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Abstract
Generative modeling in single cell transcriptomics
allows the efficient construction of latent spaces
for denoising, batch-effect removal and prediction
of experimental perturbations. To obtain biologi-
cally informative latent representations, recently
established methods, however, rely on adapting
the variational autoencoder (VAE) loss through
down-weighting the Kullback-Leibler divergence
term. These adaptations can limit the model’s
ability to learn the underlying data distribution.
Here, we adapt two enhanced VAE architectures
to the scRNA-seq setting which do not require
tuning the loss: (i) a VAE with inverse autore-
gressive flow (IAF) and (ii) a VAE with a Varia-
tional Mixture of Posteriors (VAMP) prior. We
assess the models’ ability to learn biologically
informative embeddings using four metrics in a
large-scale comparison on 16 public scRNA-seq
datasets from 9 tissues with over 700,000 cells.
We find that in particular the VAE with a VAMP
prior is capable of learning biologically informa-
tive embeddings without compromising on gen-
erative properties. This suggests that the VAE-
VAMP is a useful starting point for improved gen-
erative modelling of scRNA-seq data.

1. Introduction
Generative modelling tools are becoming increasingly pop-
ular for a range of tasks in the analysis of scRNA-seq
data. This includes visualisation, clustering (Grønbech
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et al., 2020), batch-correction, differential expression anal-
ysis (Lopez et al., 2018) as well as modelling drug per-
turbation and out-of-sample prediction (Lotfollahi et al.,
2019b;a). Such models generally employ a VAE-based
generative framework to learn the latent distribution of
the data (Kingma & Welling, 2014). Compared to non-
generative autoencoder (AE)-based modelling of scRNA-
seq data (Eraslan et al., 2019), VAE-based models face diffi-
culties with generating biologically meaningful embeddings.
This is likely caused by the poor match of the unimodal
prior to inherently mulitmodal scRNA-seq data. To over-
come these problems, all previously mentioned generative
tools use a modified loss-function during training. Either the
KL-term of the loss function is scaled down by a constant
factor between 5e−5 and 5e−7 (Lotfollahi et al., 2019b;a),
or the scaling constant is linearly increased over training,
starting from a default value of 2.5e−3 (Lopez et al., 2018).
In our study, the contribution of the unscaled KL-term to the
total loss was 0.5 – 1.0 %, and reducing this further can lead
to unwanted effects. In particular, with too little contribu-
tion of the KL-term, regularisation through the prior is not
enforced anymore. One would therefore no longer sample
from the learned data distribution when sampling the prior.
A generative model which is able to learn a good posterior
while conserving biological information in its latent space
would hence be of great help for modelling scRNA-seq data.

Many approaches to improving the VAE-framework have
been previously suggested. Here, we evaluated two of them
for their ability to produce biologically informative latent
representations. The first VAE-adaptation uses inverse au-
toregressive flows (IAF) to learn more flexible posterior
distributions (VAE-IAF) (Kingma et al., 2016; Boyeau et al.,
2019). The second model introduces a ”Variational Mixture
of Posteriors” (VAMP) prior for learning richer latent repre-
sentations of the data (VAE-VAMP) (Tomczak & Welling,
2018). We adapted both models to fit the negative-binomial
noise distribution found in droplet-based scRNA-seq data
(Svensson, 2020). We evaluated both models for four dif-
ferent properties: (i) solving the KL over-regularisation
problem, (ii) conserving biological variation in the latent
representation, (iii) goodness of fit to the data and (iv) learn-
ing compact latent representations. We based our evaluation
on data from 9 tissues with a total of 720 thousand cells.
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2. Methods
We adapt three generative neural-network architectures in
this study: a vanilla VAE, (Kingma & Welling, 2014), a
VAE with inverse autoregressive flow (Kingma et al., 2016)
and a VAE with a VAMP prior (Tomczak & Welling, 2018).
As a non-generative reference model, we employ an AE
with a negative-binomial noise model (Eraslan et al., 2019).
We use the same negative-binomial reconstruction objective
to adapt the three generative models to better fit scRNA-seq
data.

The reconstruction loss (RL) of all our models therefore
corresponds to the sum of the negative log-likelihoods of the
negative-binomial distribution (−LNB), over n cells and p
genes, parameterized by the learned mean and dispersion
parameters (µ, θ), given the input data X:

RL (X,M,Θ) =

n∑
i=0

p∑
j=0

−LNB (µi,j , θi,j |xi,j) (1)

While training of the AE optimises RL, training
of the VAE optimises the Evidence Lower Bound
(ELBO) (Kingma & Welling, 2014). The VAE
training objective is hence defined as: M̂, Θ̂ =
argminM,Θ (RL (X,M,Θ) +DKL(q(z|x)||p(z))

The VAE-VAMP introduces a more flexible formulation of
the prior compared to the Gaussian prior used in standard
VAE models (Tomczak & Welling, 2018). The prior uses
an adapted form of the aggregated posterior and is defined
based on K learnable pseudo-inputs:
p(z) = 1

K

∑K
k=1 q(z|uk). K = 500 was used in this work.

For all models, we mapped each dataset input gene space
to the GRCh38 Ensembl97 human genome (protein-coding
only), replacing any missing expression values with zeros.
We also introduced an additional layer at the input of each
model which normalised all counts to 10000, followed by a
ln(1 + x) operation.

We trained all models using Tensorflow 2.0 with the fol-
lowing model architecture: (512, 256, 128, 256, 512). We
used a tanh activation after every dense layer except the
bottleneck and the last decoder layer, scaled and centered
batch-normalisation and dropout (rate: 0.2) after each non-
linearity. We used L1 and L2 regularization (5e-4 each), a
learning rate of 5e-5 (Adam optimizer) with 50 % learning
rate decay after 10 epochs without improvement of the vali-
dation loss. We used early stopping with a patience of 100
epochs and held-out a random selection of 10 % validation
data, and 10 % test data from training. We used 5 flow
layers in the VAE-IAF model. VAE-IAF and VAE-VAMP
training took roughly twice as long as AE and VAE training.

For data points x(n) and a latent space z(n) ∈ RD, we use

Table 1. Comparison metric results computed on full dataset: First
value: number of active units in the model bottleneck (Eq. 2);
Second value: minimum number of principal components (PCs)
required to explain 95 % of the variance in the latent space PCA.
Bold: best performance across the generative models (VAE, IAF,
VAMP). Abbreviations as in Fig. 1

ORGAN AE VAE IAF VAMP

BLOOD 128; 36 12; 11 128; 72 90; 10
BONE 128; 39 15; 13 128; 61 80; 11
COLON 128; 09 128; 53 128; 22 128; 9
ESOPHAGUS 128; 35 14; 13 128; 47 128; 11
KIDNEY 127; 39 23; 19 128; 31 108; 17
LIVER 128; 37 21; 15 128; 40 123; 11
PANCREAS 128; 41 128; 23 128; 29 128; 11
PLACENTA 128; 37 128; 17 128; 34 128; 9
SPLEEN 128; 71 15; 14 128; 57 115; 11

the activity metric introduced by Burda et al. (2016), to
quantify the empirical variance of the expected latent space:

Az = diag
(
Covx

(
Eq(z|x)[z]

))
(2)

A latent unit i is considered active if Azi > 0.01.

We use the average silhouette width (ASW) (Rousseeuw,
1987) to measure the how well cells of the same cell-type
group together in our embeddings. For the mean intra-cell-
type distance a and the mean nearest-cell-type distance b
for each sample: ASW = (b− a) / (max(a, b)).

3. Results
3.1. VAE-VAMP and VAE-IAF models alleviate the

inactive latent unit problem of vanilla VAEs for
scRNA-seq data

A common problem with using vanilla VAEs for represen-
tation learning is the inactivity of a large number of latent
space units. This can dramatically reduce the biological
variation captured by a latent space embedding generated
with such a model (cp. Spleen embedding Fig. 1). VAE-
VAMP models have previously been shown to alleviate this
problem by regularising the latent space with a richer prior
than the standard Gaussian one used in vanilla VAEs (Tom-
czak & Welling, 2018). To investigate whether this also
holds for our adapted VAE-VAMP model on scRNA-seq
data, we computed the empirical variance of the expected
latent space (Eq. 2) for each model. As previously observed
by Burda et al. (2016), we found that in vanilla VAE models,
less than 20 % of the latent units are active in more than
half the models we trained (Table 1). In the VAE-VAMP
model this problem is dramatically reduced while it does
not occur at all for the VAE-IAF model. Additionally, the
covariance of the latent spaces (Fig. 2) is higher in the
VAE-VAMP model. These results suggest, that the VAE-
IAF and VAE-VAMP model alleviate the issue of inactive
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Figure 1. UMAP (McInnes et al., 2018) visualisations of the model bottleneck. Colours represent biological cell-type. AE: autoencoder,
VAE: variational autoencoder, IAF: VAE with inverse autoregressive flow, VAMP: VAE with a Variational Mixture of Posteriors prior.

Figure 2. Latent-space covariance matrices for Colon data. A similar trend was observer for data from other organs. Note the different
colour scales. Abbreviations as in Fig. 1

units. Furthermore, the VAE-VAMP model is the only gen-
erative model that is allows for covariance between its latent
units which might enable the VAE-VAMP model to learn
meaningful embeddings more efficiently.

3.2. VAE-VAMP models robustly generate more
biologically informative latent space embeddings
from scRNA-seq data

One main purpose of generating latent-space representations
of high-dimensional scRNA-seq data is to distil biologically
relevant features from a very large input space. A criterion
for a useful latent representation would hence be its ability
to separate biologically distinct cell-types while maintaining
proximity between cells from the same biological cell-types.
To assess this ability in the studied models, we computed

the average silhouette width (ASW) with respect to the cell-
type label for each embedding. A high ASW indicates an
embedding where cells of each cell-type are tightly clustered
together while being well separated from cells of other cell-
types. We also visually assessed UMAP (McInnes et al.,
2018) visualisations of the learned latent representations.
We found that while for some organs all models are able to
conserve biological variation in the embedding (cp. Colon
embedding Fig. 1), for other organs the VAE-VAMP model
is the only generative one that is able to produce finely-
resolved embeddings (cp. Spleen and Liver embedding Fig.
1). This is also reflected in the ASW (Table 2). These
results indicate that our adapted VAMP-VAE model is able
to learn latent representations which are competitive with
embeddings learned by conventional AE-based embedding
models while retaining the generative properties of VAEs.
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Table 2. Comparison metric results for all four evaluated models: (i) Reconstruction loss (Eq. 1) of the test-data; (ii) Average Silhouette
Width (ASW) over all samples from full dataset with respect to provided cell-type labels, no cell-type labels were available for Blood and
Bone. Bold: best performance across the generative models (VAE, IAF, VAMP). Italics: AE shows better performance than all generative
models. Abbreviations as in Fig. 1

RECONSTRUCTION LOSS ASW FOR CELL-TYPE

ORGAN AE VAE IAF VAMP AE VAE IAF VAMP

BLOOD 0.125065 0.126222 0.125696 0.125976 – – – –
BONE 0.139278 0.140641 0.141112 0.139852 – – – –
COLON 0.309301 0.318625 0.314449 0.313169 0.120995 0.103665 0.092223 0.082633
ESOPHAGUS 0.287229 0.288587 0.288752 0.289268 0.103518 -0.011824 -0.010275 0.090486
KIDNEY 0.258964 0.260199 0.257875 0.260076 0.004963 -0.019341 -0.027443 -0.010113
LIVER 0.313488 0.315088 0.314222 0.314506 0.146179 -0.002620 -0.006442 0.064773
PANCREAS 1.675346 1.688566 1.694367 1.647528 0.075400 0.070587 0.032181 0.063263
PLACENTA 0.408710 0.414898 0.407160 0.413223 0.193912 0.051128 0.018597 0.116071
SPLEEN 0.229657 0.231963 0.230486 0.233184 0.021080 -0.009836 -0.017153 0.027596

3.3. VAE-VAMP and VAE-IAF models are able to fit
scRNA-seq datasets better than vanilla VAEs

Besides various regularisation terms, the reconstruction loss
(Eq. 1) is the core part of the loss function in any AE-
type learning framework. The lower the reconstruction loss,
the better the model has fitted the data. Generally, AEs
tend to fit the data better due to the absence of competing
regularisation terms in the loss function as present in any
VAE-based model. We compared the reconstruction loss
of all four models (Table 2) and found that, as expected, in
most cases the AE model was able to achieve the lowest
reconstruction loss on the test-set. Among the VAE-based
models, the VAE-IAF and VAE-VAMP outperformed the
vanilla VAE for data from all but one human organ. This
indicates that both approaches of improving the VAE - more
flexible priors and more flexible posteriors - allow the VAE
model to better fit the data compared to vanilla VAEs.

3.4. VAE-VAMP models learn more compact latent
representations than VAE-IAF, VAE and AE

A key feature of an AE-type embedding model is the ability
to capture variability in the data with a number of latent
units, much smaller than the dimensionality of the input
space. While different datasets require different latent-space
complexity, the number of latent units in an autoencoder is
typically unchanged for different input data. We therefore
assess the ability of the models to learn a compact repre-
sentation, even when the number of latent units is higher
than needed. To assess the latent-space compactness of the
different models, we compared the number of principle com-
ponents (PCs) required to capture 95% of the latent space
variation for each model (Table 1). We consistently found
the VAE-VAMP model to require fewer PCs for this than
the other models. Combined with the higher covariance of
the VAE-VAMP latent spaces (Fig. 2), this result suggests,
that the VAE-VAMP model is the only model in our com-

parison that is able to learn a compact representation of the
data by allowing for co-varying latent units. This makes the
VAE-VAMP model particularly suitable for scenarios where
the embedding model is trained with very diverse data such
as when assembling complex single-cell atlases.

4. Conclusion
In this work, we adapted three VAE-based generative models
to fit scRNA-seq data. We evaluated them for their ability
to improve the quality of the learned latent representation of
the data. We found that both the VAE-IAF model and VAE-
VAMP model alleviate the inactive unit problem during VAE
training and produce better model fits. Based on the ASW
as well as visual inspection of the generated embeddings,
the VAE-VAMP model outperforms the other generative
models in preserving biological information in the latent
representation, which we also found to be more compact.

An interesting next step would be to quantify the reduction
in generative performance caused by the established down-
scaling of the of the KL loss. Moreover, we see scope
for further improving the embedding quality of generative
models by combining the complimentary approaches taken
by the VAE-IAF and VAE-VAMP in a single model.

In conclusion, the richer prior of the adapted VAE-VAMP
model make it particularly suitable for distribution learning
on highly multimodal data as found in scRNA-seq experi-
ments. The VAMP prior allows the model to capture bio-
logical variation in the latent representation nearly as well
as standard AE-based learning methods while fully retain-
ing generative capabilities. We also expect the richer latent
representation of the VAE-VAMP model to provide better
reconstruction performance with a linear decoder network,
therefore enabling the use of more interpretable models. We
expect this model to be a useful starting point for future atlas-
scale distribution-learning tasks in single-cell genomics.
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