

جامعة الملك عبدالله للعلوم والتقنية Abdullah University of Science and Technology

Living Systems Laboratory

Contributions

EDNA: Evolutionary heat Diffusion- based Network Alignment

- uses the diffusion signal as a proxy for computing node similarities between networks
 - ✓ the most accurate alignments
 - ✓ increased **robustness** against noise ✓ superior scalability
- works as a wrapper around available network alignments/embeddings

Overview

- Protein protein interaction networks: proteins as nodes, interactions as edges
- Local and global structure: signals of anchor nodes from baseline alignments diffuse to all nodes
- Evolutionary algorithm: fine-tune the diffusion parameter Θ to further improve performance

Graph Formulation

Learning Heat Diffusion for Network Alignment Sally Sisi Qu, Frost Mengmeng Xu, Bernard Ghanem, and Jesper Tegner King Abdullah University of Science and Technology

Performance

Method	Acc@1	Acc@5	EC	S^3		
Baseline						
Struc2vec	63.9	88.7	78.6	75.7		
REGAL	59.6	77.4	49.3	46.3		
ndegree	65.0	80.9	63.1	60.3		
After EDNA						
Struc2vec	73.4	95.4	55.4	55.6		
REGAL	92.6	96.5	97.7	98.5		
ndegree	92.6	96.7	98.1	98.8		

Accuracy of baseline alignments and EDNA with varying noise levels from 1% to 10%.

 $\mathbf{P}: \mathbf{A}_1^{perm} = \mathbf{P} \mathbf{A}_1 \mathbf{P}^\top$

The implementation with EDNA consistently outperforms baselines using different features from (struc2vec and ndegree) and NA method (REGAL).

noise level.

- **Accuracy**: the ratio of the number of correct alignments to the total number of groudtruth alignments
- EC: edge correctness, the percentage of edges in one network aligned to the edges in another
- denser ones.

Accuracy of baseline alignments and EDNA for fixed 5%

- S³: symmetric substructure score. Penalize the
- alignments that map sparse regions of the network to

Ablation study of EDNA.

ndegree as a baseline alignment method to compare with the performance after applying diffusion and full EDNA. p_s is set to 10%.

Future Work

VISUAL

CENTER

COMPUTING

The 2020 ICML Workshop on **Computational Biology**

nber	500	1000	2000	4000	8000	
•	67.0	65.4	62.0	58.2	56.2	
•	76.0	70.8	67.5	62.5	58.4	
n)	17.8	52.5	193	795	3041	
	1.53	10.5	12.4	62.1	18.3	
n)	4.85	10.9	34.5	135	272	
	0.46	0.17	0.59	3.7	1.4	

Scalability of EDNA with network size.

Erdos-Renyi networks a constant average degree of 10

- With increasing network size the alignment accuracy decreases slightly, while the running time on CPU or on GPU increases.
- However, the simulation of the heat diffusion process on a GPU is much faster.

	Acc@1	Acc@5	EC	S^3
n	35.63 52.75 77.89	57.09 73.54 86.58	27.77 56.96 70.22	23.53 56.26 71.29