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Abstract
Clustering tumor cells based on single cell RNA
sequencing data collected from a cohort of multi-
ple patients is challenging because inter- patient
variation dominates other sources of variation. To
address this, we introduce simultaneous cluster-
ing and normalization (SCAN): a Bayesian clus-
tering approach that removes bias in situations
where cluster proportions vary across individuals.
Normalization prior to clustering removes mean-
ingful signal and creates artifacts. Our approach
is novel in two respects. First, by jointly mod-
eling the presence of clusters and inter-patient
heterogeneity we are able to discover clusters that
are present across individuals while taking into
account the possibility that their cluster propor-
tions may vary. Second, we introduce a natu-
ral method of incorporating quantitative data col-
lected in parallel with scRNA-seq data (termed
sSCAN), allowing us to encourage clusters that
separate along a certain response variable.

1. Introduction
Single cell RNA sequencing (scRNA-seq) allows for
measuring counts of mRNA transcripts from thousands of
single cells, permitting characterization of gene expression
variation within cell populations and identification of
clusters. A large body of literature focuses on extracting
meaningful signal regarding cell type or activity state from
scRNA-seq data in an unsupervised manner, generally via
clustering methods or matrix factorization [(Kotliar et al.,
2019) (Sun et al., 2019) (Kharchenko et al., 2014) (Lopez
et al., 2018) (Farahbod & Pavlidis, 2019)]. There are a
number of challenges with analysis of scRNA data such as
dropouts and variation in library size. (Prabhakaran et al.,
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2016) demonstrates that ad hoc normalization techniques
can lead to biases in downstream analysis.

In this work, we address the problem of cell subtype identifi-
cation from scRNAseq data from the brain tumor stem-like
cells (BTSCs) derived from 10 Glioblastoma Multiforme
(GBM) patients, studied in an ex vivo model of the perivas-
cular niche (PVN)(Xiao et al., 2019). The PVN is thought
to play a crucial role in tumor cell migration, where mi-
crovessels might serve as tracks for cell movement. (Xiao
et al., 2019) develop a microvasculature on-a-chip system
as a model for the perivascular niche. The authors correlate
colocalization to the PVN with previously defined (based
on expression profile) tumor cell subtypes [(Patel et al.,
2014) (Verhaak et al., 2010) (Brennan et al., 2013)]. The
fundamental difficulty in identifying tumor cell subtypes
via a clustering approach is illustrated in Figure 2 (left), a
UMAP plot of single cell gene expression. The expression
variation is dominated by individual heterogeneity and cells
from the same individuals are completely separable in gene
expression space. Reasonable clustering algorithms will
tend to categorize cells by the individual they came from
rather than identifying meaningful intra-patient variation
and subtypes present across individuals. Prior work that
addresses the problem of normalization across multiple ex-
periments and data modalities [(Butler et al., 2018), (Welch
et al., 2019)] is on the surface well suited to correcting this
issue. However, none of these methods take into account
the fact that some of this inter-patient heterogeneity may
arise from differences in the proportions of cell subtypes
between individuals and is thus relevant for downstream
clustering. These approaches may remove variation due
to differences in cell subtype proportion, thus confounding
downstream clustering analysis. In order to ameliorate this
issue, we present a modeling approach: a matrix factoriza-
tion and mixture model (SCAN). The second problem is
that we would like to leverage the colocalization coefficients
(measured from the experimental assay, and defined roughly
as average distance to microvasculature) to inform cluster
centers. For this, we introduce a supervised version of the
model (sSCAN) that incorporates supervisory signal from
the colocalization coefficients.
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for each individual do
Draw cell state distribution π ∼ Dirichlet(a)
Draw baseline factors γ ∼ p(γ)
for each cell do

Draw state zij ∼ Categorical(π)
Draw normalization parameters α, β
Draw expression vector xij

Figure 1. Left: SCAN graphical model. Right: SCAN generative process.

1.1. Notation

Let D denote the total number of genes in the study, N
the number of individuals and ni the number of cells from
individual i. The logged mRNA counts for cell j of indi-
vidual i is denoted xij ∈ RD. As in (Prabhakaran et al.,
2016), we define the log library size as

∑D
d=1 xijd. The

analysis is based on BISCUIT, which simultaneously mod-
els cell type and technical variation. Let µk ∈ RD, αij ∈ R,
Σk ∈ RD×D, βij ∈ R:

π ∼ Dirichlet(a)

zij ∼ Categorical(π)

xij ∼ ND(αijµzij , βijΣzij )

BISCUIT is fundamentally a Gaussian mixture model with
scalar cell level heterogeneity parameters to account for
technical variation.

2. Simultaneous clustering and normalization
2.1. Introduction and Setup

We present a combined matrix factorization and mixture
model (SCAN) for the purpose of normalizing out individual
level heterogeneity. SCAN is a generative mixture model
for scRNAseq data that allows for three types of shared
variance components in datasets measured over multiple
individuals and cells: that is, variation from individuals in
the study, cell types, and each individual cell. One primary
assumption of SCAN is that variation among individuals is
restricted to a L dimensional linear subspace of RD. Vari-
ance parameters are sampled from an Inverse Gamma or
Log-Normal distribution while parameters with support on

the real line are sampled from a Normal distribution.

πi ∼ Dirichlet(a)

µkd, Adl, γil ∼ N (u, v2)

αij ∼ logN (t, s2)

βij ∼ InverseGamma(k, l)

zij ∼ Categorical(πi)
xij ∼ ND(αij(µzij +Aγi), βijΣzi)

with A ∈ RD×L and γi ∈ RL. The generative process for
SCAN is summarized in Figure 1. Simulated data from
SCAN is presented in Figure 6, showing that the model
contains the desired structure for the problem of normalizing
out interpatient heterogeneity. In our experiments, we take
Σzi to be diagonal.

2.2. Variational Inference

The posterior distribution of SCAN is intractable and ap-
proximate inference is necessary. Recall that in variational
inference, we optimize a lower bound to the marginal data
log likelihood log p(x) given by:

L(ν) = Eqν
{

log p(x, z)

}
+H(qν)

where (in an abuse of notation) z denotes the set of all param-
eters of the model and expectations are taken with respect
to qν(z). In this case qν represents an approximating family
of distributions indexed by parameters ν (termed the varia-
tional parameters), and H(qν) is the entropy of this varia-
tional distribution. This lower bound to the marginal log like-
lihood is referred to as the evidence lower bound (ELBO).
Remark that the difference log p(x) − L(ν) is given by
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Figure 2. Left: UMAP plot of log expression counts, x, labeled by individual. Remark that the variation is dominated by variation across
individuals and the cells naturally form clusters based on the individuals. Right: The same data colored by clusters estimated by the
SCAN procedure. Note that SCAN successfully finds clusters that are represented across individuals.

Figure 3. Left: UMAP plot of log expression counts, after normalization via the SCAN procedure, labeled by individual. Right: The same
normalized data colored by clusters estimated by the SCAN procedure.

KL(qν(z)||p(z|x)), so that maximizing the ELBO is equiv-
alent to minimizing the KL-divergence between the approxi-
mating family and the true posterior. We use a mean field ap-
proximating family (Blei et al., 2003), qν(z) =

∏
l qνl(zl),

in which possible dependencies among coordinates of the
variational posterior are ignored, and each qvl(zl) is cho-
sen to be from the same family of distributions as it’s prior.
Under these assumptions, the ELBO for SCAN and mean
field approximating family can be computed analytically.
Thus, fast approximate inference can be achieved by stochas-
tic gradient descent (SGD) with respect to the variational
parameters without any further approximations (Hoffman

et al., 2013). The results of SCAN on the dataset of (Xiao
et al., 2019) are displayed in Figures 2 and 3.

2.3. Supervised Clustering via sSCAN

In order to encourage the estimated clusters to resemble
subtypes that characterize migration properties of the tumor,
we also develop a supervised version of this model (sSCAN)
that incorporates supervisory signal given by the colocal-
ization coefficient to the PVN. The supervised version of
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λ 1.4002 -1.3662 0.0336
TMSB4X CDKN1A VDAC1
NDUFB9 SNRPE EIF3H

Top Genes SNRPE SOX2 SOX2
TMEM14C TMEM14C HMGB1
NDUFB10 MYEOV2 TCEB2

Table 1. Top genes (highest value inEq[µk] after normalizing each
row) for a cluster with high λ, a cluster with low λ, and one with
intermediate λ. High λ means more predictive of y.

SCAN (sSCAN) can be concisely summarized as follows:

xij ∼ SCAN

yim ∼ GLM(λ>πi;φ)

where yim is the m’th measurement of the PVN colocal-
ization coefficient (in (Xiao et al., 2019)) for individual i,
and φ is the dispersion parameter of an exponential family.
In other words, y is modeled as an exponential dispersion
family with mean determined by the dot product of the cell
state distribution πi and a set of global regression coeffi-
cients λ. Importantly, the parameters of both parts of the
model are jointly estimated, so as to encourage {πi}Ni=1 to
be predictive of the observed colocalization coefficients. In
practice, there is a tradeoff between modeling y well and
finding meaningful clusters in the data. In order to mod-
ulate this tradeoff, the dispersion parameter φ is left as a
tuning parameter that controls the relative weight of the y
and x terms in the loss function. The results of sSCAN in
a Gaussian regression model are presented in Table 1. We
show the top genes (subject to normalization) of the cluster
most associated with y (high λ), the cluster least associated
with y (low λ) and one intermediate cluster. Examining
Table 1, the top marker for the negative λ cluster is p21,
a CDK inhibitor and major target of tumor suppresor p53.
Furthermore, Thymosin Beta 4 (coded for by TMSB4X), an
actin sequestering protein that plays a role in cell migration,
is differentially expressed by the high λ cluster.

2.4. Simulation Study

In order to validate the model and inference algorithm, we
ran a simulation study in order to confirm that model cap-
tures desirable properties and that the inference algorithm
recovers the true parameters in the well specified case. Since
we care about the cluster assignments zij , we quantify per-
formance of the algorithm by the percentage of points cor-
rectly clustered. As a side note, remark that the parameters
{µ,A, α, β,Σ} are recovered up to proportionality since the
model parameters are only identifiable up to proportional-
ity, while z and π can only be recovered up to permutation.
For a given configuration of model parameters and choice
of K,N, n,D,L, we simulate from the model 100 times
and run the inference algorithm assuming the correct values

Figure 4. Left: Library size vs. estimated α, colored by individual..
This plot shows that the α parameter serves to normalize out
technical variation in the library size of each cell. A separate
relationship between α and the library size is estimated for each
individual.

Figure 5. Classification accuracy of clustering assignments over a
simulation study of 100 sets of simulated data. The parameters
were L = 1, D = 2,K = 3, N = 5, n = 500,Σ = I

of K and L for 3 random restarts (the objective is subject
to local optima) [Figure 5]. These experiments confirm a
reasonable rate of recovery in the well specified setting.

3. Conclusion
We have presented (supervised) simultaneous clustering
and normalization (SCAN and sSCAN), a novel method
for cluster analysis in scRNA-seq datasets where there is
substantial heterogeneity across individuals. The model
posits that cluster proportions can vary between individuals,
allowing us to separate individual baseline expression levels
from variation in cluster proportions. sSCAN allows for the
incorporation of supervisory signal to inform cluster centers.
Future work will include analyzing the results of SCAN on
a variety of other scRNA-seq datasets.
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Figure 6. Left: Simulated data from the SCAN model. Note that
the axis of variation of the individual means is 1D due to the matrix
factorization assumption. In this case D = 2, L = 1, K = 3, and
N = 4. Right: Samples from BISCUIT model under the same
simulation settings.
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