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Abstract

Deep learning techniques have revolutionized the
field of computational biology, however it is of-
ten difficult to assign biological meaning to their
results. To improve interpretability, methods have
incorporated biological priors, like pathway defi-
nitions, directly into the learning task. However,
due to the correlated and redundant structure of
pathways, it is difficult to determine an appropri-
ate computational representation.

Here, we present pathway module Variational
Autoencoder (pmVAE). Our method utilizes
pathway information by restricting the structure
of our VAE to mirror gene-pathway memberships.
Its architecture is composed of a set of subnet-
works, refered to as pathway modules, that learn
interpretable multi-dimensional latent representa-
tions by factorizing the latent space according to
pathway gene sets. We directly address correla-
tions between pathways by balancing a module-
specific local loss and a global reconstruction loss.
We demonstrate that these representations are di-
rectly interpretable and reveal underlying biology,
such as perturbation effects and cell type inter-
actions. We compare pmVAE against two other
state-of-the-art methods on a single-cell RNA-seq
case-control dataset, and show that our represen-
tations are both more discriminative and specific
in detecting the perturbed pathways.
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1. Introduction

Biological interpretation of high-throughput experiments is
often laborious and difficult to fully automate. This issue is
intensified for single-cell experiments since they are high-
dimensional and have multiple interacting factors, such as
cell-type specific drug effects. Pathways are one way to
help attach biological meaning to computational results and
conceptually disentangle the multiple factors that could be
driving observed differences between samples.

A natural way to identify which pathways are altered in a
dataset is to correlate the learned parameters against external
pathway or clinical data to explain the latent components.
While this approach has proven fruitful (Dincer et al., 2018;
Kompa & Coker, 2020; Tan et al., 2014; Way & Greene,
2018; Way et al., 2020), it requires careful analysis to iden-
tify what each component is capturing, especially since all
features are likely not fully disentangled (Locatello et al.,
2019).

An alternative approach is to integrate prior information
from biology, such as pathway gene sets, to constrain the
model of interest (Buettner et al., 2017; Fortelny & Bock,
2020; Kuenzi et al., 2020; Ma et al., 2018; Mao et al., 2019;
Rybakov et al., 2020; Svensson et al., 2020). In this ap-
proach, prior information both regularizes the model as
well as increases its interpretability. While this strategy
has successfully identified overarching pathway changes,
it does not directly address an essential aspect of pathway
definitions — they are highly correlated and overlapping.
The overlap issue is significant when identifying the most
precisely augmented pathway from a perturbation, not just
large sets of highly correlated pathways.

An additional shortcoming of each pathway encoding
scheme is that a single pathway has a unidimensional rep-
resentation. Many higher-level pathways (e.g., the immune
system) will contain possibly disparate signals from more
specific and independent pathways (e.g., T-cell and B-cell
signaling) and require a richer representation.

In this paper we present pathway module VAE (pmVAE),
an unsupervised method to learn instantly interpretable and
multidimensional pathway representations. Through in-
corporating pathways, defined as a bag-of-genes, pmVAE
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constructs a pathway factorized latent space that directly
addresses the problem of overlapping pathway definitions.
Through pmVAE’s resultant pathway-specific multidimen-
sional representations, one can immediately determine cell-
type-specific perturbation effects for any pathway of inter-
est.

2. Methods

pmVAE extends the VAE framework (Kingma & Welling,
2013). VAEs are probabilistic models that learn compressed
representations of high dimensional data. They consist of
two sets of functions, an encoder and a decoder, often pa-
rameterized by neural networks, with parameter sets 6 and
¢ respectively. These models learn distributions over low-
dimensional latent variables, z, referred to as embeddings or
latent representations, from high dimensional input data, x,
by approximating the posterior over latent representations
and maximizing a lower bound on the log-likelihood of the
data. For a Gaussian likelihood p(x|z), this is equivalent to
minimizing

1% = x[[* + 8 - KL(q(z|z; 0)Ip(2))

where KL is the Kullback-Leibler divergence which regular-
izes the complexity of the embedding distribution. To make
this optimization tractable, the posterior over latent repre-
sentions, ¢(z|x) is often approximated with an isotropic
Gaussian distribution and the prior over latent representa-
tions, p(z) is chosen to be a standard Gaussian.

2.1. Pathway modules produce pathway specific
representations

The pathway modules within pmVAE construct a latent
space factorized by pathways. A graphical representation of
the model is shown in Figure 1. Given a set of K pathways,
each represented as a set of genes, pmVAE consists of K
pathway modules, which each behave as a VAE constrained
to the set of genes that participate in its pathway. The
outputs of these modules are then combined to reconstruct
the expression vector of a single cell.

Let N be the number of total genes, N, be the num-
ber of genes in pathway p, x(P) be the expression of the
genes participating in pathway p and let 8, and ¢, be the
parameters of the encoder and decoder within the path-
way p module. Then the pathway p module encodes x(*)
into a pathway-specific embedding z(?), which is then de-
coded into the reconstruction vector X(?). A global em-
bedding vector, z is obtained by concatenation over all
local embeddings provided by the pathway modules, i.e.
q(z|z) =TI, q(2P)|2(P)) and a global reconstruction is ob-
tained by summing over the local reconstructions provided
by each module, achieved in practice by connecting the out-
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Figure 1. pmVAE is a variational autoencoder for expression data
that constructs an interpretable latent space factorized by pathway
gene sets. These pathway modules encode and decode the genes
contained in their gene sets, forming a latent space for each path-
way. A global reconstruction is achieved by summing over all
pathway module outputs and a custom training procedure is imple-
mented to address optimization challenges caused by overlapping
pathways.

puts of each module to the set of genes participating in the
pathway (see Figure 1).

pmVAE minimizes the loss function:
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which consists of the usual global reconstruction and KL
terms (the first and last of Equation 2.1), but also introduces
a set of local reconstruction terms (middle).

Our method attempts to balance the benefits of both local
and global loss terms. Local reconstruction terms force
each module to reconstruct the genes in its pathway inde-
pendently. However, this approach will find all the modules
explaining any variability in the data, even if another mod-
ule better describes it. pmVAE attempts to explain the data
with the most concise set of relevant modules to explain the
data. While a global loss will provide the most concise data
representation, it causes degenerate optimization problems,
since pathway definitions are inherently redundant. For ex-
ample, if an upstream (or otherwise overlapping) pathway
module explains the signal of a targeted pathway, it will
remove the signal of all downstream pathways. This leads
to an XOR-type behavior (Fortelny & Bock, 2020). Through
balancing both global and local loss, we resolve this XOR-
type behavior and identify the most concise set of possibly
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overlapping pathways.

We compute the local reconstruction terms in practice by
performing an additional K gradient steps, each computed
on the parameters of exactly one module. This process is
similar to an extreme dropout regularization technique (Sri-
vastava et al., 2014), where all but one module is dropped
out in the forward pass. To prevent the model from favoring
large pathways, each local reconstruction term is weighted
by pathway size relative to the global gene size Nﬂp

3. Results

To provide clear, quantitative comparisons against other
methods, we consider a perturbation dataset with known
effects, provided by Kang et al. (2018). This dataset is com-
posed of 13,576 peripheral blood mononuclear cells from
eight lupus patients, with and without Interferon-£ stimula-
tion. Using pathways as defined by Reactome v4 (Fabregat
et al., 2018), the pathway IFN-a/f Signaling is a direct tar-
get of this perturbation. Interferon Signaling and Cytokine
Signaling in the Immune System pathways both contain all
genes in IFN-o/f Signaling plus additional child pathway
genes. Therefore, the parent pathways are highly correlated
with the perturbation, but contain less specific signal than
the target pathway. Anti viral mechanism by IFN-stimulated
genes is a downstream signaling target. Its gene set is not a
subset of IFN-a/p Signaling (Jaccard similarity 0.075, after
preprocessing).

We compare against two factor analysis models, f-
scLVM (Buettner et al., 2017) and Interpetable AE (Ry-
bakov et al., 2020) which constrain factors to gene set mem-
berships !. To demonstrate pmVAE’s ability to remove
redundant pathway signals, we include an independent mod-
ule pmVAE variant where the global loss term is omitted.

3.1. pmVAE identifies the most relevant perturbed
pathways

We analyze the discriminative power of each method’s path-
way scores to differentiate perturbed and control cells and
expect the targeted pathway scores to be most discrimina-
tive and all other pathways to have limited or no power.
To quantify this, we learn a logistic regression model to
predict stimulation status using the trained embeddings and
compute the accuracy of this model on unseen test data.

pmVAE correctly identifies the perturbed pathway, IFN-
o/f Signaling (accuracy: 0.951) as the most discriminative
pathway. All other methods, except f-scLVM, also find
the targeted pathway scores to be discriminative. The con-

"We extended f-scLVM and Interpretable AE to use four-
dimensional representations for completeness, but found similar
or worse performance. Results are omitted due to space.
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Figure 2. Accuracy of pmVAE modules against its Independent
pmVAE variant to classify perturbation status. Each point is a
single pathway module. Off-diagonal points are colored purple and
indicate that these modules are significantly more discriminative
in the independent variant. Modules above the dashed line are
analyzed in Table 1

trast between pmVAE and the comparator methods becomes
apparent when we consider the two upstream pathways In-
terferon signaling and Cytokine signaling in the immune
system. pmVAE does not find the upstream pathway scores
as discriminative because the directly targeted pathways al-
ready explain the variability across the cells. In contrast, the
independent VAE and interpretable AE find the upstream
pathways as highly discriminative of perturbation status;
f-scLVM only finds the most upstream pathway to be dis-
criminative. Figure 2 shows the redundant pathways that
independent VAE identifies as discriminative, but pmVAE
does not. This finding confirms that pmVAE identifies non-
redundant pathway representations by explaining the pertur-
bation effect with only the most specific pathways.

pmVAE also finds three additional pathways to be discrimi-
native of the cell’s perturbation state that is neither up- nor
downstream of the targeted pathways. We believe that these
biological processes are also discriminative because cell-
type and perturbation status are entangled signals within
our dataset. Kang et al. (2018) show empirically that the
Interferon [ stimulation has a cell-type-specific effect. We
visualize this effect in our cell embeddings in the next sec-
tion.

3.2. Multidimensional pathway embeddings capture
cell-type-specific effects

In Section 3.1, we quantitatively demonstrated that pm-
VAE best identified the targetted pathway of interest in two
distinct datasets. This section demonstrates that our repre-
sentations capture additional relevant signals crucial to the
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Independent  Interpretable
pmVAE pmVAE AE fscLVM
Interferon Alpha Beta Signaling 0.951 0.964 0.821 0.435
Antiviral Mechanism By Ifn Stimulated Genes 0.943 0.955 0.741 0.532
Rig I Mda5 Mediated Induction Of Ifn Alpha Beta...  0.890 0.938 0.820 0.530
Immune System 0.832 0.900 0.473 0.540
Interferon Gamma Signaling 0.813 0.846 0.558 0.540
Innate Immune System 0.566 0.908 0.614 0.529
Cytokine Signaling In Immune System 0.534 0.945 0.961 0.819
Interferon Signaling 0.526 0.959 0.920 0.506

Table 1. Accuracy of perturbation status prediction using pathway representations from selected relevant pathways (above dashed line in
Figure 2). Pathways are sorted by the discriminative ability of pmVAE and highly discriminative pathways (> 0.9 accuracy) are bolded.
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Figure 3. UMAP projections computed on selected pmVAE mod-
ule embeddings (columns). Embeddings are colored by pertur-
bation status (first row) and cell type (second row) and capture
pathway-specific effects. Three modules are selected: 1) target,
IFN-o/3 Signaling, 2) parent Interferon Signaling, and 3) Immune
System.

underlying biological process. In contrast to interpretable
AE and f-scLVM, pmVAE provides a per-pathway multidi-
mensional representation. This representation enables us
to interrogate pathway-specific biological features, such as
cell-type-specific effects.

The 4d embeddings of selected modules are visualized using
UMAP projections (MclInnes et al., 2018), shown in Fig-
ure 3. The targeted IFN-a/3 Signaling module captures the
known cell-type specific effects of IFN-3 stimulation (Henig
et al., 2013; van Boxel-Dezaire et al., 2010); cell types clus-
ter strongly after stimulation, but are well mixed before.
pmVAE removes the signal within the Interferon Signal-
ing module, since it is already explained by the IFN-a/f3
Signaling subset. Finally, we show that the Immune Sys-
tem captures orthogonal cell-type effects of immune cells.
However, monocytes retain some perturbation signal, which
shows that we do not achieve a full disentanglement of
effects.

4. Discussion

In this paper, we presented pmVAE, a method to learn highly
specific, interpretable, multidimensional pathway represen-
tations. By incorporating pathway membership into the
architectural design, pmVAE constructs a latent space fac-
torized by pathway. This design enables direct association
between the resulting pathway scores and clinically relevant
features.

We have empirically shown on real scRNA-Seq datasets
that pmVAE outperforms the two independent competitive
models and individually trained VAEs. Our method is robust
even when pathways are highly overlapping or correlated,
a complication innate to most pathway structures. Further-
more, we demonstrate that our multidimensional pathway
representations also capture cell-type, a pathway-specific bi-
ological signal. This enables quick interrogation of possible
cell-type-specific perturbations.

Due in part to their hierarchical nature, redundancies be-
tween overlapping pathways result in degenerate solutions
that make optimization challenging. pmVAE addresses this
by enforcing independence relationships between pathway
modules by introducing local reconstruction terms for each
module’s loss function. However, this independence ignores
known pathway-pathway interactions arising from signaling
effects. Learning pathway-factorized representations that
explicitly model these effects, for example, by incorporating
known signaling interactions into the architecture (Fortelny
& Bock, 2020; Kipf & Welling, 2016; Ma et al., 2018;
Scarselli et al., 2008) is an exciting direction of future work.

While we validated our method using a scRNA-seq data, we
believe that our approach could work on other modalities
individually or jointly, such as bulk RNA-seq, CyTOF, DIA
mass spectrometry, etc. Since these technologies have lim-
ited direct feature correspondences, the integrative analysis
of them is challenging (Irmisch et al., 2020; Ldhnemann
et al., 2020), yet the pathway structure underlying these
feature sets is shared. Therefore, pathway-factorized latent
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representations, like those learned by pmVAE, could be used
to more easily integrate (Cao et al., 2020; Demetci et al.,
2020; Liu et al., 2019; Stark et al., 2020) these technologies.
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