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Abstract
A quantitative characterization of gene regulatory
networks (GRNs) that control cellular identity is
key to our ability to reprogram cells, unlock devel-
opmental programs, and mitigate diseases. Here,
we develop a data-driven technique for cell-type-
specific GRN inference that uses RNA expression
and velocity to give strength, direction and ef-
fect to each regulatory interaction. The method is
evaluated in five public data sets from human and
mouse, and a generated mouse B-cell differentia-
tion data set. As validation we find that (i) the sim-
ilarity of the inferred networks captures the simi-
larities among different cell-types; (ii) the inferred
weights permit the reconstruction of a potential
(Hopfield) landscape, (iii) in which cell velocities
agree with local cell-type-specific dynamics. The
(iv) quality of the networks degrades smoothly
when single-cell data from different cell-types are
purposely mixed, thus demonstrating both robust-
ness and cell-specificity of our method. To our
knowledge, this is the first cell-type-specific GRN
inference method that recovers directed, signed
and weighted regulatory circuits directly from
single-cell RNA sequencing data.

1. Introduction
Single-cell RNA sequencing technologies have established
a new paradigm to study cell heterogeneity. Despite recent
progress in the field, it has proved challenging to advance
towards mechanistic studies of transcriptional regulation
beyond clustering, cell type assignation, or trajectory infer-
ence. In spite of the difficulties that came with this tech-
nology, several methods for the inference of GRN from
single-cell RNA seq data have been developed (Huynh-Thu
et al., 2011; Kim, 2015; Moerman et al., 2019; Huynh-Thu
& Sanguinetti, 2015; Specht & Li, 2017; Matsumoto et al.,
2017). In a recent benchmark work (Pratapa et al., 2020),
it was shown that these methods still lack accuracy and im-
pose significant limitations on the data that can be analyzed

due to methodological requirements. Instead of relying on
time-series measurements or perturbation experiments, we
sought to recover regulatory networks by coupling RNA
expression and velocity. We approach this in a cell-type spe-
cific manner, as the corresponding cells may harbor strong
regulatory signals characterizing that particular state, which
would otherwise be obscured by cells from other groups.

2. Methods
2.1. GRN inference

For each cell type, we predict a network W as X+V + γ.
Where X+ is the pseudo-inverse of the expression matrix,
V is the velocity matrix and γ is the degradation rate.

2.2. Calculation of cluster distances

A recurring problem in the field of GRN inference from
transcriptomic data is the lack of state-of-the-art references
to assess a method’s performance (Pratapa et al., 2020).
To circumvent this, we compute all the pairwise distances
between clusters using either their count matrix or their
inferred networks, and then use a set of statistics to assess
the similarity between them. In this sense, an accurate set of
networks should preserve the relationship between clusters
found when using their entire expression data.

Expression space For every pair of expression clusters, the
distance between them is defined as d(Ci, Cj) = ||ci −
cj ||2. Where ci and cj are the centroids of clusters Ci and
Cj respectively. And the centroid is the vector of average
expression of all genes across all cells in the cluster. We
used this as a reference distance matrix describing the true
hierarchical relationship between clusters.

Network space For every pair of clusters, the distance be-
tween their corresponding networks is calculated with the
Frobenius norm. As the networks of different clusters may
comprise distinct sets of genes, before computing the dis-
tances, we match the gene sets in both graphs by adding
small random numbers (< 0.001) as weights to the rows
and columns of the genes missing in each network. We
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compute the Frobenius distance between two graphs as
d(Ni, Nj) = ||Ni − Nj ||F . Where Ni and Nj are the
weighted adjacency matrices of cluster i and cluster j, re-
spectively.

2.3. Cellular landscapes from neural networks

Here we compute an analog of Waddington’s epigenetic
landscape since we have the system equations for each cell-
type or state. To this end, we follow the ideas proposed by
Hopfield in his original manuscript (Hopfield, 1982), and
interpret the inferred GRN as the interaction matrix of a
system of neurons in a neural network, or Hopfield Network
(HN), where each neuron (gene) can be in either of two
states ON = 1 or OFF = −1, binarized as S. An energy
function can therefore be defined (Hopfield, 1982), for the
possible states using our inferred cell-specific GRN (inter-
action matrix W ) as H(S) = − 1

2

∑N
i=1

∑N
j 6=i SiWijSj .

2.4. Data sets

We used six real data sets from human and mouse. For the
method development process we used an in-house generated
data set of mouse B-cell development (mBD20; 8,095 cells).
We then applied it to three data sets covering dynamic pro-
cesses and two comprising differentiated cell types: the
development of the mouse spinal cord (Delile et al., 2019)
(mSC19; 81,933 cells), glutamatergic neurogenesis in the
human fetal forebrain (La Manno et al., 2018) (hFB18;
1,720 cells), the generation of hematopoietic stem cells in
human embryos (Zeng et al., 2019) (hED19; 4,805 cells),
a mouse brain atlas (Zeisel et al., 2018) (mBA18; 97,186),
and a compendium of peripheral blood mononuclear cells
from the 10x Genomics 5K PBMC data sets (hPB20; 15,094
cells). For all data sets, cell labels were assigned using Sin-
gleR (Aran et al., 2019) and RNA velocity was inferred
using scVelo (Bergen et al., 2019).

3. Results
3.1. The Inferred networks preserve cluster distances

The main factors to consider when predicting GRN’s are the
choice of genes and the cell annotation accuracy. Here, we
only address the selection of genes, and rely on existing tools
for clustering and cell-type labeling. Thus, to determine the
group of genes that better captured the cell-type-specific
features, we tested the agreement of the resulting network
distance matrix with a reference distance matrix (see Meth-
ods). The best-performing settings for the data sets hFB18,
hPB20 and mSC19 were 250 genes based on previous analy-
sis (data not shown); and 100 genes for the hED19, mBD20
and mBA18 data sets. There was a clear linear relationship
between the network distance and expression distance for
multiple cluster-cluster pairs (Figure 1 a-d), also shown by

their high correlation coefficients (shown in each panel).
Thus, we show that cell-type specific GRNs of at most 250
genes are able to retain the information necessary to differ-
entiate between clusters.

The mouse data sets mBA18 and mSC19 had low Mantel
correlations (-0.01 and 0.1 respectively) and the linear rela-
tionship between distance matrices was not as clear as that
of the others. We consider this to be mainly a problem of
cell type annotation as we were not able to replicate the clus-
ters reported in the original publications with an automated
pipeline. Due to the nature of our performance assessment
method, the clustering step is critical, because an unclear
grouping of cells would impact the reconstruction of the
reference distance matrix, and hence have a low correlation
with any network distance matrix. The biological justifica-
tion is that only cells belonging to the same cell-type would
be expected to carry relevant information of the GRN spe-
cific for that very cell-type. Therefore, these results suggest
that a proper sorting (clustering) of cells according to true
cell-types is essential.

Additionally, we used this strategy to compare our method
with three GRN inference methods: GENIE3 (Irrthum et al.,
2010), GRNBOOST2 (Moerman et al., 2019) and PIDC
(Chan et al., 2017) in three data sets (hFB18,hPB20 and
mBD20). Across all of them, the correlations between the
expression and network distances, of the three methods,
were significantly lower (data not shown). Thus, suggesting
that our networks are better at capturing cell-type-specific
properties underlying the hierarchical structure of the bio-
logical processes.

Figure 1. Comparison of cluster distances in expression and net-
work. Each panel shows the normalized cluster distances for
different data sets: a) hED19, b) hFB18, c) hPB20, d)mBD20,
e)mSC19 and f) mBA18. Each point represents one cluster-cluster
pair. Blue lines are linear regression models.
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3.2. Derived cellular landscapes recover cell-type
specific properties

To determine if these networks were capturing cell-type-
specific dynamics, we used the inferred equations to model
their corresponding Hopfield landscapes (Figure 2), as the
cells’ behavior on the landscapes is expected to reflect its
phenotypic properties. Following Waddington’s ideas, a
terminally-differentiated cell type should display a land-
scape with at least one local minimum, in which the ma-
jority of cells should be. On the other hand, for cells that
have not yet committed to a certain lineage, the landscape
is expected to encompass several hills and basins, repre-
senting the multiple developmental pathways. Given the
nature of single-cell RNA sequencing, these cells could be
anywhere in that landscape, and their velocities could be
pointing towards any of those pathways. To test these ideas,
we examined the cell-type specific landscapes for each data
set, and found topological patterns that agree with Wadding-
ton’s propositions. For the hED19 data set, we can see that
human embryonic stem cells display a very dynamic land-
scape (Figure 2 a and b), with multiple local minima and
a high local maximum, suggesting that stem cells start at
high a energy state and then lower their energy as they roll
down the slopes into several basins of attraction (Figure 2
a). Moreover, these cells are distributed over a large range
of the landscape (Figure 2 b), suggesting that these are cells
that have already started their differentiation process. Inter-
estingly, the velocities of these cells are pointing away from
the center of the cluster, towards the slopes of the landscape
(Figure 2 b), confirming the behavior expected for cells of
this type.

Furthermore, we found an interesting pattern for endothelial
cells in the hED19 data set (Figure 2 c and d). The topology
of their landscape is much less diverse than that of embry-
onic stem cells (Figure 2 c), as we would expect for a cell
type with a more restricted developmental fate. Accordingly,
the majority of these cells are distributed over a valley in the
middle of the landscape, with some cells placed higher in
the slope, and others further down towards the basin (Figure
2 c and d). The individual velocities show a common trend,
as they point from the top of the hill to the direction of a
valley, possibly suggesting an uphill movement. In this case,
we can observe a coordinated trend of cell velocities, as
opposed to stem cells in which velocities point to multiple
directions. This highlights the developmental commitment
and cell heterogeneity of the generation of endothelial cells
during human embryonic development. Similar properties
were found on the neural-endothelial cluster of cells from
the hFB18 data set (Figure 2 e), with the difference that the
velocity field suggests a downhill movement of cells.

As we analyzed cell types closer to a terminal differentiation
state, we noticed that, in general, their landscapes show a

flatter topology compared to transitioning cells, and most
of the cells are localized in a basin of attraction (Figure 2
e-h). Here, we only show the landscape of Monocytes from
the hPB20 data set (Figure 2 f), Immature B cells from the
mBD20 data set (Figure 2 g), and oligodendrocytes from
the mBA18 data set (Figure 2 h), but similar results were
found for other cell types in all data sets (data not shown).

Monocytes are generated from hematopoietic stem cells in
the bone marrow and circulate through the bloodstream to
their resident tissues, where they differentiate into multiple
cell types. Even though they are in circulation for a short
time, they can remain in a steady state even inside the res-
ident tissue (Jakubzick et al., 2017). These characteristics
appear to be reflected in their corresponding landscape, as
they only display one basin and most of the cells are there
(Figure 2 f). Although these cells can still differentiate into
more specific types, their landscape’s topology is what we
would expect from cells that have completed their differen-
tiation, thus highlighting the ability of monocytes to remain
in a steady state. Moreover, this also suggests that their de-
velopmental fate is mostly driven by environmental signals,
rather than predetermined in their transcriptional program.

Immature B cells are the last step of B cell differentiation in
the bone marrow. After completing this stage, they migrate
to the spleen as transitional B cells and then differentiate into
mature B cells once they receive external queues within the
tissue (Meffre et al., 2000). Interestingly, their landscape’s
(Figure 2 g) topology is consistent with their developmental
trajectory. It shows two basins connected through a channel,
suggesting that even in an intermediate state, immature B
cells are stable enough to remain as such for approximately
3.5 days before continuing their maturation (Meffre et al.,
2000). The second basin at the end of the channel could
represent the mature state, requiring cells to cross an energy
barrier (channel) through a transitioning state to reach it.
Moreover, this behavior suggests that the external signals
required to complete differentiation need not be very strong,
as the cells appear to be in a primed state, in which the
transcriptional profile is such that distinguishes them, but
also allows differentiation to proceed easily.

Oligodendrocytes are fully developed glial cells that form
the myelin sheath in the central nervous system (Bradl &
Lassmann, 2010). As we would expect, most of the cells
are in the local minima and the rest of the landscape is flat.
Even though the unclear clustering of cells from the mBA18
data set affected the preservation of distances, our method
was still able to extract the regulatory dynamics describing
the overall behavior of this cell type Figure 2 h and others
in the data set (data not shown). Thus, reaffirming that the
low correlation of distance matrices might be due to a poor
reconstruction of the reference.
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Figure 2. Cell-type-specific Hopfield Landscapes for multiple data sets. a,b Embryonic stem cells, c,d endothelial cells from hED19
data set. e Neuroepithelial cells from hFB18 data set. f Monocytes from hPB20 data set. g Immature B cells from mBD20 data set. h
Oligodendrocytes from mBA18 data set. a and c Landscapes colored according to the energy values, with cells projected on top (black
points). b, d and e landscape surface colored by energy values on a gray scale with cells and their velocities projected onto PCA. f,g and h
cells projected on top of the landscape contour.

3.3. GRN inference is robust to cell down-sampling and
replacement

To determine the extent to which the mislabelling of cells
affects our method’s ability to recover cell-type specific
regulatory signals, we implemented a randomization frame-
work in which we either downsample increasing proportions
of cells from each cluster, or randomly replace increasing
fractions of cells from each cluster with cells from other
clusters. Here, the performance was quantified by the Jac-
card index of the top weights in the network inferred from
the down-sampled cluster and the one estimated using all
the cells in the cluster. In both settings, the performance de-
creased when decreasing the number of cells retained from
the original clusters (Figure 3), with (Figure 3 right panel)
or when (Figure 3 left panel) replacing cluster cells with
cells from other clusters (selected at random). This results
suggest that even if we loose information from a cluster
(Cell down-sampling) or mix cells from other clusters (Cell
replacement) the main components in the inferred networks
are still similar enough (lowest Jaccard index of 0.58) to the
network recovered when all the cells are used. Highlighting
why we are able to capture meaningful regulatory dynamics
in the Hopfield landscapes for clusters from the MBA18
data set despite its sorting difficulties.

To further explore which genes harbor the regulatory dy-
namics characterizing each cell type, we also modelled their
corresponding Hopfield landscapes with networks inferred
using a random set of genes (the same number as the best
network size for each data set). In all cases, we noticed that

the landscapes display an almost flat topology, without any
local minima or maxima (data not shown). Therefore, ran-
dom sets of genes cannot capture cell-type specific features,
highlighting the importance of this step when predicting
GRNs, and further validating the cell-type-specificity of our
method.

Figure 3. GRN inference robustness measured by the Jaccard Index
of top edges in the mBD20 data set. Each point is the mean of 10
random samplings, error bars show the standard error of the mean.

3.4. Conclusions

Here, we developed a data-driven method to predict GRN
from single-cell RNA sequencing data, that utilizes the tran-
scriptional dynamics within each cell-type. We showed that
these networks are robust to cellular perturbations, and can
preserve the transcriptionally-derived hierarchical structure
of clusters using only a few number of genes. Moreover, the
inferred GRNs and the computed landscapes are sufficient
to recover cellular dynamics in accordance with the notion
of Waddington developmental potential for different cell
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types across multiple data sets.
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