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MTSplice predicts effects of genetic variants on tissue-specific splicing
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Abstract
Tissue-specific splicing of exons plays an impor-
tant role in determining tissue identity. However,
computational tools predicting tissue-specific ef-
fects of variants on splicing are lacking. To ad-
dress this issue, we developed MTSplice (Multi-
tissue MMSplice), a neural network which quanti-
tatively predicts effects of human genetic vari-
ants on splicing of cassette exons in 56 tis-
sues. MTSplice combines the state-of-the-art
predictor MMSplice, which models constitutive
regulatory sequences, with a new neural net-
work which models tissue-specific regulatory se-
quences. MTSplice outperforms MMSplice on
predicting effects associated with naturally oc-
curring genetic variants in most tissues of the
GTEx dataset. Furthermore, MTSplice predicts
that autism-associated de novo mutations are en-
riched for variants affecting splicing specifically
in the brain. We foresee MTSplice to be useful for
functional prediction and prioritization of variants
associated with tissues-specific disorders.

1. Introduction
Splicing defects account for an important fraction of the
genetic basis of human diseases (López-Bigas et al., 2005).
Some of these splicing defects are specific to disease-
relevant tissues. For instance, individuals affected by autism
spectrum disorder (ASD) frequently present mis-splicing
of brain-specific exons (Parras et al., 2018) as well as an
enrichment of de novo mutations in brain-specific exons
(Uddin et al., 2014). Hence, computational tools that can
predict the tissue-specific effects of genetic variants on splic-
ing would be relevant for understanding the genetic basis of
tissue-specific diseases such as ASD.

Many computational tools have been developed to predict
splice sites or splicing strength from sequence (Yeo & Burge,

1Anonymous Institution, Anonymous City, Anonymous Region,
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2004; Desmet et al., 2009; Jian et al., 2014; Rosenberg et al.,
2015; Xiong et al., 2015; Cheng et al., 2019; Sonnenburg
et al., 2007; Jaganathan et al., 2019). However, tools are
lacking for predicting tissue-specific effects of genetic vari-
ants on splicing in human cells. Barash et al. developed
the first sequence-based model predicting tissue-specific
splicing in mouse cells (Barash et al., 2010). The model
integrates regulatory sequence elements to qualitatively pre-
dict whether the inclusion of a cassette exon increases, de-
creases, or remains at a similar level from one tissue to
another tissue. This model was further improved to predict
directional changes between tissues along with discretized
Ψ categories (Low, -Medium, and -High) within a tissue
by using Bayesian neural network with hidden variables
(Xiong et al., 2011). A similar Bayesian neural network
(SPANR) was later on trained on human data (Xiong et al.,
2015). However, SPANR was evaluated only for predict-
ing the largest effect across all investigated tissues. Hence,
the performance of SPANR on any given tissue is unclear.
Moreover, the publicly available SPANR does not allow
performing tissue-specific predictions.

Here, we developed MTSplice (Multi-tissue MMSplice), a
model that predicts tissue-specific splicing effects of human
genetic variants. MTSplice adjusts the tissue-agnostic state-
of-the-art predictor MMSplice (Cheng et al., 2019) with the
predictions of TSplice (Tissue-specific Splicing), a newly
developed deep neural network predicting tissue-specific
variations of Ψ from sequence and trained on 56 human
tissues using multi-task learning. Performance of MTSplice
is demonstrated by predicting tissue-specific variations of Ψ
associated with naturally occurring genetic variants of the
GTEx dataset as well as investigating brain-specific splicing
effect predictions for autism-associated variants.

2. Results
To train a tissue-specific model of splicing, we considered
the alternative splicing catalog of the transcriptome ASCOT
(Ling et al., 2020). Because the ASCOT annotation and
quantification pipeline is annotation-free, it also covers non-
annotated exons. Altogether, ASCOT provides Ψ values
for 61,823 cassette exons across 56 tissues including 53
tissues from the GTEx dataset (GTEx Consortium, 2013)
and additional RNA-Seq data from peripheral retina. Of
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MTSplice predicts effects of genetic variants on tissue-specific splicing

note, these tissue-specific values are flagged as missing
when the corresponding gene is not expressed (Ling et al.,
2020).

2.1. TSplice predicts tissue-specific Ψ

We trained a new neural network, TSplice, to predict tissue-
specific Ψ values from sequence and tissue-averaged Ψ
(Methods). TSplice considers the 300 nt flanking either side
of the exon and the first and last 100 nt of the exon body.
TSplice is a convolutional neural network Figure1 in which
positional effects of sequence elements relative to splice
sites are modeled using spline transformations (Avsec et al.,
2018). TSplice was trained on the ASCOT dataset (Ling
et al., 2020). ASCOT includes de novo annotated exons pro-
vides Ψ values for 61,823 cassette exons across 56 tissues
including 53 tissues from the GTEx dataset (GTEx Consor-
tium, 2013) and additional RNA-Seq data from peripheral
retina. We report our performances on three held-out chro-
mosomes (chromosome 2, 3 and 5).

Figure 1. Model architecture to predict tissue-specific percent
spliced-in. The model TSplice consists of one convolution layer
with 64 length-9 filters capturing sequence elements. This is fol-
lowed by two spline transformation layers modulating the effect of
sequence elements depending on their position relative to the ac-
ceptor splice sites (leftmost layer) and the donor (rightmost layer).
The outputs of the two spline transformation layers are concate-
nated and global average pooling is applied along the sequence
dimension. This is then followed by feeding two consecutive
fully-connected layers. The last fully-connected layer outputs a
56 dimension vector which are the predicted log odd ratios of
tissue-specific Ψ versus tissue-averaged Ψ for the 56 tissues of the
ASCOT dataset. Natural scale tissue-specific Ψ are obtained by
adding predicted odd ratios with measured tissue-averaged Ψ. In
total, the model has 8,024 trainable parameters.

The performance of TSplice was first assessed on test data
by comparing the observed against the predicted log odd
ratios of tissue-specific Ψ for 1,621 exons (“variable exons”)
with Ψ deviating from the tissue-averaged Ψ by at least 0.2

in at least one tissue and for which the gene is expressed in
at least 10 tissues (Figure2 for Retina eye as an example,
Spearman correlation = 0.27). The predictions positively
correlated with the measurements in all tissues and showed
a median Spearman correlation of 0.22 (Figure2B). The
performance were higher for tissues of the central nervous
system (Figure2C), possibly because central nervous system
tissues harbor similar splicing patterns and because they are
well represented in the ASCOT dataset.
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Figure 2. Evaluating TSplice on predicting tissue-associated dif-
ferential splicing. (A) Predicted versus measured δ logit(Ψe,t) for
the Retina-Eye tissue, representative of the typical performance
of our model. (B) Spearman correlation between predicted and
measured δ logit(Ψe,t) for all tissues. (C) Distribution of Spear-
man correlations between predicted and measured δ logit(Ψe,t)
for brain tissues and non-brain tissues.

2.2. Tissue-specific variant effect prediction

We next considered combining MMSplice, which models
tissue-independent effects together with TSplice, which
models differential effects between tissues, to predict the
effects associated with genetic variants for any GTEx tis-
sue (Methods). We name this combined model MTSplice.
When evaluated on the 51 tissues with at least 10 mea-
sured variant effects, MTSplice outperformed MMSplice
for 45 out of 51 tissues in terms of root-mean-square error
(P = 1.46 × 10−5, paired Wilcoxon test).

2.3. MTSplice predicts brain-specific signals for autism
patients

To assess the potential of MTSplice on scoring tissue-
specific disease variants, we considered de novo mutations
that were reported for 1,790 autism spectrum disorder (ASD)
simplex families from the Simons Simplex Collection (Yuen
et al., 2015) and as provided by Zhou et al (Zhou et al., 2019).
The data consists of 127,140 de novo mutations, with 65,147
from the proband group and 61,993 from the unaffected sib-
lings. Of those, we further considered the 3,884 mutations
lying in exons or in their 300 nt flanking intronic regions
and predicted with MMSplice with a delta-logit-PSI greater
than 0.05. Overall, MMSplice predicted that variants of
the proband group would disrupt splicing more strongly
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than variants of the control siblings (negative MMSplice
scores, Figure 3A, P = 0.042, Wilcoxon rank-sum test).
The effect was even stronger for the 1,081 loss-of-function
(LoF) intolerant genes (Figure 3, P = 0.0035, Wilcoxon
rank-sum test, Methods). This result is consistent with the
report that LoF-intolerant genes are vulnerable to noncoding
disruptive mutations in ASD (Zhou et al., 2019) and points
to an important contribution of splicing.

We then asked whether MTSplice was able to identify tissue-
specific effects of ASD-associated de novo mutations. Con-
sistent with the MMSplice results, the de novo mutations
of the proband group were predicted by MTSplice to more
severely disrupt splicing than the de novo mutations of the
control group for all tissues (Figure 3B). The effect size
was larger for the brain tissues (Figure 3B). Since autism
is a neurological disorder, these results indicate that MT-
Splice may be used to prioritize variants that could play a
tissue-specific pathogenic role. Besides the brain tissues, the
tissues with most pronounced differences were retina, which
is also part of the central nervous systems and muscle, which
has been associated with autism as well (Paquet et al., 2016).
These differences were further amplified when restricting
the analysis to the de novo mutations in LoF intolerant
genes (Figure 3B). Altogether, these analyses demonstrate
the value of MTSplice on predicting tissue-specific effects
of potentially disease causing mutations.

3. Discussion
We introduced the model MTSplice which quantitatively
predicts effects of human genetic variants on RNA splic-
ing in 56 tissues. MTSplice has two components. One
component, MMSplice, models constitutive splicing reg-
ulatory sequences. The other component, TSplice, mod-
els tissue-specific splicing regulatory sequences. The com-
bined model MTSplice outperforms MMSplice on predict-
ing tissue-specific variations in percent spliced-in associated
with naturally occurring genetic variants in most tissues of
the GTEx dataset. Applying MTSplice to de novo muta-
tions from autism spectrum disorder simplex families (Zhou
et al., 2019), we found a significantly higher burden for the
proband group compared to the control siblings, particu-
larly in brain tissues. These results suggest that MTSplice
could be applied for scoring variants with a tissue-specific
pathogenic role.

4. Materials and methods
4.1. Dataset

We split the 61,823 cassette exons from ASCOT into a train-
ing, a validation, and a test set. The training set consisted of
38,028 exons from chromosome 4, 6, 8, 10-23 and the sex
chromosomes. The 11,955 exons from chromosome 1,7,9

were used as the validation set, and the remaining 11,840
exons were used as the test set (chromosomes 2, 3 and 5).
Models are evaluated based on their performance on the test
set.

4.2. Variant effect estimation

To compute variant effect, we first computed Ψ with MISO
for all annotated alternatively spliced exons (MISO anno-
tation v2.0) in all GTEx RNA-Seq samples. Ψ for 4,686
samples from 53 tissues were successfully computed. Sec-
ond, for each exon, we estimated variant effects using only
those samples with a single variant within the exon body
and 300 nt flanking of the exon. Third, we estimated the
effect associated with the variants as the difference between
Ψ averaged across samples homozygous for the alternative
allele and Ψ averaged across samples homozygous for the
reference allele. We required at least 2 samples in each
of these two groups. For simplicity, we did not consider
heterozygous samples for estimating the effects because Ψ
of heterozygous samples is confounded by allele-specific
RNA expression. Also, we did not consider indels.

4.3. The TSplice model

We denote Ψe,t the percent spliced-in value of the cassette
exon e in tissue t. The goal of the multi-tissue splicing
model is to predict tissue-specific Ψe,t from the nucleotide
sequence of the given exon Se. We train the tissue-specific
splicing model with multi-task learning, where each task cor-
responds to a tissue. The model has two input branches. The
first input branch consists of the sequence 300 nt upstream
of the acceptor and 100 nt downstream of the acceptor (Fig-
ure1). In a symmetric fashion, the second input branch
consists of the sequence from the donor side, with 100 nt
upstream of the donor and 300 nt downstream of the donor.
All input sequences are one-hot encoded. The input layer is
followed by a 1D convolution layer with 64 filters of length
9. Parameters of the convolution layer are shared by the
two input branches, based on the assumption that many se-
quence motifs are presented both upstream and downstream
of the exons. To model the positional dependent effects of
splicing motifs, spline transformations (Avsec et al., 2018)
are fitted for each of the convolution filters to weight the
convolution activations based on the relative input position
to donor and acceptor sites. The weighted activations are
then concatenated along the sequence dimension.The last
fully-connected layer output number of predictions equals
the number of tissues (T ), corresponding to predictions for
each tissue. These are the predictions of the TSplice model
mentioned in the rest of the manuscript. During training,
logit of the mean Ψ per exon (logit Ψe) was added to these
prediction outputs followed by a sigmoid layer. This encour-
ages the model to learn sequence features associated with
differential splicing across tissues.
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Figure 3. Brain-specific mutational burden on splicing in ASD. (A). Tissue-agnostic variant effect prediction with MMSplice. Splice-
region de novo mutations (n=3,384, Methods) of the proband group (gray) have significantly lower predicted ∆ logit Ψ according to
MMSplice compared to those of the unaffected sibling group (orange). The effect size is larger for variants in LoF-intolerant genes
(n=1,081). Shown are the means and standard 95% confidence intervals. P-values from one-sided Wilcoxon test. (B). Tissue-specific
variant-effect prediction with MTSplice. Distribution of effect size (difference of average ∆ logit Ψ for proband versus control siblings
de novo mutations) for brain tissues (right boxes) and other tissues (left boxes), and for all de novo mutations (left panel) or de novo
mutations in LoF-intolerant genes (right panel) with MTSplice. The predicted effect sizes are more pronounced for brain tissues.

Formally, for each exon, TSplice predicts for each tissue
its Ψe,t deviation from the mean Ψe across tissues on logit
level. Specifically, we define δ logit(Ψe,t)

δ logit(Ψe,t) := logit(Ψe,t) − logit(Ψe) (1)

as the logit Ψ deviation for tissue t and exon e from the logit
of mean Ψ across tissues. Denote the number of tissues as

T , logit(Ψe) = logit
(
1
T

T∑
t=1

Ψe,t

)
.

For exon e with input sequence Se, TSplice
predicts the target in RT : TSplice(Se) :=(
δ logit(Ψe,1), ..., δ logit(Ψe,T )

)
corresponding to T

tissues.

The tissue-specific Ψe,t can be predicted with TSplice and
the given logit(Ψe) computed from the data as:

Ψ̂e,t = σ
(
TSplice(Se)t + logit(Ψe)

)
(2)

where TSplice(Se)t is the TSplice predicted δ logit(Ψe,t).
σ is the sigmoid function: σ(x) = 1

1+e−x . Note that in
eq.1 and elsewhere the average was computed before and
not after logit-transformation because it gave more robust
results.

4.4. Model training and selection

The model was implemented with keras (version 2.2.4). The
Kullback–Leibler (KL) divergence between the predicted
and measured Ψ distribution was used as the loss function
(3), by considering the percent spliced-in as the probability
of the cassette exon to be included in any given transcript.

Loss =
1

T ∗ E

T∑
t=1

E∑
e=1

γe,t
(

Ψe,t log(
Ψe,t

Ψ̂e,t

)+(1−Ψe,t) log(
1 − Ψe,t

1 − Ψ̂e,t

)
)
,

(3)

where

γe,t =

{
1, if Ψe,t observed
0, otherwise

(4)

Missing values, which typically correspond to tissues in
which the gene is not expressed, were masked out in the
loss function. Ψ values were clipped to be between [10e-5,
1-10e-5].

4.5. Tissue-specific variant effect prediction

Tissue-specific variant effect ∆Ψe,t is predicted as follows
(we considered in this study only homozygous cases):

∆Ψe,t = Ψalt
e,t − Ψref

e,t (5)

where Ψref
e,t is the measured Ψ for exon e and tissue t with

the reference sequence, and Ψalt
e,t is the tissue-specific Ψ with

the alternative sequence.

The tissue-specific ∆Ψe,t is predicted as follow:

∆Ψe,t =σ
(

logit(Ψref
e,average) + MMSplice(Sref, Salt) + TSplice(Salt, tissue)

)
− Ψref

e,t

(6)
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