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Abstract
With the fast development of COVID-19 into a
global pandemic, scientists around the globe are
desperately searching for effective antiviral thera-
peutic agents. Bridging systems biology and drug
discovery, we propose a deep learning framework
for conditional de novo design of antiviral candi-
date drugs tailored against given protein targets.
First, we train a multimodal ligand–protein bind-
ing affinity model on predicting affinities of antivi-
ral compounds to target proteins and couple this
model with pharmacological toxicity predictors.
Exploiting this multi-objective as a reward func-
tion of a conditional molecular generator (con-
sisting of two VAEs), we showcase a framework
that navigates the chemical space toward regions
with more antiviral molecules. Specifically, we ex-
plore a challenging setting of generating ligands
against unseen protein targets by performing a
leave-one-out-cross-validation on 41 SARS-CoV-
2-related target proteins. Using deep RL, it is
demonstrated that in 35 out of 41 cases, the gen-
eration is biased towards sampling more binding
ligands, with an average increase of 83% compar-
ing to an unbiased VAE. We present a case-study
on a potential Envelope-protein inhibitor and per-
form a synthetic accessibility assessment of the
best generated molecules is performed that resem-
bles a viable roadmap towards a rapid in-vitro
evaluation of potential SARS-CoV-2 inhibitors.

1 Introduction
The Severe Acute Respiratory Syndrome (SARS) Coron-
avirus disease (COVID 2019) is an acute respiratory disease
caused by novel coronavirus SARS-CoV-2 that, to date, has
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infected millions and killed hundreds of thousands. Despite
longstanding efforts into understanding the pathogenicity
of coronaviruses (CoVs) (Drosten et al., 2003), there are
no approved drugs against CoV, and new systematic ap-
proaches to identify effective antiviral agents are urgently
needed. Current efforts are predominantly focused on drug
repurposing strategies, with a handful of promising candi-
dates, including remdesivir and hydroxychloroquine. Initial
hopes are currently balked, remdesivir does not significantly
reduce time to clinical improvement (Wang et al., 2020)
and hydroxychloroquine was not found effective in a meta-
study of human clinical trials (Shamshirian et al., 2020).
Gordon et al. (2020) recently identified 69 promising com-
pounds by measuring binding affinities of 26 out of the 29
SARS-CoV-2 proteins against human proteins.

With high uncertainty in the outcome of drug repurposing
strategies, it is worth exploiting de novo drug discovery
approaches against SARS-CoV-2. Drug discovery is chal-
lenging, with costs of up to 3 billion US$ per new FDA-
approved drug, an attrition rate of 99.99%, more than 10
years until market release and a search space of 1060 com-
pounds (Scannell et al., 2012). However, the availability
of high-throughput screenings of compound–protein inter-
actions (CPI) has enabled deep learning to set new bench-
marks for large-scale QSAR prediction models for predict-
ing protein–drug binding affinity (Karimi et al., 2019). Deep
learning has further been proven feasible of in silico design
of molecules with desired chemical properties and shown
potential to accelerate discovery of DDR1 inhibitors (Zha-
voronkov et al., 2019). A few studies used deep generative
models to release libraries of (unsynthesized) candidates to
target 3C-like protease, a main therapeutic target of SARS-
CoV-2 (Zhavoronkov et al., 2020; Tang et al., 2020) but both
studies manually curated datasets to target 3C-like protease
inhibitors. Here, we aim to bridge systems biology and drug
discovery, using deep learning to explore target-driven drug
design with conditional generative models. Our framework
(see Figure 1) for conditional molecular design is concep-
tually inspired by our previous work, PaccMannRL (Born
et al., 2020), however note that here we focus on protein-
driven instead of omics-profile-driven drug generation. Our
framework can be trained to design compounds against any
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Figure 1. A drug discovery framework for antiviral small
molecules against SARS-CoV-2. The conditional compound gen-
erator, called agent (see A), can produce novel structures specifi-
cally designed to target a protein of interest. The generative process
starts with the encoding of the primary structure of the target pro-
tein into a latent space of protein sequences. The representation is
fed into a molecular decoder of a separately pretrained molecule
VAE to produce a candidate compound. Next, the proposed com-
pound is evaluated by a critic (see B) composed by: a multimodal
deep learning model that predicts protein-drug binding affinity us-
ing protein and compound sequences as input, and a QSAR-based
score to punish toxicity. By means of the reward given by the
critic, a closed-loop system is created and is trained with deep
reinforcement learning to maximize a multi-objective reward.

primary protein structure(s). Deep learning for target-driven
drug design was first formulated by Aumentado-Armstrong
(2018) and similarly to Chenthamarakshan et al. (2020), our
approach implements a conditional generator that can be
applied to unseen protein targets. However, instead of using
conditional sampling, we perform an RL-biased conditional
generation (fusing the latent spaces of protein targets and
small molecules) that is demonstrated to generalize to un-
seen targets. We further couple our model with IBM RXN1,
an AI-governed platform for automated chemical synthesis
to promptly synthesize the best compounds (Schwaller et al.,
2020).

2 Methods
SELFIES VAE. The molecular generator is a variational
auto-encoder (VAE)) that is pretrained on 1,576,904 bioac-
tive compounds from ChEMBL (10% are held out as
validation set). The VAE implementation mostly fol-
lows Born et al. (2020), i.e., it consists of two layers of

1https://rxn.res.ibm.com/

stack-augmented GRUs (Joulin & Mikolov, 2015) in both
encoder and decoder. The latent space has a dimensionality
of 256, molecules are represented as SELFIES (Krenn et al.,
2019), a robust adaption of the molecular in-line notation
SMILES (Simplified Molecular Input Line Entry Specifica-
tion) devised for generative models, and one-hot encodings
are used. During training, KL annealing, teacher forcing and
token dropout are employed. During testing, the stochastic
decoder is sampling from the softmax distribution over the
output tokens.

Protein VAE. The protein VAE consists of 3 dense layers
of sizes [768, 512, 256] in both encoder and decoder. The
model is trained on ∼400,000 proteins from UniProt (Swis-
sProt). The proteins considered were selected by filtering
out sequences longer than 8,190 amino acids. The maximum
length of the sequences has been selected to accommodate
the statistics for the SARS-CoV-2 relevant proteins com-
piled by UniProt2 . Note that the VAE is not trained on the
raw sequences but on 768 dimensional latent representations
obtained from TAPE (Rao et al., 2019). During trainining,
KL annealing and dropout are employed.

Protein-ligand affinity prediction. To predict CPI, we
utilize a bimodal neural network based on the multiscale
convolutional attention model (Manica et al., 2019; Cadow
et al., 2020) (MCA, for model architecture see appendix Fig-
ure 4). Drug–protein binding affinity data is obtained from
BindingDB, a public database of 1,813,527 measured bind-
ing affinities between 7,044 proteins and 802,551 small
drug-like compounds as of March 2020. As for the protein
VAE data, the database was filtered from entries with target
sequences longer than 8,190 amino acids. The remaining
1,361,076 entries with an average of 187 reported com-
pounds per target protein were taken as binding examples.
From compounds not reported as entry for a given target
187 compounds were randomly sampled as non–binding to
the respective protein target to match the binding examples.
Finally, the combined examples were filtered for invalid
SMILES to a total of 2,723,726 binding/non–binding pairs
of 771,839 compounds and split into random, stratified train
(72%), validation (18%) and test (10%) folds.

Toxicity prediction. Using the Tox21 database available
through DeepChem (Wu et al., 2018), we trained a MCA
model on the augmented SMILES sequences (Bjerrum,
2017) to predict the 12 toxicity classes.

Conditional generation. The conditional generative model
is obtained by encoding a protein target with the protein
VAE and decoding it with the pretrained molecular decoder.

2covid-19.uniprot.org/as on 22 May 2020.

https://www.ebi.ac.uk/chembl/
https://rxn.res.ibm.com/
https://www.uniprot.org
https://www.bindingdb.org/bind/index.jsp
covid-19.uniprot.org/
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The objective function of this hybrid VAE GΘ is:

Π(Θ|r) =
∑

sT∈S∗

PΘ(sT |r)R(sT , r) (1)

where r is the protein target of interest, sT is a SELFIES
string at time T (terminated with the <END> token), S∗

resembles the molecular space and PΘ(sT |r) is the prob-
ability to sample sT given r. In detail, PΘ(sT |r) :=∏

t=0:T p(at|st−1) where s0 = r and at is the action at
time t sampled from the dictionary of SELFIES tokens.
R(sT , r) is the output of the critic C, in our case a multi
objective:

R(sT , r) = A(sT , r) + 0.5 T (sT ) (2)

where A(·) is the affinity predictor and T (·) is the toxicity
predictor that returns 1 iff sT is inactive in all 12 assays.
Since Equation 1 is intractable to compute, it is approxi-
mated using policy gradient and subject to maximization
using REINFORCE (Williams, 1992).

Protein targets. We fetched the 41 protein targets that are
labelled as relevant to SARS-CoV-2 by UniProt (as on 22
May 2020). A full list of targets is given in Table 2 and in-
cludes e.g. the 3C-like protease (Mpro) which was identified
as most promising candidate for antiviral compound devel-
opment (Wu et al., 2020) and was already investigated with
generative models (Zhavoronkov et al., 2020) and molecular
docking studies (Khaerunnisa et al., 2020). Other proteins
are the nucleocapsid (N-) protein or the spike glycoprotein
which is the most important surface protein, the target of
chloroquine and mediates entrance to human respiratory
epithelial cells by interacting with the ACE2 receptor.

3 Results
Protein-ligand affinity prediction. Because the condi-
tional generation focuses on antiviral drug design, it is im-
portant that the affinity predictor generalizes well for viral
proteins. The results of the MCA model on validation and
test data from BindingDB are displayed in Table 1 next to
the performance on 10k viral proteins. The results shows

Table 1. Result of bimodal affinity predictor on BindingDB data.

Validation Test Viral

ROC-AUC 0.968 0.969 0.96
Average precision 0.963 0.965 0.92

that the model learned reasonably well to classify CPI as
binding or non-binding.

Toxicity predictor. Because toxicity is a major cause of the
high attrition rate in drug discovery, we decided to perform

a multi-objective optimization (see Equation 2) based on
toxicity and binding affinity. Across 10 runs, this model
achieved a ROC-AUC of 0.877 ± 0.04, surpassing prior
results on this benchmarked dataset. Both the affinity and
toxicity predictor are not investigated further herein, but
employed as reward function for the conditional generation.

Conditional generative model
In this study, we are not primarily interested in propos-
ing the best possible compounds. We rather want to val-
idate whether our framework can go beyond current ap-
proaches for target-driven compound design (Chenthama-
rakshan et al., 2020; Zhavoronkov et al., 2019; 2020) in
the sense that it does not require fine-tuning for specific
targets. We therefore investigated the generalization capabil-
ities of our framework by performing a leave-one-out-cross-
validation (LooCV) on the 41 targets. The RL optimizaton
was performed for 5 epochs and 500 molecules were sam-
pled in each step. The results are depicted in Table 2 and
demonstrate that in 35 out of 41 cases the model proposed
more binding compounds against an unseen target, com-
pared to the baseline SELFIES VAE.

From the baseline SELFIES VAE, a total of 3,000 molecules
was sampled. The average ratio of compounds predicted
to bind increased from 18% to 26% with the best epoch
averaging 33%. For example density plots see the appendix
(Figure 5). We additionally optimized the generator to pro-
pose less toxic compounds. This succeeded to a lesser ex-
tent, probably at least partially caused by the lower weight
in the reward function. For a qualitative evaluation, Figure 2
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Figure 2. Molecules sampled against specific protein targets.
For a selection of 12 targets, the generated compound with the
highest reward is depicted. a stands for binding affinity. The
encircled molecule is discussed further in the case study.

shows a selection of the sampled molecules alongside their
QED score (Bickerton et al., 2012)).
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Table 2. Generating antiviral compounds against unseen
SARS-CoV-2 targets. For each of the 41 targets, Affinity0 shows
the fraction of binding molecules sampled before training. Affbest

shows the fraction at the best epoch of RL training, while Affmedian

shows the median across all 5 training epochs. The same applies
to Toxbest and Toxmed, where Tox0 was 8.7%.

Target protein Affinity0 Affmed±SEM Affb Toxmed±SED Toxb

VME1-CVHSA 20% 18% ± 3% 29% 6% ± 3% 19%
IMA1-HUMAN 88% 97% ± 1% 100% 5% ± 3% 18%
VEMP-SARS2 29% 16% ± 2% 20% 9% ± 2% 12%
NS7B-SARS2 25% 30% ± 5% 33% 7% ± 5% 25%
ITAL-HUMAN 24% 16% ± 6% 43% 9% ± 1% 12%
NCAP-CVHSA 17% 11% ± 1% 15% 12% ± 2% 14%
R1AB-CVHSA 58% 90% ± 2% 91% 9% ± 1% 11%
NS8B-CVHSA 9% 12% ± 2% 20% 7% ± 4% 25%
A0A663DJA2-SARS2 26% 35% ± 3% 41% 14% ± 3% 18%
NS8A-CVHSA 21% 47% ± 4% 55% 10% ± 1% 10%
NS7A-SARS2 4% 3% ± 1% 7% 10% ± 3% 19%
Y14-SARS2 17% 29% ± 4% 43% 8% ± 2% 14%
NS6-SARS2 20% 12% ± 3% 22% 4% ± 3% 14%
SMAD3-HUMAN 50% 74% ± 3% 86% 6% ± 1% 10%
SPIKE-CVHSA 3% 0% ± 1% 5% 7% ± 1% 11%
DDX1-HUMAN 9% 14% ± 2% 20% 9% ± 1% 10%
AP3A-SARS2 4% 0% ± 1% 3% 9% ± 3% 19%
R1A-CVHSA 14% 45% ± 3% 50% 9% ± 1% 11%
NS8-SARS2 7% 10% ± 3% 18% 10% ± 1% 15%
PHB2-HUMAN 4% 3% ± 0% 4% 11% ± 3% 23%
SGTA-HUMAN 11% 12% ± 1% 13% 8% ± 1% 12%
NS7A-CVHSA 18% 35% ± 5% 59% 11% ± 2% 15%
ORF9B-CVHSA 9% 11% ± 2% 17% 6% ± 1% 11%
R1A-SARS2 62% 82% ± 3% 89% 8% ± 2% 14%
Y14-CVHSA 14% 15% ± 2% 23% 11% ± 2% 15%
ORF9B-SARS2 18% 12% ± 1% 15% 12% ± 2% 16%
TMPS2-HUMAN 6% 5% ± 1% 6% 6% ± 1% 10%
BST2-HUMAN 10% 5% ± 3% 16% 10% ± 2% 14%
NS3B-CVHSA 25% 23% ± 2% 29% 12% ± 1% 15%
SPIKE-SARS2 7% 6% ± 2% 12% 10% ± 1% 12%
FURIN-HUMAN 28% 27% ± 4% 36% 9% ± 3% 20%
AP3A-CVHSA 9% 0% ± 1% 6% 8% ± 1% 12%
VME1-SARS2 15% 16% ± 3% 27% 6% ± 2% 14%
NS7B-CVHSA 21% 26% ± 1% 27% 7% ± 1% 11%
MPP5-HUMAN 5% 9% ± 2% 11% 15% ± 2% 16%
ACE2-HUMAN 51% 77% ± 4% 85% 5% ± 2% 12%
VEMP-CVHSA 21% 25% ± 3% 30% 12% ± 2% 20%
NS6-CVHSA 10% 13% ± 1% 15% 3% ± 3% 14%
PHB-HUMAN 3% 0% ± 1% 3% 6% ± 1% 7%
R1AB-SARS2 83% 100% ± 0% 100% 5% ± 1% 7%
NCAP-SARS2 25% 5% ± 2% 9% 9% ± 4% 24%
Average 18% 26% ± 4% 33% 9% ± 0.5% 15%

To investigate the learned chemical space, we assembled
a dataset of 10,000 random ChEMBL compounds, 3,000
molecules sampled from the unbiased VAE, 3,000 molecules
sampled from the biased generator and 82 SARS-CoV-
2 candidate drugs from the literature (top 15 matches
on PubChem and 69 compounds identified via protein-
interaction-maps (Gordon et al., 2020), excluding 2 dupli-
cates). For all these molecules, binding affinities were com-
puted alongside other pharmacological properties. Next, a
UMAP (McInnes et al., 2018) was performed on the ECFP4
fingerprint (Rogers & Hahn, 2010) and visualized with
Faerun/Tmap (Probst & Reymond, 2018; 2020)3 . The inter-
active visualisation shows that the RL optimisation lead to
over-sampling a manifold of the chemical space that is more
densely populated with binding compounds. The 3D UMAP
shows that the currently investigated candidate molecules
(red) are structurally fairly dissimilar (i.e. scattered across

3The Faerun visualization with ECFP is available at:
https://paccmann.github.io/assets/umap_fingerprints.html

the chemical space). But it gives evidence that our model
successfully navigates the chemical space towards regions
of high reward. While this shows that the generator suc-
ceeded in its objective, ultimately, the quality of the reward
function remains the bottleneck of the framework.

Case study. For a more detailed assessment of the quality
of the molecules, we ranked all∼ 3,000 conditionally gener-
ated molecules by their tanimoto similarity τ to the closest
neighbour of the 81 literature candidates. Among the top
5 molecules, we found the molecule encircled in Figure 2,
generated against VEMPSARS2 (UniProt ID: P0DTC4), the
envelope small membrane protein (E-Protein), a key player
for virion assembly and morphogenesis. Our candidate
exhibits the highest tanimoto similarity to the compounds
MZ1 and dBET6 (τ = 0.64 based on RDKit fingerprint).
These two pre-clinical SARS-CoV-2 drug candidates were
identified by Gordon et al. (2020) to target the E-protein by
degrading the human BRD2 and BRD4 proteins and thus
preventing the virus from inducing changes in the host’s
protein expression.

Figure 3. Results of retrosynthesis attempts. A retrosynthetic
pathway is considered feasible if it leads to commercially available
precursors within six reaction steps. Orange indicates feasiblity
while blue indicates non feasibility. On the left (A), overall feasi-
bility of the predicted sequences. On the right (B), feasibility over
the number of reaction steps.

The Top-5 candidate compounds for each protein target
were further analyzed for synthetic feasibility using IBM
RXN’s retrosynthesis engine (Schwaller et al., 2020). We
performed the predictions using the Python package
rxn4chemistry 4 . Figure 3 shows the predictions over
the retrosynthetic sequences estimated for all molecules.
Although the generated molecules are not optimized for syn-
thetic accessibility, more than half of the synthesis routes
predicted are feasible. It’s interesting to observe how more
than 300 sequences requires only a single or two steps reac-
tions, indicating, assuming a reasonable yield, an extremely
efficient synthesis for part of the molecules generated.

4 Discussion
The dramatic effect of the COVID-19 pandemic is com-
pounded by the lack of vaccines and therapeutic agents

4
https://github.com/rxn4chemistry/rxn4chemistry

https://paccmann.github.io/assets/umap_fingerprints.html
https://github.com/rxn4chemistry/rxn4chemistry
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against SARS-CoV-2. Worse, traditional approaches to drug
discovery are slow, inefficient, error-prone and costly.

Here, we proposed a novel framework for compound design
that can be targeted towards any viral target protein with
no retraining requirements. We showcased the potential
of the framework by successfully tackling the problem of
generating novel compounds with high binding affinity to
unseen targets, while controlling toxicity of the generated
molecules. Furthermore, for each target, we estimated ret-
rosynthetic pathways of the most promising molecules, to
assess the feasibility of the generated compounds. Large-
scale screening data for 1,670 compounds tested against
SARS-CoV-2 proteins that just became available (Heiser
et al., 2020), will be used in the future to improve the affinity
predictor, one of the bottlenecks of our approach.
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Appendix
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Figure 4. Multimodal protein-ligand affinity predictor for an-
tiviral compounds. Inspired by the MCA architecture in Manica
et al. (2019), this is a multimodal classification model that per-
forms multiscale convolutions on SMILES embeddings (ligand)
and amino acid embeddngs (protein). The output is fed into mul-
tiple heads of contextual attention mechanism prior to a set of
stacked dense layers.

Figure 5. Exemplary density functions of conditional genera-
tion. Gray distributions show predicted binding affinities of
n=3,000 molecules sampled from an unbiased SELFIES VAE.
Depicted in red are the densities obtained by sampling from the
RL optimized conditional generative model. It can be seen that
the optimization biased the sampling process toward regions of the
chemical space that are more densely populated with ligands that
are predicted to bind.

Figure 6. UMAP dimensionality reduction of the chemical
space visualized with Faerun/TMap (Probst & Reymond,
2018; 2020). Snapshot of the Faerun visualization of a UMAP
of 10,000 molecules randomly selected from ChEMBL (grey),
alongside 3,000. molecules sampled from the unbiased genera-
tor (dark green), 3,500 molecules sampled against SARS-CoV-2
related target proteins and 82 drug candidates according to the
literature.
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