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Abstract

Identifying the genome-wide locations where tran-
scription factors (TF) bind is key to understanding
gene regulation. Provided that there is sufficient
data for training, deep learning models such as
convolutional neural networks (CNN) are power-
ful tools for TF binding prediction. However, the
amount of available binding data (i.e. ChIP-seq)
for many TFs is sparse. Transfer learning has
been shown to reduce the amount of data needed
for training and improve model performance in
different biological tasks, including TF binding
prediction. Here, we present a comprehensive
analysis of transfer learning for TF binding pre-
diction. Using a state-of-the-art CNN architecture,
we show that biologically-relevant prior knowl-
edge, specifically of TFs with the same DNA-
binding motifs, correlated binding, or functionally
associated with the target TF, improves transfer
learning. Moreover, we demonstrate that with
transfer learning, we can train good performing
models (Matthews correlation coefficient greater
than 0.5) from less than 500 ChIP-seq peaks. Fi-
nally, using model interpretation techniques, we
observe that the mechanism of transfer learning
involves refining the CNN filters learnt during the
pre-training step to resemble the binding motif(s)
of the target TF. Our results confirm that transfer
learning is a powerful technique to improve TF
binding prediction.
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1. Introduction
Transcription factors (TFs) are the main regulators of gene
expression at the transcriptional level(Lambert et al., 2018).
TFs bind to specific genomic locations known as TF binding
sites (TFBSs) through the recognition of degenerate mo-
tifs (Badis et al., 2009) approximately 10 base pairs (bp)
in length(Stewart et al., 2012). Due to their central role in
gene regulation, disrupted TFs and TFBSs have been associ-
ated with many disorders(Lee et al., 2020b; Mathelier et al.,
2015), including cancer(Khurana et al., 2016). Therefore,
delineating the genome-wide locations to which TFs bind
would help to understand how genes are regulated in health
and disease. Chromatin immunoprecipitation followed by
sequencing (ChIP-seq) is an experimental assay that enables
the identification of TF-bound regions in vivo at a resolu-
tion of a few hundred bp(Johnson et al., 2007). These re-
gions, known as ChIP-seq peaks, are expected to encompass
the TFBSs. The ReMap database provides access to thou-
sands of uniformly reprocessed ChIP-seq datasets(Cheneby
et al., 2018; 2020). It stores millions of ChIP-seq peaks
related to the binding of approximately 800 human TFs in
602 different cell and tissue types. Based on ReMap, the
UniBind database provides reliable TFBS predictions within
the ChIP-seq peaks of 231 human TFs in 315 different cell
and tissue types (Gheorghe et al., 2019). UniBind TFBS pre-
dictions are based on four different computational models,
including position weight matrices (PWMs).

Despite efforts by public consortia such as EN-
CODE(Dunham et al., 2012) to delineate the binding of
each TF in the human genome, the task, if feasible, is
far from complete. For instance, about 40% of human
TFs have not been profiled by ChIP-seq, and only a few,
such as CTCF, have been profiled extensively. In this sce-
nario, there is a need for computational methods capable
of predicting TF binding with high precision to comple-
ment experimental data. Driven by advances in the field of
deep learning, computational prediction of TF binding has
improved dramatically(Koo & Ploenzke, 2020). In recent
years, several deep learning approaches have emerged that
exploit convolutional neural networks (CNNs) for TF bind-
ing prediction(Alipanahi et al., 2015; Avsec et al., 2020;
Lan et al., 2019; Quang & Xie, 2016; 2019; Wang et al.,
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2018; Zheng et al., 2020; Zhou & Troyanskaya, 2015). A
limitation of deep learning models, including CNNs, is
the availability of sufficient training data. The amount of
ChIP-seq data available for some TFs is very small. For
example, 381 (47.6%) of the human TFs in ReMap have
been profiled in only one cell or tissue type, while 134
(16.7%) have less than 1,000 ChIP-seq peaks annotated.
Transfer learning—the use of knowledge acquired while
solving a task, to solve a different but related task—can re-
duce the amount of data required for training(Thrun & Pratt,
1998). Transfer learning has been successful in different
biological tasks such as reconstructing gene regulatory net-
works(Mignone et al., 2020; Yang et al., 2019), denoising
single-cell data(Wang et al., 2019a;b), or predicting both
chromatin interactions(Schwessinger et al., 2019) and TF-
bound regions(Lan et al., 2019; Zheng et al., 2020). Here,
we perform an in-depth analysis of transfer learning for TF
binding prediction using a popular CNN architecture for in-
ferring chromatin accessibility(Kelley et al., 2016; Maslova
et al., 2019) adapted to predict TF binding events. We begin
by combining TF binding data from ReMap and UniBind
to build a sparse matrix summarizing the binding of TFs
to DNase I hypersensitive sites(DHSs) (Lee et al., 2020a;
Thurman et al., 2012) in a cell and tissue type agnostic man-
ner. Next, we train a multi-task model to predict the binding
of 50 TFs and use the learnt weights to initialize models
for individual TFs (i.e. transfer learning). We show that
transfer learning significantly improves model performance
even for TFs with small datasets. Moreover, we see that the
benefit of transfer learning is greater when the multi-model
is trained on biologically-relevant TFs; specifically, TFs
with the same DNA-binding motifs, correlated binding, or
functionally associated with the target TF. Finally, we apply
model interpretation techniques in an attempt to decipher
the mechanism of transfer learning. We observe that the
filters learnt by the first layer of the multi-model during
the pre-training step are refined to resemble the motif of
the target TF. To the best of our knowledge, this is the first
comprehensive study of its kind.

2. Methods
2.1. TF binding matrix

As source of accessible regions, we used DHSs from the
UCSC Genome Browser track of ENCODE DNase I hyper-
sensitivity peak clusters(Lee et al., 2020a; Thurman et al.,
2012). DHSs were resized to 200 bp by extending the cen-
ter of each cluster 100 bp in each direction using bedtools
slop(Quinlan & Hall, 2010). As sources of TF binding
features, we used ChIP-seq peak summits from ReMap
2018(Cheneby et al., 2018) and PWM-based TFBS predic-
tions from UniBind(Gheorghe et al., 2019). All data were
matched by cell and tissue type.

Next, we built a sparse matrix by aggregating the binding
of 163 TFs to 1,817,918 accessible regions in a cell and
tissue type agnostic manner, with rows representing TFs
and columns regions. Each cell in the matrix takes one of
three values: ”1”, if the region is bound by the TF; “0”, if the
region is not bound by the TF; or “null” indicating that the
binding of the TF to the region cannot be resolved. A region
is defined as bound by a TF if it is accessible and overlaps
with binding features of the TF from ReMap and UniBind
in at least one matched sample. Instead, if the region is
accessible but does not overlap with binding features of the
TF in any matched sample, it is defined as not bound. Other
possibilities, for instance, if the region is not accessible in
any matched samples with the TF, or if it is accessible but
only overlaps with ReMap or UniBind binding features of
the TF (not both), are defined as not resolved (i.e. there is
not enough evidence to support whether the region is bound
or not by the TF).

2.2. Model architecture and training

We adapted the CNN architecture from Basset(Kelley et al.,
2016) and AI-TAC(Maslova et al., 2019) to predict TF bind-
ing events: three convolutional layers, each followed by
batch normalization, ReLU activation function and max
pooling, followed by three fully connected layers, two hid-
den and the last one yielding 1, 5 or 50 outputs.

To train multi-task models (i.e. multi-models), we re-define
the TF binding matrix to make it less sparse. Specifically,
accessible regions overlapping with either ReMap ChIP-seq
peaks or UniBind TFBSs of a TF are defined as unbound
(i.e. 0) rather than unresolved (i.e. null). We select a slice
of the matrix such that it contains the maximum number
of resolved regions for all TFs in the multi-model, and
split it into training (80%), validation (10%), and testing
(10%). We apply one-hot encoding to convert nucleotides
into 4-element vectors as in Basset. Regions with one or
more Ns are ignored. The model is trained with Adam
optimizer(Kingma & Ba, 2017) on both strands of each
region. We set the learning rate to 0.003, the batch size to
100, and use an early stopping criteria to avoid overfitting
(i.e. when the model performance on the validation set does
not improve). Single-task models (i.e. individual models)
are trained in a similar way, but using the original sparse
matrix and ignoring unresolved regions.

2.3. Transfer learning

We used a two-step transfer learning approach consisting
of pre-training and fine-tuning. In the pre-training step, we
train a multi-model that predicts the binding of 5 or 50 TFs,
depending on the case. Then, we initialize an individual
model that predicts the binding of a single TF (i.e. target)
by transferring all of the layers learned by the multi-model,
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except the output layer. In the fine-tuning step, we reduce
the learning rate to train the model of the target TF.

2.4. Results

2.4.1. TRANSFER LEARNING IMPROVES TF BINDING
PREDICTION

From the total of 163 TFs present in the TF binding matrix,
we selected the top 50 based on their number of resolved
regions. We trained a multi-model to predict the binding
of these 50 TFs, as well as 50 individual models with and
without transfer learning from the multi-model. To allow
for a fair comparison, the multi-model and the individual
models were trained on different regions. Moreover, both
types of individual models of a TF relied on the same re-
gions for training, validation and testing. Transfer learning
improved model performance for all TFs (Figure 1A). The
improvement was inversely correlated with the number of 1s
in the training data size (i.e. TFs with fewer bound regions
benefited the most).

Next, we wondered what is the minimum dataset size re-
quired to achieve good model performance with transfer
learning. We focused on SPI1. We trained models with and
without transfer learning 5 times by downsampling 1,000
and 500 bound/unbound regions of SPI1 from the TF bind-
ing matrix at random, while accounting for %GC content.
Surprisingly, models trained with transfer learning achieved
a good performance (Matthews correlation coefficient ≥
0.5) even when trained on 500 bound regions (Figure 1B). A
similar trend was observed for other TFs (results not shown).

2.4.2. BIOLOGICALLY-RELEVANT PRIOR KNOWLEDGE
IMPROVES TRANSFER LEARNING

It has been shown that TFs from the same structural family
share similar DNA-binding mechanisms(Badis et al., 2009)
(i.e. binding modes). For instance, members of the T-box
family of TFs bind to the consensus DNA sequence TCA-
CACCT(Wilson & Conlon, 2002). We wondered whether
binding mode information could explain the observed dif-
ferences in transfer learning performance for different TFs.

To answer this question, we trained individual models, with
and without transfer learning, to predict the binding of 98
additional TFs from the TF binding matrix (15 TFs were
discarded due to their small number of bound regions in the
matrix). The 50 TFs from the multi-model are represented in
JASPAR(Fornes et al., 2020) by 34 unique binding modes;
the remaining 98 TFs are represented by one of these 34 or
a different binding mode. We observed that TFs represented
by one of the 34 binding modes from the multi-model bene-
fited from transfer learning significantly more (Welch t-test,
p-value = 0.01; Figure 2A).

Next, we wondered if other biologically-relevant prior

A

B

Figure 1. A) Performance of individual models and multi-model
on the 50 TFs used to train the multi-model. Every individual
model was either trained from scratch or using pre-initialized
weights (i.e. TL) from the multi-model. B) Performance of SPI1
on 1000 and 500 training examples with and without TL. For
comparison, performance by training on entire SPI1 dataset is also
shown.

knowledge, such as from cooperative TFs (i.e. cofactors),
which we define as TFs whose binding is positively corre-
lated with the target TF, or functional partners from STRING
(Szklarczyk et al., 2019) also had a positive effect on trans-
fer learning. We focused on 5 TFs from the multi-model
represented by different binding modes: HNFA4, JUND,
MAX, SP1 and SPI1. For each TF, we trained 5 multi-
models: 1) on 5 TFs with the same binding mode as the
target TF; 2) on 5 co-factors with binding modes different
from that of the target TF; 3) on 5 functional partners of
the target TF from STRING; 4) on 5 TFs represented by
the same binding mode but whose binding is not correlated
with the target TF; and 5) on 5 randomly selected TFs with
binding modes different from that of the target TF. More-
over, we trained 5 more multi-models in which one of the
5 TFs was replaced by the target TF. These multi-models
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were used for transfer learning. Except for SP1, transfer
learning from multi-models of TFs represented by the same
binding mode as the target TF (i.e. 1) as well as co-factors
(i.e. 2) performed well regardless of the presence of the
target TF in the multi-model (Figure 2B). Interestingly, for
SP1, transfer learning from multi-models trained with co-
factors and functional partners from STRING (i.e. 2 and 3)
performed better than the multi-models trained with other
Krüppel-like factors(Swamynathan, 2010) (i.e. 1 and 4),
which performed as badly as random (i.e. 5).

with target TF

A

B
without target TF

with target TF

with target TF

with target TF

with target TFwithout target TF

without target TF

without target TF

without target TF

Figure 2. A) Effect of binding modes on TL performance im-
provement for TFs subsampled to 1000 positive/negative examples.
Presence of a TF with the same binding mode as the target TF,
results in better performance. B) Results of different TL initiali-
sation. The presence of the target TF during the pre-training step
provides good results on the test set. In the absence of the target
TF, pre-training with the same binding mode TFs or cofactors gives
better performance.

2.4.3. TRANSFER LEARNING INTERPRETATION

To understand how transfer learning works, we converted
the filters from the first layer of the multi-model into PWMs
and compared them to TF binding profiles from the JAS-
PAR database using TOMTOM(Gupta et al., 2007) (Figure
3A). As expected, more than half had significant similarities
to known motifs. Next, we wondered if this interpretation
technique could reveal the mechanisms of transfer learning.
We focused on HNF4A. Briefly, we initialized an individual
model for HNF4A with transfer learning from the original
multi-model trained on 50 TFs. Before the fine-tuning step,
the filters from the first layer of both the individual and the
multi-model are identical. After the fine-tuning step, we

found that some of the filters, which in the multi-model
resembled a different TF or did not match any TF motif at
all, became similar to the target TF (Figure 3B). Notewor-
thy, after transfer learning, we observed a large number of
filters begin to resemble the target TF, compared to training
the model from scratch without transfer learning (results
not shown). Taken together, our findings suggest that the
mechanism by which transfer learning improves model per-
formance may be that pre-trained layers provide a good
starting point for the new model to learn the relevant motifs.

TL

Figure 3. A) The multimodel for 50 TFs learns motif representa-
tion of the target TFs in its first layer; color scale shows the statis-
tical significance of the resemblance to JASPAR motif database
motif instances (-log10(q.value)). B) Fine-tuning of the multi-
model filters on a new target task results in the refining of certain
filters, which at the end better resemble the target TF binding site.
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