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Abstract
Gene expression is modulated by cooperative
binding of regulatory proteins called transcrip-
tion factors (TFs) to DNA sequences. Recent
work has demonstrated that neural networks show
promise at identifying candidate pairs of TFs that
have super-additive or sub-additive interaction
effects, but the reliability of these predicted in-
teractions remains unclear. Here, we design a
simulated dataset to study the propensity of neu-
ral networks to learn false positive interactions.
We find that feature interaction scores obtained
from popular neural network architectures trained
with multiple random initializations are consis-
tently prone to identifying false positive inter-
actions with large predicted interaction effects,
and that previously-proposed null distributions
based on the effect size of the interaction scores
do not adequately control for false positives even
if combining results across different model archi-
tectures. Instead, we find that the contribution
of an interaction effect to the prediction loss -
rather than the magnitude of the interaction it-
self - is a far more robust indicator of whether
an interaction is likely to be real. Coupled with
checking for consistency across different model
architectures, our proposed tests based on loss im-
provement can reliably distinguish between pos-
itive and negative controls in our simulated data.
To our knowledge, these are the first proposed
statistical tests for detecting false positive inter-
actions that leverage improvement in prediction
loss on held-out data. We also perform analysis
to shed insight on why models may learn large
interaction effects in the absence of a ground-
truth interaction. Code + trained models to repli-
cate results available at https://github.com/
kundajelab/feature_interactions.

1. Introduction
Transcription factors (TFs) are proteins that bind DNA in
a sequence-specific manner to regulate gene activity. TFs
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have distinct preferences for short (∼6-20 base-pair) DNA
sequence patterns called ‘motifs’. The human genome has
millions of regulatory DNA elements that encode complex
arrangements of TF binding motifs. Deciphering this com-
binatorial regulatory code of the genome has proved to
be a significant challenge. Recently, Convolutional Neu-
ral Networks (CNNs) have been used to learn predictive
mappings from one-hot encoded DNA sequence inputs
to experimentally-measured TF binding signal across the
genome (Alipanahi et al., 2015; Zhou & Troyanskaya, 2015;
Kelley et al., 2016; Avsec et al., 2020). These CNNs learn
the motifs and their syntactic arrangements in the input
sequence that are predictive of TF binding. As TFs typi-
cally bind in a highly cooperative manner (Lambert et al.,
2018), these models also learn interactions between motifs,
whereby motifs contribute super-additively (in the case of
synergistic TFs) or sub-additively (in the case of compe-
tition or inhibition between TFs) to the predicted output.
Recent efforts have proposed techniques to infer motifs and
these interaction scores from the trained models. Tsang
et al. (2017) extracted feature interactions using feedfor-
ward neural network weights - however, their method was
designed for tabular inputs and does not obviously gener-
alize to the CNN architectures used for regulatory DNA
sequence. More recently, Avsec et al. (2020); Greenside
et al. (2018); Liu et al. (2019); Ullah & Ben-Hur (2020)
proposed techniques to learn motif interactions from models
of regulatory DNA sequence. However, the susceptibility of
these techniques to picking up false positive feature interac-
tions has not been extensively studied (See Sec. A).

In this work, we use simulated regulatory DNA sequences
to study the susceptibility of neural networks to learning
false positive motif interactions on a negative control dataset
where each motif independently contributes to the simulated
TF binding output. Surprisingly, we find that typical neural
network architectures trained on this control dataset fre-
quently predict large interaction effects between motifs, and
previously-proposed null distributions that consider the ef-
fect size of the learned interaction (Greenside et al., 2018;
Ullah & Ben-Hur, 2020) do not adequately control for this.
Although Friedman et al. (2008) devised a general-purpose
method for creating an empirical null distribution for interac-
tion effects by training multiple models on synthetic altered
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datasets that lack ground-truth interactions, this approach
is computationally expensive as each point in the empirical
null distribution requires training a new model, and thus it
has not been adopted for neural networks in genomics. Fur-
ther, even when a model learns a strong interaction, it can be
unclear whether this interaction benefits model predictions
on held-out data (e.g. the interaction could be the result of
overfitting or of convergence to a sub-optimal solution).

Motivated by the intuition that learning a true interaction
should improve model predictions on unseen data, we ex-
plore statistical tests for whether the interaction effect signif-
icantly improves model prediction loss on held-out data. We
identify a test that enables robust detection of false positive
interactions while maintaining sensitivity to true interac-
tions across different architectures and initializations in our
simulated dataset. The core insight of our approach - to
test for a significant improvement in loss on held-out data -
can be applied to domains other than genomics. We hope
our method brings us closer to reliable application of neural
networks to derive novel insights from scientific data.

2. Methods
2.1. Simulation setup

We devise a simulated regression task where the strength of
TF binding to a 100bp DNA sequence is a function of two
types of motifs called GATA1 and TAL1 that can be present
in the sequence. The strength of binding (the output) is
measured in integer-valued “counts”, which are the units of a
typical TF binding high-throughput sequencing experiment.
We prepare two sets of labels for the simulated sequences:
in one set, the binding output is an additive function of
the two motifs (negative control), and in the other set, the
binding output is super-additive in the two motifs (implying
synergistic interactions; this is the positive control). The
simulation workflow is described in Fig. 1.

2.2. Model architectures and training

Prior to fitting CNN models, we applied the Anscombe
transform (Anscombe, 1948), given by g(x) = 2

√
x+ 3/8,

to the count labels in order to reduce the dynamic range of
the counts and facilitate model training. Note that in the
genomics literature, it is common to apply a transform to
the raw counts prior to model fitting (e.g. a log transform
in Avsec et al. (2020); Kelley (2019); Phuycharoen et al.
(2020)). Because the Anscombe transform is a variance-
stabilizing transform that converts Poisson noise to Gaus-
sian noise, we trained our models using the mean squared
error loss (which is suitable for Gaussian noise). We consid-
ered three different types of CNN model architectures with
different numbers of layers, hidden units and filter widths.
Each model architecture was trained with 3 different L1

regularization weights, and each of the 9 combinations of
model architecture and regularization was trained with five
different random seeds. This resulted in 45 models for the
positive control and negative control datasets, for a total of
90 trained models. Details on the architectures and training
are in Sec. C. As explained in Sec. 3.1 & F, we also trained
an additional 90 models to study the impact of the choice of
sequence padding.

2.3. Computing interaction effects

Following standard convention, we defined the motif in-
teraction effect as the difference between the joint effect

Figure 1. Simulated sequence generation workflow. Motif mod-
els (called Position Probability Matrices) for the GATA1 and TAL1
TFs were obtained from the ENCODE database (Kheradpour &
Kellis, 2014). GATA1 and TAL1 motif instances were sampled
from their respective Position Probability Matrices and embedded
randomly within a DNA sequence background of length 100bp.
25% of sequences contained one embedded GATA1 motif, 25%
contained one embedded TAL1 motif, another 25% contained
one instance each of GATA1 and TAL1, and the remaining 25%
contained no explicitly embedded motifs (but could contain mo-
tif matches by chance due to the randomly sampled surrounding
sequence). A binding probability for GATA1 and TAL1 was com-
puted for each motif-length window in each sequence using the
method from Zhao & Stormo (2011), and the binding probabilities
across all sliding windows in a sequence for both GATA1 and
TAL1 were summed to obtain the quantity qi for sequence i. In the
case of the negative control (i.e. additive contributions), we set the
expected number of observed counts in the sequence i to be 100qi,
while for the positive control (where there is super-additivity) we
set the expected counts to 60q

3/2
i . Observed labels were then

sampled from a Poisson distribution with λ equal to the expected
counts. 100K sequences were generated (50K training, 50K test);
the training set was further split into 40K for training and 10K for
validation. See Sec. B for more details.
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and the sum of the main effects. Formally, let sGT de-
note a sequence containing both GATA1 and TAL1 mo-
tifs, and let sG, sT and s∅ denote perturbed sequences
in which only the TAL1 motif, only the GATA1 motif,
and both TAL1 and GATA1 motifs have been ‘knocked
out’ respectively (a motif is ‘knocked out’ by replacing it
with a random sequence that is not a good motif match).
Let f(s) denote the model prediction on sequence s. The
main effect contribution MG of GATA1 is calculated as
MG = f(sG) − f(s∅), while the main effect contribution
MT of TAL1 is MT = f(sT ) − f(s∅). The joint contribu-
tion of both motifs is JG,T = f(sGT )−f(s∅). The interac-
tion effect IG,T is defined as IG,T = JG,T − (MG +MT ).
Analogous approaches to scoring feature interactions were
considered in Avsec et al. (2020); Greenside et al. (2018).

All interaction effects were calculated after mapping the
model predictions in the Anscombe-transformed space back
to the original counts space. This is consistent with recent
work (Sanford et al., 2020) that tested for interaction effects
between biological stimuli using quantities proportional to
the count-based outputs of various experimental assays.

2.4. Selecting motif pairs to study for interaction effects

We considered the 25% of simulated sequences that con-
tained embedded TAL1 and GATA1 motifs, and filtered
for those sequences where both motif instances in the em-
bedded pair were strong matches to the motif (match score
log-odds > 2 relative to background). We used these pairs
to study the interaction effect between TAL1 and GATA1.
We enforced that the motifs in the pair be separated by at
least the length of the longer motif to rule out cases where
the motif instances jointly create a weak motif match due to
their proximity (and would thus have a nonzero ground-truth
interaction effect even in the case of the negative control).
This resulted in 7,971 motif pairs from the 50K test se-
quences and 6,451 motif pairs from the 40K training set
sequences. Note that a sequence can contain additional
strong motif matches besides the pair considered due to the
chance appearance of motifs in the background; however,
the interaction effect was calculated only between the motifs
in the embedded pair.

3. Results
3.1. The strength of an interaction effect is not a

reliable predictor of ground truth interactions

Following Greenside et al. (2018) and Ullah & Ben-Hur
(2020), we generated a ‘null distribution’ dataset consist-
ing of dinucleotide-preserving shuffled versions of the test
sequences, and calculated the interaction effect between
the locations that used to contain motifs in the original test
sequences. The intuition behind this null distribution is that
shuffled sequences are unlikely to contain strong motifs.

We compared the magnitudes of the predicted interaction
effects (Sec. 2.3) between the motif pairs from the test set to
the predicted interaction effects from this shuffled-sequence
null. Strikingly, we found that even for the negative con-
trol, the magnitudes of the predicted interactions between
motifs in the test-set were significantly larger than the null
(Fig. 2, top left). Curious why this might be, we plotted
the predicted interaction effect IG,T against the sum of the

Figure 2. Improvement in loss is a more reliable indicator than
magnitude of interaction effect of whether an interaction is
likely real. All plots are for the negative control dataset (for
which there is no ground-truth interaction) with models trained
using ‘valid’ padding. Top Left: For all 45 models, magnitude of
interactions on test set sequences greatly exceeds magnitude on
shuffled sequence control as measured by a one-sided unpaired
Mann-Whitney U test. Error bars indicate standard error of the
mean. Top Right: larger magnitude interactions are predicted
for motif pairs that have large predicted main effects (positive
Pearson correlation on x-axis), and the learned interaction is often
detrimental to the prediction loss (y-axis); point marked in red is
the sole model where subtracting the interaction effect significantly
worsens the loss compared to the original predictions according
to a paired wilcoxon test (median loss improvement is 9e−4, p =
0.011). Bottom Left: histogram comparing original prediction
loss with interaction effect included (orange) to prediction loss with
interaction effect subtracted (blue) over 7,971 motif pairs in the test
set for the model in red from the top-right scatterplot (which had a
significant p-value by the paired test). The two distributions are
not significantly different according to an unpaired Mann-Whitney
U test (p > 0.3), even though they are different according to
the paired test. Bottom Right: mean magnitude of interaction
effect (computed over 7,971 motif pairs in test set) is positively
correlated with mean-squared-error calculated over all 50K test-set
sequences (Spearman r = 0.78). See Sec. E for corresponding plots
on positive control data and Sec. F for plots for models trained
with ‘same’ padding rather than ‘valid’ padding.
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predicted main effects MG +MT (Fig. D.1). We observed
that, across models, the largest interaction effects (which
were consistently negative; Fig. D.1) were observed for
motif pairs with large main effects, resulting in a positive
correlation between the magnitudes of interaction effects &
the main effects (Fig. 2, top right).

Surprisingly, removing the interaction effect from the predic-
tions (i.e. replacing the prediction f(sGT ) with f(sGT ) −
IG,T ) often tended to improve the average test-set loss on
the negative control (Fig. 2, top right). Along with the fact
that the magnitude of the learned interactions was inversely
correlated with model performance for the negative control
(Fig. 2, bottom right), this suggests the false-positive inter-
actions results from convergence to a sub-optimal solution
on the training set. Note that the models are not fit to the
original raw counts; instead, models are fit to the Anscombe
transformation of the counts, while the interaction effect
is computed in the original counts space (Sec. 2.2). Any
difficulty in modeling the Anscombe-transformed space can
result in an artifactual interaction in the raw counts space.
This is especially important given that transforming raw
counts prior to model fitting is standard practice in regula-
tory genomics literature (Avsec et al., 2020; Kelley, 2019;
Phuycharoen et al., 2020), even though the original count-
based output may be the appropriate space to test interaction
effects between biological stimuli (Sanford et al., 2020).

We also noticed the predicted interactions in the negative
control tended to be strongest when motif instances were
near the edges of the sequence (Fig. F.1). We speculated that
the choice of ‘valid’ padding in the conv layers (which is the
default in keras and is used in many genomics papers) meant
that the net may have difficulty identifying motif instances
near the ends of sequences, and is thus learning artifactual
interactions to compensate (explained further in Sec. F).
We repeated experiments using ‘same’ padding throughout,
which removed the correspondence between motif position
and interaction strength; however, we still found that large
magnitude interaction effects were correlated with large
main effects, and thus the strength of interaction did not
reliably predict ground truth interactions Fig. F.2.

3.2. Impact of interaction effect on loss can distinguish
simulated positive and negative controls.

For the motif pairs described in Sec. 2.4, we calculated the
per-example loss using both the original predictions and
the original predictions minus the per-example interaction
effect (f(s)−IG,T ). We then tested whether subtracting the
interaction significantly worsened test-set model loss using
a one-sided paired Wilcoxon test. At a p-value threshold of
0.05, this test identified all 45 models trained on the positive
control data as having highly beneficial interactions. For the
negative control, the paired test correctly identified 44/45
‘valid’ padding models and 26/45 ‘same’ padding models

as having no significantly beneficial interaction, suggesting
that one way to identify false-positive interactions is to ver-
ify that a learned interaction consistently improves model
loss on held-out data across different architectures. We also
observed that models with significantly beneficial interac-
tions in the case of the negative control appeared to use the
interactions to compensate for mis-predictions in the main
effects (Fig. D.3 & Fig. F.6); combined with the inverse
correlation between model performance and magnitude of
interaction effect (Fig. 2, bottom right & Fig. F.2, bottom
right), this suggests that selecting for models that achieve
the best performance may also be a way to decrease the
likelihood of encountering false-positive interactions.

Interestingly, the unpaired Mann-Whitney U test at a p-
value threshold of 0.05 perfectly classified all models trained
on positive and negative controls for both ‘same’ and ‘valid’
padding. Consistent with this, we observe that even when
the interaction effect tends to improve the loss on individual
examples, the improvement is small compared to the overall
variation in loss (Fig. 2, bottom left & F.2, bottom left).
We also explored an empirical null distribution based on the
interaction effect between randomly chosen locations in the
original sequences, but this null didn’t work as well as the
unpaired test (Sec. G).

Finally, we observed that the increase in loss from remov-
ing interaction effects tended to be consistently higher on
training data compared to held-out data (Fig. D.2 & F.7).
This suggests that overfitting can also help explain some
artifactual interaction effects - thus it is important to study
the interaction effects on held-out data.

4. Discussion
We applied a standard definition of feature interactions to
CNN architectures commonly used in regulatory genomics,
and made the surprising finding that these models consis-
tently identify strong false positive interactions when ap-
plied to simulated DNA sequences lacking ground-truth
motif feature interactions. Our analysis suggests this was
often due to convergence of the models to sub-optimal so-
lutions (Fig. 2, bottom right & Fig. D.1), but could also
be due to over-fitting (Fig. D.2 & F.7) or models that use
interactions to compensate for mis-predictions in the main
effects (Fig. D.3). We find one way to alleviate this prob-
lem is to check whether a learned interaction significantly
improves prediction loss on held-out data across different
model architectures. Alternative architectures, loss func-
tions and optimization methods that stabilize models, avoid
suboptimal minima and/or regularize feature attributions &
interaction scores (Tseng et al., 2020; Avsec et al., 2020)
may also improve the reliability of detected feature interac-
tions. These findings bring us closer to robust application
of neural networks to discover novel interaction effects.
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Appendix

A. Limitations of Previous Feature Interaction Studies on Simulated Genomic Sequences
Previous analyses (Greenside et al., 2018; Ullah & Ben-Hur, 2020) studied a simulated binary TF binding classification
task using a dataset configured as follows: the positive set consisted of synthetic DNA sequences containing motifs of the
ELF1 and SIX5 TFs. The negative set consisted of synthetic DNA sequences containing motifs for either ELF1 or SIX5 (but
not both). Further, motifs of the AP1 and TAL1 TFs were randomly embedded across the positive and negative sequences.
These analyses demonstrated that the significant interactions inferred from the models did not include the AP1 or TAL1
motifs. However, the AP1 and TAL1 motifs were not predictive features i.e. not necessary for the model to discriminate
between the two sets of sequences. A simulated dataset where two motifs are indeed important for the prediction task, but
do not have an interaction, has not been studied prior to this work.

B. Simulation Details
A Position Probability Matrix (PPM) is a commonly-used representation of DNA sequence motifs that specifies the
probability of observing a given nucleotide (one of A,C,G or T) at a given position. A PPM for a motif of length L is a 4 x L
matrix where the rows represent the 4 nucleotides and the columns represent each position in the motif. The probabilities
in each column sum to 1. See https://en.wikipedia.org/wiki/Position_weight_matrix#Conversion_of_

sequence_to_position_probability_matrix for more details.

In our simulation, we used the the GATA disc1 PPM as the motif for the GATA1 TF, and the TAL1 known1 PPM as the
motif for the TAL1 TF. Both PPMs are available from ENCODE (Kheradpour & Kellis, 2014) and can be downloaded at
http://compbio.mit.edu/encode-motifs/.

The 100 base-pair (bp) sequences in our dataset were created by randomly sampling nucleotides (A,C,G,T). A single instance
of a GATA1 motif (sampled from its PPM) was embedded in 25% of the sequences at a random position, a single instance
of a TAL1 motif was embedded into another 25%, one instance each of GATA1 and TAL1 were embedded into another
25%, and the remaining 25% contained no explicitly embedded motifs (but could contain motif matches by chance due to
the randomly sampled surrounding sequence).

The generated sequences were then labeled under two different schemes: one in which the motifs con-
tributed super-additively to the output (the positive control), and one in which the motifs contributed addi-
tively/independently to the output (the negative control). To generate the labels, the PPMs were converted to
log-odds PWMs (https://en.wikipedia.org/wiki/Position_weight_matrix#Conversion_of_position_
probability_matrix_to_position_weight_matrix) using the background frequencies for A, C, G, & T (which
were set to be 27% A, 23% C, 27% T and 23% G). The log-odds PWMs were then multiplied by -1 and treated as ∆∆G
PWMs. Following Zhao & Stormo (2011), the occupancy probabilities for GATA1 and TAL1 at each sliding window were
computed by calculating the total ∆∆G for each window using the corresponding PWM and transforming it to a probability
with the formula 1/(1 + e∆∆G+µ) (we set µ = 0). The GATA1 and TAL1 binding probabilities over all sliding windows in
a sequence were then summed to obtain the quantity qi for sequence i. To simplify the simulation, reverse-complements
were not scored. In the case of the negative control (i.e. no interaction), we set the expected number of observed counts
in the sequence i to be 100qi, while for the positive control (where there is synergy) we set the expected counts to 60q

3/2
i .

Observed labels were then sampled from a Poisson distribution with λ equal to the expected counts. See Fig. 1 for a an
illustration.

C. Model Architecture Details
We considered three different types of model architectures. The first architecture (‘arch1’) consisted of 4 convolutional
layers (each with 15 filters and kernel width 7), followed by global average pooling, followed by two dense layers with 50
hidden units, followed by the output layer. The second architecture (‘arch2’) resembled arch1, but with three dense layers of
30 hidden units. The third architecture (‘arch3’) resembled arch2, but with 5 convolutional layers of kernel width 5. All
layers used ReLU nonlinearities except for the final output layer (which was linear). ReLU layers were initialized with
the he normal initialization scheme in Keras (Keras, 2020). Models were trained with the Adam optimizer and early
stopping.

https://en.wikipedia.org/wiki/Position_weight_matrix#Conversion_of_sequence_to_position_probability_matrix
https://en.wikipedia.org/wiki/Position_weight_matrix#Conversion_of_sequence_to_position_probability_matrix
http://compbio.mit.edu/encode-motifs/
https://en.wikipedia.org/wiki/Position_weight_matrix#Conversion_of_position_probability_matrix_to_position_weight_matrix
https://en.wikipedia.org/wiki/Position_weight_matrix#Conversion_of_position_probability_matrix_to_position_weight_matrix
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Each model architecture was trained with 3 different L1 weight regularizations levels: 0.0, 10−4 and 10−3. Regularization
was applied to all layers except the output layer. Each of the 9 combinations of model architecture and regularization was
trained with five different random seeds. This resulted in 45 models for the positive control and negative control datasets, for
a total of 90 trained models. All models achieved good MSE on the test set of around 1.8 (Fig. 2 (bottom right) and E.3).

D. Additional Figures for Models Trained on Negative Control Data (‘Valid’ Padding)

Figure D.1. Largest-Magnitude Interaction Effects in Negative Control Correspond to Motif Pairs With Large Main Effects. Each
point represents a specific test-set example for a specific trained model; there are a total of 45×7971 points. MG+MT = 200 corresponds
to two strong motif matches (one for TAL, one for GATA). Dotted line indicates x=y line. Large negative interaction effects are observed
when the cumulative main effect is around 200. Because the original sequences are much more likely to contain strong motif matches
compared to the corresponding locations in shuffled sequences, this explains why the mean magnitude of the interaction effect on the test
set motif pairs greatly exceeds the mean magnitude in the corresponding shuffled sequences. Note that although there was no ground-truth
interaction in the simulated raw counts space, the model was fit to the variance-stabilizing Anscombe transformation of the counts (we map
the model output back to the raw counts space prior to computing interaction effects). For the model to correctly predict no interactions in
the raw counts space, it must learn a negative (non-synergistic) interaction in the Anscombe-transformed space. Any error in the learned
interaction in the transformed space manifests as an artifactual interaction in the raw counts space. As it is standard practice to transform
raw counts (e.g. using a log transform) prior to fitting regression models on them, this analysis highlights the importance of carefully
accounting for the transformations applied prior to calculating interaction effects.

Figure D.2. Some interaction effects can be the result of overfitting. The median increase in the loss from excluding interactions in
the training set tends to be higher than the median increase in the loss from excluding interactions in the test set.
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Figure D.3. When the interaction effect consistently benefits prediction loss on the test set for the negative control, the model
appears to use the interaction effect to compensate for mis-prediction in the main effect. Shown is a scatterplot for error in the main
effect prediction vs. the model’s predicted interaction effect for the one model trained with valid padding on the negative control data that
failed the paired Wilcoxon test for the loss change (this is the same model that was highlighted in red in Fig. 2, top right). The error in
the main effect was calculated by subtracting the predicted sum of the main effects (MG +MT ) from the ideal sum of the main effects
according to the ground-truth. Positive correlation between the predicted interaction effect and the main effect error indicates that the
interaction effect is compensating for a mis-prediction in the main effects. This may help explain why removing the interaction effect
worsens the prediction loss on held-out data, despite the absence of a ground-truth interaction.

E. Figures for Models Trained on Positive Control Data (‘Valid’ Padding)

Figure E.1. Counterpart of Fig. 2 (top left), but on positive control data rather than negative control data. As expected, the
magnitudes of interaction effects between the original motif pairs greatly exceeds the magnitudes of interaction effects on shuffled
sequences. Error bars indicate the standard error of the mean.
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Figure E.2. Counterpart of Fig. 2 (bottom left) but on positive control data rather than negative control data. Histogram comparing
original prediction loss with interaction effect included (orange) to prediction loss with interaction effect subtracted (blue) over all 45
positive control models for 7,971 motif pairs in the test set (i.e. the histogram was computed over 45 × 7971 points). Unlike for the
models trained on the negative control, the two distributions in this case are visibly different.

Figure E.3. Magnitude of Inferred Interaction Effect is Not Inversely Correlated With Model Performance for the Positive Con-
trol. Counterpart of Fig. 2, bottom right, but for the positive control dataset rather than the negative control dataset. X-axis: mean
squared error of model predictions on 50K sequences from the test-set. Y-axis: mean magnitude of inferred interaction effect on 7,971
motif pairs in the test set (Sec. 2.4). Spearman correlation is -0.19.
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F. Models Trained Using ‘Same’ Padding Rather than ‘Valid’ Padding
Say we have an input of length L that we would like to scan with a pattern detector that has width w. Absent any padding,
there would be L− w + 1 complete windows of length w. Thus, if no padding is performed, the output from scanning with
the pattern detector would have length L− w + 1. This situation is called ‘valid’ padding in the context of Convolutional
Neural Networks (where the ‘pattern detector’ is a convolutional filter). If we would like the output to have the same length
as the input, we can zero-pad the input on either side such that the padded input has length L+w − 1. Scanning the padded
input with the pattern detector would result in an output that has length L.

Now consider the situation where the pattern detector, which is of length w, is able to recognize a motif of length l where
l < w. Specifically, imagine the situation where the first l weights within the pattern detector are devoted to recognizing the
motif, while the remaining w − l weights have near-zero values. Now consider a motif instance that occupies positions
p...p+ l in the input sequence. If p > L− w, then the pattern detector would be unable to identify this instance if valid
padding is used, because it would not see the appropriate window that would cause it to recognize the motif. However, if
same padding is used, then the pattern detector would successfully identify the motif instance.

When we initially conducted the simulation, we used ‘valid’ padding both during model training and when determining
the ground-truth labels by scanning the sequences with the ground-truth PWMs. In the case of the negative control, we
observed that this resulted in the network learning large interactions for motif instances that were near the ends of sequences
(Fig. F.1, left). We speculated that this was because the network attempted to learn interactions between filters in order
to compensate for the fact that ‘valid’ padding made it hard for the network to identify motif instances near the ends of
sequences. Note that ‘valid’ padding is the default in many neural network packages, and many models trained on shorter
genomic sequence inputs, such as Maslova et al. (2019) and Movva et al. (2019), could encounter motif instances near
the flanks of sequences. For such models, our analysis suggests that it would be advisable to use ‘same’ padding to avoid
learning artifactual interactions for motif instances near the ends of sequences.

Figure F.1. Dependence of interaction effect on motif position in the negative control dataset. Each point in each scatterplot repre-
sents a specific test-set motif pair for a specific trained model; there are a total of 45× 7971 points in each scatterplot (45 trained models,
7971 motif pairs). In the case of ‘valid’ padding (left), the model tends to predict strong negative interactions when the maximum distance
of either motif from the center of the sequence is large. We hypothesize that this is because the model is learning interactions between
multiple filters to compensate for the fact that valid padding makes it harder to identify motif instances near the ends of sequences. In the
case of ‘same’ padding (right), this trend of strong interactions predicted between motif instances near the sequence ends is no longer
apparent.

For completeness, we redid the simulations using ‘same’ padding - both during model training and when determining
ground-truth labels by scanning sequences with the ground-truth PWMs. When we did this, we no longer observed the
strong tendency of the network to learn large interactions for motif instances near the ends of sequences (Fig. F.1, right).
Our qualitative results remained similar, in that:

1. All negative control models had significantly larger interactions on real data compared to a shuffled sequence null,
indicating that the magnitude of interactions was not a reliable indicator of whether interactions were likely to be real
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(Fig. F.2, top left & top right).

2. Even though all negative control models had significantly large interactions on real data compared to a shuffled
sequence null, this interaction did not significantly improve model performance on held-out data according to a paired
Wilcoxon test for a large fraction of models (26/45). For the remaining 19 negative control models that failed the paired
Wilcoxon test, a scatterplot of the error in the main effect prediction against the learned interaction effect suggested
that the interaction effect was being leveraged to compensate for mis-predictions in the main effect (Fig. F.6). As
before, model performance on the negative control data was roughly inversely correlated with the average magnitude of
the learned interaction effects, whereas no such inverse correlation was observed on the positive control data Fig. F.2,
bottom right & Fig. F.5.

3. Using the unpaired Mann-Whitney U test instead of the paired Wilcoxon test on the negative control data identified
all models as having learned no significantly beneficial interaction on held-out data (Fig. F.2, bottom left). We note,
however, that this result may not generalize to all possible simulated settings, and so we recommend training multiple
models to see if a learned interaction consistently improves performance across different architectures.

4. For all models trained on positive control data, the learned interactions significantly improved model performance on
held-out data according to both the paired Wilcoxon test and the unpaired Mann-Whitney U test.

5. Improvement in prediction loss was higher on the training set compared to the heldout set, suggesting a role of
overfitting (Fig. D.2).

In addition, we noticed that while the average learned interactions tended to be strongly negative for models trained with
‘valid’ padding, the sign of the average learned interactions was more mixed for models trained on ‘same’ padding data
(Fig. F.8). This suggests that looking for consistency in the sign of the learned interactions across multiple trained models
is another potential strategy for identifying false positive interactions, but (as the case of ‘valid’ padding shows), it is not
completely reliable as there may be inductive biases due to the model architecture.
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Figure F.2. Counterpart of Fig. 2, but for same padding instead of valid padding. Top Left: As before, for all 45 models trained on
the negative control data, the magnitudes of the interaction effects on motif pairs from the original test-set sequences greatly exceeds the
magnitudes of the interaction effects on a shuffled sequence control as measured by a one-sided unpaired Mann-Whitney U test (dotted
line indicates the x=y line). Thus, the magnitude of an interaction effect is not a reliable indicator of whether an interaction is likely real,
at least when compared to a null distribution derived from shuffled sequences. Top Right: As before, larger magnitude interactions are
predicted for motif pairs that have large predicted main effects (positive Pearson correlation on x-axis), explaining why the magnitudes
of interaction effects on real sequences greatly exceed the magnitudes on the shuffled sequence null. The learned interactions are also
often detrimental to the median prediction loss (y-axis); points marked in red are the 19 models for which subtracting the interaction
effect significantly worsens the loss compared to the original predictions according to a pairs Wilcoxon test at p < 0.05. Bottom Left:
histogram comparing original prediction loss with interaction effect included (orange) to prediction loss with interaction effect subtracted
(blue) over 7,971 motif pairs in the test set for all 19 models that showed a significant p-value by the paired test (points in red on the
top-right scatterplot) (i.e. the histogram was computed over 19 × 7971 points). The two distributions are not significantly different
according to an unpaired Mann-Whitney U test (p = 0.062), even though they are very different according to a paired Wilcoxon test
(p < 1e− 47). Bottom Right: mean magnitude of interaction effect (computed over 7,971 motif pairs in test set) is positively correlated
with mean-squared-error calculated over all 50K test-set sequences (Spearman r = 0.40, p < 0.0069). Corresponding figures for the
positive control data are Fig. F.3,
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Figure F.3. Counterpart of Fig. F.2 (top left) but on positive control data rather than negative control data. As expected, the
magnitudes of interaction effects between the original motif pairs greatly exceeds the magnitudes of interaction effects on shuffled
sequences.

Figure F.4. Counterpart of Fig. F.2 (bottom left) but on positive control data rather than negative control data. Histogram
comparing original prediction loss with interaction effect included (orange) to prediction loss with interaction effect subtracted (blue) over
all 45 positive control models for 7,971 motif pairs in the test set (i.e. the histogram was computed over 45× 7971 points). Unlike for the
models trained on the negative control, the two distributions in this case are visibly different.

Figure F.5. Magnitude of Inferred Interaction Effect is Not Inversely Correlated With Model Performance for the Positive Control
(same padding). Counterpart of Fig. F.2 (bottom right), but for the positive control dataset rather than the negative control dataset. X-axis:
mean squared error of model predictions on 50K sequences from the test-set. Y-axis: mean magnitude of inferred interaction effect on
7,971 motif pairs in the test set (Sec. 2.4). Spearman correlation is -0.0018.
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Figure F.6. Corresponding scatterplot of Figure D.3, but for same padding rather than valid padding. Shown is a scatterplot for
error in the main effect prediction vs. the model’s predicted interaction effect for the 19 models trained with valid same on the negative
control data that failed the paired Wilcoxon test for the loss change (these are the same models that are highlighted in red in Fig. F.2, top
right ). The error in the main effect was calculated by subtracting the predicted sum of the main effects (MG +MT ) from the ideal sum
of the main effects according to the ground-truth. Positive correlation between the predicted interaction effect and the main effect error
indicates that the interaction effect is compensating for a mis-prediction in the main effects. This may help explain why removing the
interaction effect worsens the prediction loss on held-out data, despite the absence of a ground-truth interaction.

Figure F.7. Counterpart of Fig. D.2, but for same padding rather than valid padding. The median increase in the loss from excluding
interactions tends to be higher in the training set compared to the test set.
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Figure F.8. Mean interaction effect learned by models trained on negative control data. Each point represents the average test set
interaction effect (computed over 7971 motif pairs) for a single trained model. Note that, unlike in Fig. 2 (bottom right), in this figure
we do not take the absolute value of the interaction effect prior to averaging. With valid padding (left), the average interaction effect has a
negative sign for all but two models. With ‘same’ padding (right), the sign of the average interaction effect is more varied. Red points
indicate models for which the interaction effect significantly improved the loss on test-set examples according to the paired Wilcoxon test
at p < 0.05. Model architectures are described in Sec. C.
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G. Empirical Null Distribution For Loss Improvement
We explored a way to generate an empirical null distribution to test whether the increase in loss due to removal of an
interaction effect is statistically significant. The approach we took was as follows: rather than looking at the interaction
effect between the actual motif locations in the original sequences, we considered the interactions between two randomly
chosen locations within the original sequences that were still separated by at least the length of the longer motif. The
intuition behind using this for a null distribution is that two randomly chosen positions are unlikely to contain a pair of
interacting motifs. While this choice of empirical null distribution worked well in the case of ‘valid’ padding, it did not
work as well for ‘same’ padding, as illustrated in Fig. G.1.

Figure G.1. Results from comparing change in loss due to removal of interaction effect between motif pairs in test set to an
empirical null consisting of change in loss due to removal of interaction effect between random positions in the test-set sequence.
Each point consists of one of 45 models trained on the respective dataset (top left: negative control with valid padding, top right: positive
control with valid padding, bottom left: negative control with same padding, bottom right: positive control with same padding). X-axis
shows increase in MSE from excluding the interactions between 7,971 motif pairs in the test set (Sec. 2.4), and y-axis shows the increase
in MSE from excluding interactions between randomly chosen locations in the test-set sequences. Error bars indicate the standard error of
the mean. We tested whether the squared error from excluding interactions between motif pairs in the test set was significantly higher
compared to the increase in squared error from excluding interactions between randomly chosen locations in the test-set using a one-sided
unpaired Mann-Whitney U test. For all models trained on the positive control data, the difference was highly significant. For all models
trained on the negative control data with valid padding, the difference was not statistically significant. However, for 14/45 models trained
on the negative control data with same padding, the difference was statistically significant; these models are highlighted in red, and can be
considered false positives.


