
Systematic characterization of generative models for de novo design of
regulatory DNA

Nic Fishman 1 Avanti Shrikumar 1 Georgi K. Marinov 1 Anshul Kundaje 1

Abstract
Generative machine learning algorithms have
been developed for de novo generation of re-
alistic images and videos. Recently, these ap-
proaches have also been adapted for designing
and optimizing biomolecules with desired prop-
erties. However, systematic comparison of these
methods for modeling regulatory DNA sequences
have been lacking. Here, we present a taxon-
omy of generative learning algorithms and a uni-
fied implementation (https://github.com/
kundajelab/seq_gen) that enables comple-
mentary classes of algorithms to be seamlessly
combined in novel ways via a common API. We
then systematically characterize the performance
of these methods for de novo designing gene pro-
moter elements to optimize gene expression in
yeast. We identify biologically relevant stopping
criteria as critically important for the generation
of meaningful novel sequence elements, and pro-
pose leveraging a previously-introduced 1-nearest
neighbor (1NN) approach for evaluating diver-
gence from realistic elements. We also introduce a
new generative model called a “supervised GAN”,
and evaluate its performance using the aforemen-
tioned metrics. Taken together, our results consti-
tute a valuable stepping stone towards robust de
novo design of regulatory DNA sequences.

1. Introduction
Generative deep learning models have revolutionized the
ability to generate, enhance and manipulate realistic images,
text and videos. They also allow learning latent representa-
tions that could be interpreted to understand the fundamental
properties of different data modalities and the systems gen-
erating them. Recently, these approaches have shown great
promise in various biological applications: single cell ge-

*Equal contribution 1Stanford University. Correspondence to:
Nic Fishman <njwfish@stanford.edu>, Anshul Kundaje <akun-
daje@stanford.edu>.

Copyright 2020 by the author(s).

nomics, synthetic biology, protein engineering and antibody
design. However, generative models have not been exten-
sively studied in comparative frameworks or benchmarked
on applications involving design and optimization of DNA
sequences, particularly regulatory DNA sequences that mod-
ulate gene expression. In this work, we present a taxonomy
for generative learning algorithms and models along with
their implementations in a unified API that makes it easy for
a user to mix-and-match complementary methods in novel
combinations, as well as to allow comparing approaches
systematically. We further evaluate these methods at the task
of synthesizing regulatory DNA sequences with maximum
expression activity using a biologically well-characterized
yeast promoter massively parallel reporter assay (MPRA)
dataset (van Dijk et al., 2017). By comparing the outputs
to well-established biological ground truths, we find that
continued training well past the point of divergence from
the space of realistic sequences is a common failure mode
for most methods. To mitigate against this problem, we
propose leveraging the 1-nearest neighbor (1NN) approach
(originally proposed by Xu et al. (2018) in the context of
GANs) for detecting this divergence. We also introduce a
generative model which we call a “supervised GAN”, and
evaluate its performance using the aforementioned metrics.

2. A Taxonomy of Generative Approaches
In this section, we develop a taxonomy to systematically
characterize existing generative deep learning approaches.
Forming the basis of all current deep generative models is
a neural network architecture that learns a transformation
Φ : Z → X ′, where Z is a latent space and X ′ are gener-
ated instances of a data modality.In our case, these instances
would be DNA sequences of some arbitrary length. We refer
to this formulation as the “transducer”. This core formula-
tion can be extended by methods that take a transducer Φ
and alter the transformation in such a way that the sequences
produced are more likely to maximize properties of interest
that are evaluated by a separate “oracle”/“analyzer”, where
the oracle/analyzer is often a predictive model. We refer to
methods that follow this formulation as “transducer tuners”.
Finally, there are methods that hold Φ constant and search
for locations in the latent space Z that maximize a property
predicted by an oracle/analyzer; we refer to these as “sample

https://github.com/kundajelab/seq_gen
https://github.com/kundajelab/seq_gen

Systematic characterization of generative models for de novo design of regulatory DNA

optimizers”. Although generally treated separately in the
literature, these classes of models are all complementary.

Transducers: Transducers include Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) and Variational
Autoencoders (VAEs) (Kingma & Welling, 2013). Although
both GANs and VAEs learn latent spaces that keep “similar”
examples closer, the latent space can be hard to optimize
over. To structure the latent space based on a property of
interest, an additional network predicting the property can
be added to a VAE encoder/decoder. This approach has been
successfully used in the context of chemical graphs (Gómez-
Bombarelli et al., 2018), and we refer to it as a “supervised
VAE” or supVAE. Inspired by it, we propose here a novel
extension of supVAE to GANs as follows: we predict prop-
erties from the latent space, but these predictions cannot
be evaluated (precisely because they are for generated sam-
ples) so we then feed both the generated sequence and its
“predicted” property (e.g. expression associated with a regu-
latory sequence) through the discriminator, updating both
the generator and the analyzer according to the resultant loss.
Here, the discriminator is learning the relationships between
examples and the predicted property, restricting the latent
space to keep similar expression sequences close together in
the latent space so as to keep the prediction model accurate.
We refer to this architecture for a GAN as a “supervised
GAN” or supGAN. The four different transducer architec-
tures (GAN, VAE, supGAN and supVAE) are explained in
more detail in Sec. A.3 and summarized in Figure S1.

Transducer Tuners: The common underlying idea be-
hind transducer tuning is to sample or upweight “good”
sequences generated by the transducer, and to continue trans-
ducer training using those sequences. Over the course of
training, the transducer is thus encouraged to generate only
sequences that have the desirable properties. Several such
methods have been presented, mostly in the context of de-
signing coding DNA sequences. In this work, we benchmark
FBGAN (Gupta & Zou, 2019) as well as each method in
the “CbAS family” (Brookes et al., 2019) (CEMPI, RWR,
DbAS and CbAS). These methods, as well as implementa-
tions, are described in more detail in Sec. A.4. Note that
because CbAS requires a probability estimate that is not
naturally provided by GANs, we did not include the combi-
nation of GANs and CbAS in our summaries even though a
potential GAN-compatible implementation is available in
our codebase (see Sec. A.4 for details).

Sample Optimizers: Sample optimizers attempt to find
positions in the latent space corresponding to “good” ex-
amples. The simplest such technique is sampling randomly
from the underlying distribution and calling the top X%
the “optimized” sample. (Killoran et al., 2017) improved on
the random sampling by using a gradient descent approach
(Nguyen et al., 2017) to directly optimize samples in the

latent space. In a similar vein, Gomez et al. proposed train-
ing a Gaussian Process Regressor to predict a property from
the latent space and then using constrained optimization by
linear approximation to iteratively optimize the latent space
without direct use of a derivative (Gómez-Bombarelli et al.,
2018).

3. Results and Methods
We set out to apply generative methods in the context of
designing gene promoter elements in yeast. We used a previ-
ously published MPRA dataset (van Dijk et al., 2017), which
contains ∼5,000 synthetic promoter sequences containing
pre-defined transcription factor binding sites (TFBS), in par-
ticular for the GCN4 TF, in a variety of configurations. This
dataset allows us to compare de novo generated sequences
against known biological ground truths. This is a key ad-
vantage with respect to evaluating generative methods, as
most work in the field so far has focused on generating pro-
tein coding sequences, a domain in which it is much more
difficult to evaluate generated sequences.

We first tested the ability of multiple convolutional neu-
ral networks (CNN) architectures to predict MPRA activ-
ity from DNA sequence. We observed high concordance
between predicted and experimentally measured activities
(Test Set Spearman Correlation: 0.93; Figure S2), including
the successful capture of the main biologically novel result
of the original publication, namely that the presence of too
many TFBSs (GCN4 sites in this case) reduces rather than
increases expression (due to steric competition between the
neighboring sites for TF molecules).

We then used this CNN architecture as a basis for train-
ing generative models. In order to evaluate the ability of
generative models to maximize expression, i.e. to generate
realistic sequences “out of distribution”, we trained models
to predict expression from sequence using both the bottom
95% of the dataset and also using the full dataset. Simi-
lar to (Brookes et al., 2019), for each input set, we trained
two ensembles of 20 networks, composed of residual CNNs
(Supplemental Methods; the two ensembles provide an es-
timate of uncertainty). Models trained on the bottom 95%
give broadly similar predictions for the top 5% of sequences
compared to models trained using the full dataset (the Spear-
man correlation between the model predictions on the top
5% of sequences is 0.7263; Figure S3). The main differ-
ence between the predictions is that those from the model
trained on the bottom 95% tend to be slightly lower than
the ground-truth for the top 5% of sequences (as one might
expect).

We then trained a GAN, VAE, supGAN, and a supVAE to
generate new DNA sequences. For the GANs, we used the
Wasserstein distance with a gradient penalty as proposed

Systematic characterization of generative models for de novo design of regulatory DNA

in (Gulrajani et al., 2017). All methods were trained on
the bottom 95% of sequences and used essentially the same
underlying architectures, with minor alterations (Sec. A.3).
We used a similar architecture for the decoder in the VAE
as for the generator in the GAN, and a similar architec-
ture for the encoder in the VAE as for the discriminator
in the GAN. In both cases, the decoder/generator and en-
coder/discriminator involved a series of convolutional layers.
For the supVAE and supGAN, we use three fully connected
layers as the predictor.

Contrary to previous findings in the coding sequence do-
main (Brookes & Listgarten, 2018), we find significant dif-
ferences between GAN and VAE results. GANs perform
better in terms of capturing the diversity and complexity of
the training set space (Figures 1, S5–S9, S10, and S21). We
also find that supVAEs do not achieve significantly different
results compared to VAEs. The supGAN covers a wider
range of the input distribution compared to the GAN, but
simultaneously suffers minor mode collapse (where some
examples are very close to each other) as shown in Fig. S28.

We then generated sequences using each of the four genera-
tive strategies combined with each of the transducer tuning
methods. Examination of the final output (Figure S10) and
the behavior throughout training (Figures S16-S27) revealed
some common problems. Methods quickly diverge from
the “realistic” distribution as they optimize the property of
interest, eventually arriving into the space of “pathological”
sequences, where examples generated obviously make little
biological sense. Such undesired behaviors included highly
skewed nucleotide composition (e.g. sequences consisting
almost entirely of polyTs and other homopolymers) and
sequences containing either zero or too many TFBSs.

Additionally, for each combination of transducer/tuning
method, we applied top percentile and gradient descent sam-
ple optimizer methods in the latent space (Figures 2B and
S34-S35). The top percentile method appears to perform
remarkably well while maintaining a good balance of “re-
alisticness”, and it also outperforms the gradient descent
approach.

While biological evaluation is highly informative for judg-
ing the quality of generated sequences, it does not provide
a straightforward way of automatically evaluating conver-
gence or divergence for a given generative method. Nearest
neighbor algorithms (usually the 1NN algorithm, see Table
S1) offer an alternative solution. The 1NN evaluation (orig-
inally proposed for GANs by Xu et al. (2018)) works as
follows: a collection of synthetic sequences is generated to
be equal in size to a set of available real sequences (for our
comparisons, we used 2,024 sequences). Each sequence is
then classified as either ‘real’ or ‘fake’ according to whether
its nearest neighbor (excluding the sequence itself) is from
the generated set or from the real set, where the nearest-

neighbors are found by embedding the sequences into an
informative latent space and calculating euclidean distances.
If the 1-nearest-neighbor algorithm achieves high accuracy,
this indicates that the generated sequences are very distinct
from the real sequences; by contrast, an accuracy near 50%
indicates that the generative method is approximating the
underlying distribution well. The classification accuracy
captures how closely the generated samples resemble the
true distribution and also the diversity of the generated se-
quences: “mode collapse” of the generated sequences would
result in high classification accuracy on the real sequences,
as all the generated sequences would occupy a narrow region
of the space. Key to the performance of the 1NN algorithm
is the choice of an informative embedding; in our case, we
used the activations of the fifth convolutional layer of the
CNN model as described in Fig. 1. We also explored k
larger than 1 to gain additional insight into the distributions.

The decrease in nearest-neighbor accuracy over the course
of training for generative architectures is show in Figures 2A
& S28). We observe that tuning methods relatively quickly
diverge from realistic sequences (Figures 2A and S29–S33),
which is concordant with developing deviations from real-
istic nucleotide and TFBS composition in the same time
(Figures 2C and S11–S22). However, predicted expression
increases with training. This suggests that current methods
are optimizing the analyzer network rather than true biolog-
ical activity, essentially leading to adversarial examples in
the DNA domain. However, the drastic divergence from the
space of realistic sequences does not occur immediately, but
after some number of early epochs have elapsed, and the
1NN criterion (Xu et al., 2018), which is generally concor-
dant with biological criteria, can thus be used to identify
better stopping points.

4. Discussion
Recent years have seen a flurry of diverse methods for de
novo generation of biological sequences. In this work, we
synthesize existing methods into three broad classes: (1)
transducers, which transform a latent embedding into a gen-
erated sequence, (2) transducer tuners, which optimize a
transducer to produce desirable sequences, and (3) sample
optimizers, which do a search in the latent embedding to find
desirable sequences. Bolstered by the observation that these
three types of methods address complementary pieces of
the sequence generation problem, we implement the meth-
ods in a single codebase with a unified API that allows
the user to seamlessly combine their preferred choice of
transducer, transducer tuner and sample optimizer. We also
propose a novel type of transducer architecture that we call
a supervised GAN, and experimentally benchmark the per-
formance of different approaches using a well-characterized
yeast MPRA dataset.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 1. GANs capture the diversity of real sequences better than VAEs. Sequences were generated using four methods: GAN,
supGAN, VAE and supVAE. A common 2D projection for the sequences was created as follows: all generated and real sequences
were scanned with the first five convolutional layers of the DeepSEA network(Zhou & Troyanskaya, 2015), and the output of the last
convolutional layer was flattened to derive a sequence embedding. This embedding was projected into 2D space using UMAP. A single
UMAP projection was used for all sequences so that different subsets of sequences could be compared. Panel (A) contains the 2D
projections for the top 5% and the bottom 95% of the real data, while Panel (B) shows the projections for sequences sampled from the
respective generative methods. The color represents the log of the predicted expression. GAN-based methods appear to generate more
diverse sequences, better approximating the input space.

Figure 2. Performance of Tranformer Tuners and Sample Optimizers based on expression and 1NN metric. Panels (a) and (b)
show the average log-expression (y-axis) achieved by transducer tuners and sample optimizers respectively against the 1NN accuracy
(x-axis). High 1NN accuracy indicates that generated sequences diverge substantially from real sequences. Symbol shapes represent the
choice of transducer (GAN, supGAN, VAE or supVAE), while colors indicate the choice of transducer tuner (A) or sample optimizer
(B). Panel A shows that as transducer tuners achieve high average log-expression over the course of training, the 1NN accuracy also
tends to increase¿ The high expression thus comes at the expense of similarity to realistic sequences. There are multiple points for
each transducer/transducer tuner combination in (A), corresponding to every five epochs of tuning. Brown points in panel A show the
performance of each transducer prior to any tuning or sample optimizing. In (B), the gradient descent (GD) sample optimizer does not
noticeably improve the average log expression, while the “top percentile” sample optimizer combined with a GAN or supGAN is able
to achieve distinct improvements in expression while maintaining <90% 1-NN accuracy. Panel C shows the concordance of the 1-NN
metric with the maximum nucleotide frequency over A,C,G,T; each point corresponds to a sequence set generated by transducer tuners
in (A). Maximum nucleotide frequency much larger than 0.25 suggests the sequences contain many homopolymer repeats, and is thus
biologically unrealistic. Sequence sets that have high maximum nucleotide frequency also achieve high 1NN accuracy, indicating that the
1NN metric agrees with this biologically intuitive measure of unrealistic sequences.

Among the transducers, we find that GANs work better at
capturing the diversity of sequences compared to VAEs, with
our proposed supervised GAN showing advantages for se-
quence diversity compared to the standard GAN. Among se-
quence optimizers, we find that the naive “top X percentile”
method appears to produce superior results compared to the
more complex gradient descent method. Among transducer
tuners, we observe that all methods investigated generate
essentially adversarial examples when training proceeds
for a sufficiently long time - in other words, the sequences
diverge so far from the training distribution as to be biologi-
cally meaningless, despite scoring favorably according to
the analyzer/oracle model. This is because sequence genera-

tion sits at the intersection of two well-known challenges in
machine learning: adversarial examples and out-of-training-
distribution generalization. To address this issue, we pro-
pose using the 1NN metric (Xu et al., 2018), which, based
on our results, appears to agree with biologically-informed
measures of sequence quality and can help strike a proper
balance between optimization of the target property and
the generation of realistic sequences. This metric can be
implemented in a way analogous to early stopping with a
validation set, a standard practice in supervised learning.
Taken together, we believe our contributions are valuable
step towards robust design of de novo regulatory DNA se-
quence.

Systematic characterization of generative models for de novo design of regulatory DNA

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.

arXiv preprint arXiv:1701.07875, 2017.

Brookes, D. H. and Listgarten, J. Design by adaptive sam-
pling. arXiv preprint arXiv:1810.03714, 2018.

Brookes, D. H., Park, H., and Listgarten, J. Conditioning
by adaptive sampling for robust design. arXiv preprint
arXiv:1901.10060, 2019.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
In Advances in neural information processing systems,
pp. 5767–5777, 2017.

Gupta, A. and Zou, J. Feedback gan for dna optimizes
protein functions. Nature Machine Intelligence, 1(2):105,
2019.

Killoran, N., Lee, L. J., Delong, A., Duvenaud, D., and Frey,
B. J. Generating and designing dna with deep generative
models. arXiv preprint arXiv:1712.06148, 2017.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., and
Yosinski, J. Plug & play generative networks: Conditional
iterative generation of images in latent space, 2017.

van Dijk, D., Sharon, E., Lotan-Pompan, M., Weinberger,
A., Segal, E., and Carey, L. B. Large-scale mapping of
gene regulatory logic reveals context-dependent repres-
sion by transcriptional activators. Genome research, 27
(1):87–94, 2017.

Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., and
Weinberger, K. An empirical study on evaluation metrics
of generative adversarial networks. June 2018.

Zhou, J. and Troyanskaya, O. G. Predicting effects of
noncoding variants with deep learning–based sequence
model. Nature methods, 12(10):931, 2015.

Systematic characterization of generative models for de novo design of regulatory DNA

Supplementary Materials

A. Supplementary Methods
A.1. MPRA Datasets and data preprocessing

We used the MPRA experiments carried out by van Dijk et al. (2017) in the budding yeast Saccharomyces cerevisiae, which
included testing the activity of ∼5,000 synthetic sequences containing defined numbers of TFBSs for factors known to be
important in regulating gene expression upon changes in nutrient availability. Regulatory activity was measured under a
range of six different increasing amino acid concentrations.

DNA sequences were one-hot encoded following established practices. We also log+-transformed the regression targets so
we could use the ReLU non-linearity as the output of our regression networks.

A.2. Training Regression Ensembles for the Analyzer/Oracle

Models are trained directly on one hot encoded base pairs, such that each model takes in an input matrix of size (L∗4), where
L is the length of the sequence, and 4 corresponds to the four DNA bases. Each individual model is built of two convolutional
residual blocks, each comprised of two convolutional layers of 100 filters each. These layers lead into a series of three fully
connected layers, each with dropout (0.1). All layers use the ReLU activation function. Each network produces two outputs
for each “task” that the model is being trained on (e.g. for multitask learning, if there are n tasks, then the model has 2n
outputs). These outputs define a normal distribution on the expected expression level for a given task, with the first output
being the mean and the second being the variance. For each ensemble, sub-networks are trained in parallel, using the Adam
optimizer (lr = 0.001) with the original hyperparameters, to minimize a Gaussian negative log-likelihood loss function.
We use a batch size of 64, with a maximum number of epochs of 1000, but use the Keras callbacks Reduce LR on Plateau
(with default parameters except factor = 0.1 and patience = 3) and Early Stopping (with patience = 5)
such that no model actually trains for 1000 epochs (convergence tends to be much more rapid, on the order of 100 epochs at
most).

Twenty such networks are trained and then assembled into an ensemble with outputs µ∗, σ2∗:

µ∗ =
1

20

20∑
i

µi

σ2∗ =
1

20
(

20∑
i

σ2
i +

20∑
i

µ2
i)− (

1

20

20∑
i

µi)
2

We train two such ensembles, using just the bottom 95% of data and one using the full dataset.

A.3. Generative Methods (i.e. “Transducers”)

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) involve a generator that transforms the latent space
into the target distribution, and a discriminator that attempts to discriminate real and generated sequences. The generator
and discriminator are trained in tandem to allow progressive improvement of both models. A modification to the GAN
framework directly optimizes the Wasserstein distance between the latent and target distributions (Arjovsky et al., 2017),
greatly improving the stability of the GAN. In this work, we use a Wasserstein GAN with a gradient penalty addition that
improves the capability of the GAN to learn more complex distributions (compared to simple weight-clipping to satisfy the
Lipschitz constraint) (Gulrajani et al., 2017).

By contrast, Variational Autoencoders (VAEs) (Kingma & Welling, 2013) create encoder and decoder models that translate
sequence into and out of a latent space representation. The latent space is regularized by the Kullback-Liebler divergence to
ensure that it is normally distributed. This is done via a “reparameterization trick”, where the encoder predicts the mean and
variance of the latent space, and the actual value of the latent representation is sampled according to this mean and variance.
This stochasticity forces the latent space representation to locate “similar” examples close to each other in that space.

In our experiments, all generative methods were implemented to use approximately the same underlying architectures,

Systematic characterization of generative models for de novo design of regulatory DNA

and these architectures are roughly symmetrical. All convolutional layers have 100 filters, and window size 5. All latent
dimensions are 500 hidden units. All neural network layers use the ReLU activation function unless otherwise stated.

The generator/decoder architecture consists of a dense layer with (L ∗ 100) units, leading into a series of five convolutional
residual blocks (each consisting of two convolutional layers). The last layer in the architecture is a convolutional layer with
4 filters, so that the shape of the output is the expected shape of the output sequence. In the GAN setting, the activation
function for this layer is the Gumbel-Softmax layer; in the VAE setting, this is a simple softmax activation function instead.

The discriminator/encoder architecture is nearly identical, but inverted. The first layer is a convolutional layer to reshape the
input leading into the same five convolutional residual block structure. The final output of the fifth block is flattened and
feeds into either a single output in the GAN case (the discriminator output) or two outputs in the VAE case (the mean and
log variance).

A.3.1. WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK WITH GRADIENT PENALTY

We train the GAN using the Wasserstein loss function with the gradient penalty (λ = 10) approach, as is now standard in the
literature. We train the generator on one batch for every 5 the discriminator is trained on. We use the Adam optimizer with
default hyperparameters for optimizing both the discriminator and the generator.

The supervised GAN includes a minor modification. In this setting, an additional network is trained that attempts to predict
expression from the location in the latent space passed to the generator. The discriminator then takes in a pair of (sequence,
expression value(s)), both for the real and generated sequences. The discriminator architecture is modified by concatenating
the expression to the flattened output of the last residual block, and adding three dense layers (each of 100 hidden units)
before the output. The only modification to the loss function that needs to be applied is adding the expression values to the
gradient penalty. This is achieved by replicating the gradient penalty calculation for the generated and real expression values
in a batch and then taking the mean. The expression-prediction network is trained in conjunction with the generator (every 5
batches).

A.3.2. VARIATIONAL AUTOENCODER

The variational autoencoder is trained using the standard VAE reconstruction loss function, where each position in the
sequence is modeled as a softmax over nucleotides. The Adam optimizer with default hyperparameters is used to minimize
the loss. The supervised VAE is trained identically, with the addition of one term to the loss function. The MSE loss of the
true expression value of the sequence to be reconstructed and the expression predicted from the latent space is added to the
general reconstruction loss.

A.4. Transducer Tuners

All transducer tuning methods employ a pretrained transducer (i.e. a generative architecture), on which additional training
is layered in order to guide the transducer to produce desirable sequences. We can formalize the notion of a tuner a bit
here: we have the real sequences and property data {Xreal, Yreal}, a trained transducer from which we can sample Xgen

sequences, and an oracle/analyzer (which need not be differentiable for tuners considered here) to predict Ŷgen from the
generated sequences. A tuner is then uniquely defined by a weighting function w({Xreal, Xgen}, {Yreal, Ŷgen}) and a
schedule, which dictates when Xgen is updated.1 In this work, we consider five types of transducer tuners: FBGAN (Gupta
& Zou, 2019), and the four methods in the “CbAS family” (Brookes et al., 2019), i.e. CEMPI, RWR, DbAS and CbAS.

FBGAN (and the VAE equivalent we implemented) works by iteratively shifting the underlying data distribution that the
transducer (i.e. the generator) is trained on in a way that increasingly prefers samples with desirable properties. FBGAN
begins by training on the full training set. At each iteration, sequences are sampled from the generator, and the top p% of
sequences are used to replace the oldest sequences in the training set, such that at every iteration a greater fraction of the
sequences being trained on are synthetic sequences with desirable properties. The choice of p matters quite a bit; following
the original paper we use an 80% threshold, and sample 15/0.2 samples per iteration such that 15 samples are added to the
training set at each iteration. We can re-conceptualize FBGAN as a weighting scheme where each a new Xgen is sampled
each epoch and weights of 1 are assigned to the to a given sampled sequence if it is in the top p%.

The suite of methods developed by (Brookes et al., 2019), which includes CEMPI, RWR, DbAS and CbAS, follow the

1The formalization here indicates a superficial similarity to boosting methods, which may be an interesting line of future work.

Systematic characterization of generative models for de novo design of regulatory DNA

schema laid out for tuners above, with a schedule where a new Xgen is sampled every t = 10 epochs of transducer training;
the methods differ in the details of the weighting function, although all weighting functions work exclusively on Xgen unlike
FBGAN which assigns non-zero weights to some real data as well. CEMPI (“Cross Entropy Maximization Pi”) draws on
cross-entropy methods to condition the generator to focus on rarer samples that have the property of interest. RWR (Reward
Weighted Regression) is a reinforcement learning method that reweighs sequences exponentially. Design by Adaptive
Sampling (DbAS) and Conditioning by Adaptive Sampling (CbAS) reweigh samples according to the survival function of
the normal distribution, and differ in that CbAS uses a prior to avoid diverging too much from the underlying distribution.

All methods were trained on 500 sampled/weighted examples for 10 epochs before resampling. Each tuning method is run
for 800 iterations in total, 80 epochs because the 10 iterations over each sample are considered one epoch of tuner training.
While most of these methods are “generator agnostic”, i.e. the underlying generator does not matter, we found that this is
not true for the CbAS method. CbAS is designed to work with probability distributions over nucleotides. However, we
find that our generators collapse to producing one-hot encoded sequence very rapidly, which results in NaN errors within
the CbAS framework as it corresponds to an infinite penalty. In order to adapt CbAS to circumvent this limitation, we add
an epsilon noise term (ε = 10−8) to the one-hot encoded sequence. A second issue with porting CbAS to GANs is that
the CbAS method involves a step where the prior probability of observing a sequence is calculated by first encoding the
sequence to obtain a latent state and then computing the probability of observing the resulting latent state if one were to
draw from the VAE’s normally distributed prior. This prior is used to prevent excess divergence from the original training
distribution. In order to use CbAS in the GAN context, some analogous notion of a prior is needed. As GANs do not train
an encoder, one could in principle leverage the discriminator and map the discriminator output to the [0, 1] interval using
a sigmoid function to obtain an analogous probability. Note that the output of the discriminator in a Wasserstein GAN is
the Wasserstein distance, which is negative if the sequence appears fake and positive if the sequence appears real; when
transformed by a sigmoid, this means the probability will be > 0.5 if the discriminator believes a sequence is likely to be
real, and < 0.5 if the discriminator believes a sequence is likely to be fake. That said, it is likely that this is not the optimal
way of extending CbAS to the GAN setting (e.g. there is no guarantee the sigmoid would be calibrated), and so we did not
include comparisons involving CbAS and GANs in our figures even though this functionality exists in our codebase.

A.5. Nearest Neighbor Algorithms and Evaluation

For 1NN evaluation we draw our independent latent space from the DeepSEA network (Zhou & Troyanskaya, 2015) using
the first 5 convolutional layers as a feature space. We then implement a simple 1NN algorithm in this latent space to generate
the LOO accuracy of a set of generated and real examples.

One key question is whether to use a 1NN or some other value of k in the KNN algorithm. We explore this in Table 2. The
value of n is by far the most important factor in the evaluation outcome, with larger n leading to a less sparse “neighbor
space”, lower variance, and a more accurate evaluation of the generated sequences. The insight that larger n lead to more
consistent evaluation is then helpful in evaluating various values of k. Different values of k have at most marginal impact on
the evaluation variance. But different k’s do have significant impact on the actual evaluation scores. In general, a larger k
tends to estimate a better score (closer to 0.5). As n increases though, so does the score, meaning that for low n the 1NN
algorithm better approximates the higher n than other values of k. Extrapolating this result, for high n, the 1NN approach is
likely still preferable. Hence throughout we use a 1NN with a large sample size, n = 2024, to maximize evaluation accuracy
and minimize variance.

Systematic characterization of generative models for de novo design of regulatory DNA

B. Supplementary Tables

n k = 1 k = 3 k = 5 k = 7 k = 9

µ 1012 0.68532609 0.67168972 0.67089921 0.66818182 0.6625
σ 0..01165097 0.00964452 0.01088628 0.01195448 0.01182978
µ 256 0.63105469 0.62363281 0.61191406 0.59707031 0.58574219
σ 0.02816092 0.01677983 0.01729481 0.03077086 0.03251176
µ 64 0.584375 0.565625 0.5625 0.54296875 0.540625
σ 0.06553193 0.05289472 0.05390059 0.05952387 0.05203383

Table 1. Results of the nearest neighbor algorithm on the 4000th epoch of GAN training for various k. Each n represents the size of
the sample drawn from the real and generated distributions. 10 independent samples were drawn from each distribution and the knn
evaluation for various k performed for each sampling. The µ is then the average of these evaluations, the σ the standard deviation.

n k = 1 k = 3 k = 5 k = 7 k = 9

µ 1012 0.68532609 0.67168972 0.67089921 0.66818182 0.6625
σ 0..01165097 0.00964452 0.01088628 0.01195448 0.01182978
µ 256 0.63105469 0.62363281 0.61191406 0.59707031 0.58574219
σ 0.02816092 0.01677983 0.01729481 0.03077086 0.03251176
µ 64 0.584375 0.565625 0.5625 0.54296875 0.540625
σ 0.06553193 0.05289472 0.05390059 0.05952387 0.05203383

Table 2. Results of the nearest neighbor algorithm on the 4000th epoch of GAN training for various k. Each n represents the size of
the sample drawn from the real and generated distributions. 10 independent samples were drawn from each distribution and the KNN
evaluation for various k performed for each sampling. The µ is then the average of these evaluations, the σ the standard deviation.

Systematic characterization of generative models for de novo design of regulatory DNA

C. Supplementary Figures

Figure 1. Overview of sequence generation approaches. (A) Variation AutoEncoders (VAE); (B) Generative Adversarial Networks
(GAN(); (C) Supervised Variation AutoEncoders (supVAE); (D) Supervised Generative Adversarial Networks (supGAN);

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 2. Performance of predictive models on yeast MPRA dataset. (A) True (x-axis) and predicted (y-axis) expression levels for
constructs with different numbers of GNC4 motifs. (B) Deep learning models reproduce experimentally the observed behaviors of
constructs with different numbers of GNC4 motifs in response to increasing [AA]. (C-D) DeepLIFT importance score for a construct
containing three weak GCN4 TFBSs (c) and another one containing three strong GCN4 TFBSs correctly identify motifs driving regulatory
activity

Figure 3. Performance of predictive models trained on the bottom 95% and on the full yeast MPRA dataset. (A) True (y-axis) vs
predicted from the bottom 95% sequences (x-axis) MPRA activity levels. (B) True (y-axis) vs predicted from the full set of sequences
(x-axis) MPRA activity levels. (C) Predicted from the bottom 95% sequences (x-axis) vs predicted from the full set of sequences (y-axis)
MPRA activity levels.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 4. Distribution of the top 5% and the bottom 95% sequence in the latent space projection.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 5. Overview of performance of general generative methods on the task of generating active yeast promoter sequences. The
top panel shows a UMAP projection to two dimensions of the latent space projection of the sampled sequences of each method. The
UMAP projection is held constant so that methods can be meaningfully compared. The bottom left two panels show the predicted
expression distribution of the analyzer trained using the bottom 95% of sequence (which was optimized for tuning methods) and the
analyzer trained using the full dataset. The left most plot shows the predicted values for the real data, while the plot to the right shows the
predicted values for each method. The two bottom right panels shows the fraction of sequences that are predicted to be “real” or not by
the 1NN algorithm for each method. The left one displays the portion of predicted “real” when using the bottom 95% as the “real” data,
while the right one displays the same predictions but using only the top 5% as the “real” sequences.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 6. Overview of performance of tuning methods applied to GANs on the task of generating active yeast promoter sequences.
The top panel shows a UMAP projection to two dimensions of the latent space projection of the sampled sequences of each method.
The UMAP projection is held constant so that methods can be meaningfully compared. The bottom left two panels show the predicted
expression distribution of the analyzer trained using the bottom 95% of sequence (which was optimized for tuning methods) and the
analyzer trained using the full dataset. The left most plot shows the predicted values for the real data, while the plot to the right shows the
predicted values for each method. The two bottom right panels shows the fraction of sequences that are predicted to be “real” or not by
the 1NN algorithm for each method. The left one displays the portion of predicted “real” when using the bottom 95% as the “real” data,
while the right one displays the same predictions but using only the top 5% as the “real” sequences.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 7. Overview of performance of tuning methods applied to supervised GANs on the task of generating active yeast promoter
sequences. The top panel shows a UMAP projection to two dimensions of the latent space projection of the sampled sequences of each
method. The UMAP projection is held constant so that methods can be meaningfully compared. The bottom left two panels show the
predicted expression distribution of the analyzer trained using the bottom 95% of sequence (which was optimized for tuning methods) and
the analyzer trained using the full dataset. The left most plot shows the predicted values for the real data, while the plot to the right shows
the predicted values for each method. The two bottom right panels shows the fraction of sequences that are predicted to be “real” or not by
the 1NN algorithm for each method. The left one displays the portion of predicted “real” when using the bottom 95% as the “real” data,
while the right one displays the same predictions but using only the top 5% as the “real” sequences.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 8. Overview of performance of tuning methods applied to VAEs on the task of generating active yeast promoter sequences.
The top panel shows a UMAP projection to two dimensions of the latent space projection of the sampled sequences of each method.
The UMAP projection is held constant so that methods can be meaningfully compared. The bottom left two panels show the predicted
expression distribution of the analyzer trained using the bottom 95% of sequence (which was optimized for tuning methods) and the
analyzer trained using the full dataset. The left most plot shows the predicted values for the real data, while the plot to the right shows the
predicted values for each method. The two bottom right panels shows the fraction of sequences that are predicted to be “real” or not by
the 1NN algorithm for each method. The left one displays the portion of predicted “real” when using the bottom 95% as the “real” data,
while the right one displays the same predictions but using only the top 5% as the “real” sequences.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 9. Overview of performance of tuning methods applied to supervised VAEs on the task of generating active yeast promoter
sequences. The top panel shows a UMAP projection to two dimensions of the latent space projection of the sampled sequences of each
method. The UMAP projection is held constant so that methods can be meaningfully compared. The bottom left two panels show the
predicted expression distribution of the analyzer trained using the bottom 95% of sequence (which was optimized for tuning methods) and
the analyzer trained using the full dataset. The left most plot shows the predicted values for the real data, while the plot to the right shows
the predicted values for each method. The two bottom right panels shows the fraction of sequences that are predicted to be “real” or not by
the 1NN algorithm for each method. The left one displays the portion of predicted “real” when using the bottom 95% as the “real” data,
while the right one displays the same predictions but using only the top 5% as the “real” sequences.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 10. Base pair composition of final generated sequences for base generative models, tuned models, and sample optimized
outputs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 11. Base pair composition throughout training for base models. (A) Generative Adversarial Networks (GAN); (B) Supervised
Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation AutoEncoders (supVAE).

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 12. Base pair composition throughout training for the CEMPI tuning method. (A) Generative Adversarial Networks (GAN)
+ CEMPI; (B) Supervised Generative Adversarial Networks (supGAN) + CEMPI; (C) Variation AutoEncoders (VAE) + CEMPI; (D)
Supervised Variation AutoEncoders (supVAE) + CEMPI.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 13. Base pair composition throughout training for the DbAS tuning method. (A) Generative Adversarial Networks (GAN) +
DbAS; (B) Supervised Generative Adversarial Networks (supGAN) + DbAS; (C) Variation AutoEncoders (VAE) + DbAS; (D) Supervised
Variation AutoEncoders (supVAE) + DbAS.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 14. Base pair composition throughout training for the FBGAN tuning approach. (A) Generative Adversarial Networks
(GAN) + FB; (B) Supervised Generative Adversarial Networks (supGAN) + FB; (C) Variation AutoEncoders (VAE) + FB; (D) Supervised
Variation AutoEncoders (supVAE) + FB.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 15. Base pair composition throughout training for the RWR tuning method. (A) Generative Adversarial Networks (GAN) +
RWR; (B) Supervised Generative Adversarial Networks (supGAN) + RWR; (C) Variation AutoEncoders (VAE) + RWR; (D) Supervised
Variation AutoEncoders (supVAE) + RWR.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 16. Base pair composition throughout training for the CbAS tuning method. (A) Generative Adversarial Networks (GAN) +
CbAS; (B) Supervised Generative Adversarial Networks (supGAN) + CbAS; (C) Variation AutoEncoders (VAE) + CbAS; (D) Supervised
Variation AutoEncoders (supVAE) + CbAS.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 17. GCN4 motif content throughout training for base models. (A) Generative Adversarial Networks (GAN) (B) Supervised
Generative Adversarial Networks (supGAN) (C) Variation AutoEncoders (VAE) (D) Supervised Variation AutoEncoders (supVAE)

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 18. GCN4 motif content throughout training for the CbAS tuning approach. (A) Generative Adversarial Networks (GAN);
(B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation AutoEncoders
(supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 19. GCN4 motif content throughout training for the CEMPI tuning approach. (A) Generative Adversarial Networks (GAN);
(B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation AutoEncoders
(supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 20. GCN4 motif content throughout training for the DbAS tuning approach. (A) Generative Adversarial Networks (GAN);
(B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation AutoEncoders
(supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 21. GCN4 motif content throughout training for the FBGAN tuning approach. (A) Generative Adversarial Networks (GAN);
(B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation AutoEncoders
(supVAE).

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 22. GCN4 motif content throughout training for the RWR tuning approach. (A) Generative Adversarial Networks (GAN);
(B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation AutoEncoders
(supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 23. Predicted expression levels throughout training for the CbAS tuning approach. (A) Generative Adversarial Networks
(GAN); (B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation
AutoEncoders (supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 24. Predicted expression levels throughout training for the CEMPI tuning approach. (A) Generative Adversarial Networks
(GAN); (B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation
AutoEncoders (supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 25. Predicted expression levels throughout training for the DbAS tuning approach. (A) Generative Adversarial Networks
(GAN); (B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation
AutoEncoders (supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 26. Predicted expression levels throughout training for the FBGANtuning approach. (A) Generative Adversarial Networks
(GAN); (B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation
AutoEncoders (supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 27. Predicted expression levels throughout training for the RWR tuning approach. (A) Generative Adversarial Networks
(GAN); (B) Supervised Generative Adversarial Networks (supGAN); (C) Variation AutoEncoders (VAE); (D) Supervised Variation
AutoEncoders (supVAE). Epochs beyond the ones shown do not contain any GCN4 motifs.

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 28. Nearest neighbor evaluation of generated sequences for base models . (A) Generative Adversarial Networks (GAN) (B)
Supervised Generative Adversarial Networks (supGAN) (C) Variation AutoEncoders (VAE) (D) Supervised Variation AutoEncoders
(supVAE)

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 29. Nearest neighbor evaluation of sequences generated using the CbAS tunning method . (A) Generative Adversarial
Networks (GAN) (B) Supervised Generative Adversarial Networks (supGAN) (C) Variation AutoEncoders (VAE) (D) Supervised
Variation AutoEncoders (supVAE)

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 30. Nearest neighbor evaluation of sequences generated using the CEMPI tunning method . (A) Generative Adversarial
Networks (GAN) (B) Supervised Generative Adversarial Networks (supGAN) (C) Variation AutoEncoders (VAE) (D) Supervised
Variation AutoEncoders (supVAE)

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 31. Nearest neighbor evaluation of sequences generated using the DbAS tunning method . (A) Generative Adversarial
Networks (GAN) (B) Supervised Generative Adversarial Networks (supGAN) (C) Variation AutoEncoders (VAE) (D) Supervised
Variation AutoEncoders (supVAE)

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 32. Nearest neighbor evaluation of sequences generated using the FBGAN tunning method . (A) Generative Adversarial
Networks (GAN) (B) Supervised Generative Adversarial Networks (supGAN) (C) Variation AutoEncoders (VAE) (D) Supervised
Variation AutoEncoders (supVAE)

Systematic characterization of generative models for de novo design of regulatory DNA

Figure 33. Nearest neighbor evaluation of sequences generated using the RWR tunning method. (A) Generative Adversarial Net-
works (GAN) (B) Supervised Generative Adversarial Networks (supGAN) (C) Variation AutoEncoders (VAE) (D) Supervised Variation
AutoEncoders (supVAE)

Systematic characterization of generative models for de novo design of regulatory DNA

Fi
gu

re
34

.P
re

di
ct

ed
ex

pr
es

si
on

va
lu

es
an

d
di

st
ri

bu
tio

ns
fo

r
sa

m
pl

in
g

m
et

ho
ds

.

Systematic characterization of generative models for de novo design of regulatory DNA

Fi
gu

re
35

.1
N

N
pr

ed
ic

tio
ns

fo
r

sa
m

pl
in

g
m

et
ho

ds
.

