster
8) enriched for the genes associated with “non-motile cil-
ium assembly”, which is important for brain development
and function and immune cells with high IL4 expression
(Cluster 14).
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