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Abstract

Cancer heterogeneity is observed at multiple
biological levels. Approaches to link organ- and
tissue-level information from diagnostic images
and cellular-level information from genomics
are needed. However, current “radiogenomic”
studies often use linear, shallow models, depend
on feature selection, or consider one gene at a
time when mapping images to genes.
We present a neural network-based approach
that takes high-dimensional gene expressions
as input and performs nonlinear mapping to an
imaging trait. We propose gene masking and gene
saliency to extract learned relationships from
radiogenomic neural networks. We demonstrate
that neural networks can model transcriptomic
heterogeneity to reflect differences in imaging
and can be used to derive radiogenomic traits
with clinical value.
Manuscript published in Bioinformatics:
https://doi.org/10.1093/bioinformatics/btaa126.
Availability and implementation:
https://github.com/novasmedley/deepRadiogenomics.

1. Introduction
Radiogenomic mapping is the integration of traits observed
on medical images and traits found at the molecular level,
such as gene expression profiling (Diehn et al., 2008). As
such, the study of radiogenomics plays a role in precision
medicine, where associations can describe prognosis or ther-
apy response. Neural networks, with their ability to automat-
ically learn nonlinear, hierarchical representations of large
input spaces, are alternate approaches for radiogenomics.
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The models can combine low-level features into a structure
of complex features to create a new, abstracted and trans-
formed representation better suited for learning than the
original input. Towards understanding the biological basis
of imaging traits, we thus present an approach using the
representational power of neural networks to model tumor
transcriptomes and nonlinearly map genes to tumor imaging
traits. No a priori selection is used on the transcriptome.

Moreover, a limitation of neural networks is that they are
considered “black boxes,” which makes it difficult to in-
terpret the learned relationships. We provide approaches,
called gene masking and gene saliency, for understanding
radiogenomic neural networks. Our model interpretation
methods can identify cohort-level relationships, which we
refer to as radiogenomic associations, and patient-level re-
lationships, which we refer to as radiogenomic traits.

2. Methods
We analyzed publicly available gene expression and medical
imaging data to discover radiogenomic associations using
a deep neural network. Transcriptomes were available for
528 GBM patients as part of The Cancer Genome Atlas
(TCGA). Samples were previously analyzed by the Broad
Institute on Affymetrix arrays, quantile normalized, and
background corrected. Medical images for 262 GBM pa-
tients were downloaded from The Cancer Imaging Archive
(TCIA) and matched to TCGA samples. A board-certified
neuroradiologist (Dr. El-Saden, 26 years of experience)
evaluated images using the Osirix medical image viewer.
An electronic form was used to record MRI traits according
to the Visually Accessible Rembrandt Images (VASARI)
feature guide. 175 patients had pre-operative (pre-op) MRIs
and transcriptomes. Traits were binarized given the small
sample sizes.

To map relationships between gene expression profiles and
MRI traits, feed-forward neural networks were used (Fig.
1a–b). We performed transfer learning by pretraining an
autoencoder using a separate subset of 353 patients from
the TCGA-GBM cohort with gene expression data only.
The radiogenomic neural networks were pretrained using
weights transferred from the autoencoder.
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Figure 1. The radiogenomic neural network’s (a) architecture, (b)
transfer learning with autoencoder, and interpretation methods
through (c) gene masking and (d) gene saliency.

We trained a different neural network for each imaging
trait. All neural networks were trained on NVIDIA Tesla
K80 and V100 GPUs through Amazon Web Services using
Python 3.6, Keras 2.2.4, and TensorFlow 1.12.0

on a Ubuntu 16.04 machine. Comparison models (gradient
boosted trees, random forest, support vector machine, and
logistic regression) were implemented via XgBoost 0.80

and sklearn 0.20.0.

Given the trained networks, we performed a sensitivity anal-
ysis where the value(s) of one or more components of the
input are kept while all others are replaced with zeros. The
goal is to determine the impact that the kept input com-
ponents have on the end classification; this procedure was
previously described in (Zeiler & Fergus, 2014). Here, we
define “gene masking” to extract radiogenomic associations
from a trained neural network (Fig. 1c). For each individual,
the gene expression values of a particular gene set were kept
while all other expressions were replaced with zeros. The
masked profiles were pushed through a fully trained neural
network and the output, a class probability based on using
genes from the gene set, was recorded.

We also explored the concept of “gene saliency”, which
is based on class saliency, a visualization technique used
to compute the gradient of an output class prediction with
respect to an input via backpropagation (Simonyan et al.,
2014). Here, we define “gene saliency” as the genes whose
change in expression would increase the model’s belief of
the positive class label (Fig. 1d). In each model, salient
genes are derived for each patient, ranked, and analyzed
using gene set enrichment analysis to determine if a gene
set is relevant to predicting his/her MRI trait. Subsequently,
positive enrichment between a single patient’s salient genes
and a gene set is defined as a “radiogenomic trait.”

3. Results
The deep neural networks were better at estimating MRI
traits than all other classifiers (Fig. 2a). In predicting
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Figure 2. Radiogenomic model performance. (a) Observed 10-
fold cross-validation performance. (b) Performance differences
between a neural network and another model in 100 bootstrapped
datasets. Notation: neural network (nn), gradient boosted trees
(gbt), random forest (rf), support vector machines (svm), logistic
regression (logit).

VASARI features, the first hidden layer used frozen pre-
trained weights and only the last two hidden layers were
used for fine-tuning. Bootstrapping showed neural networks
had higher performances in Fig. 2b.

The full results including a detailed interpretation of the
gene masking and gene saliency results can be found in our
published paper, available here (Smedley et al., 2020).
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